用户名: 密码: 验证码:
单萜烯热重排反应过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对α-蒎烯、p-蒎烯、蒎烷热重排进行了系统深入的研究,探究了它们的热重排反应机理,总结了其热重排工艺,给出了这三种原料在不同反应条件下的热重排反应动力学数据。结合单萜烯热重排反应特点,设计了新型流化床反应器,对其内部流体流态进行了模拟,并进行工业放大设计,得到如下结论:
     α-蒎烯热重排并行产物为柠檬烯和罗勒烯,选择性之比54:42(±1),产物罗勒烯迅速重排为别罗勒烯,反应控制步骤为α-蒎烯重排一步,别罗勒烯最高收率达47%;p-蒎烯热重排并行生成月桂烯、柠檬烯、假柠檬烯,月桂烯最高得率达到82.6%;蒎烷热重排主产物二氢月桂烯的最高得率达到67.5%。由于各主产物均可二次重排,为提高其选择性,必须降低原料转化率。
     通过对空管、06mm钢珠固定床、03mm钢珠固定床、固定床加流化粒子等几种反应器构型对表观动力学参数的影响规律的研究,表明随着反应器比表面积的增加,表观活化能、表观速率因子、表观活化焓、表观活化熵都随之增大,最终接近其本征反应动力学数值。
     在实验研究基础上,提出了新型流化床热重排反应器,小试实验证明,本文提出的新型反应器,在固定床基础上可降低反应温度近20℃,月桂烯最高产率相应提高1-2%,同时具有清除积炭的“自净”功能。
     在已有的颗粒床流体力学研究基础上,提出了更详细的流道物理模型,并结合流态化理论,得到了反应器流体力学计算模型,并根据冷态流体力学实验对比,提出了流化粒子驻留率这一概念,并给出了新型反应器的压降关联式:结合反应器内大尺度多孔介质传热方程及本文得到的反应动力学方程,对反应器进行模拟计算,与实验结果一致。
     提出了工业化规模反应产物急冷流程及大孔穿流塔板与散堆填料相结合的冷却塔器类型,可以有效降低产物高温下的副反应,解决了现生产所用冷凝换热器结焦(垢)、堵塞的问题;进行了规模为100kg/h的生产流程设计和设备工艺设计。绘制了带控制点的流程图、关键设备的计算说明书和工艺条件图。
The mechanisms of thermal rearrangements of monoterpenoids, namely a-pinene, β-pinene, and pinane are investigated respectively; the processes of thermal rearrangements of the three compounds are summarized and the kinetic data were worked out. A new kind of fluidized bed reactor was designed based on the thermal rearrangement theory, and the dynamical regime of fluid flow was studied. The results are as follows:
     The parallel products of thermal rearrangement of a-pinene are limonene and ocimene of which selective ratio is54:42(±1), meanwhile the ocimene are rearranging to allo-ocimene rapidly of which control step is the rearrangement of a-pinene, the highest yield of allo-ocimene was47%. Myrcene, limonene and psi-limonene are the parallel products of β-pinene rearrangement and the highest yield of the myrcene is82.6%.The principal product of the pinane is dihydromyrcene of which highest yield is67.5%. As the possibility of the consecutive reaction of the principal products, the percent conversion must be degraded for promoting the selectivity.
     The results of the apparent kinetic parameters by means of thermal rearrangements of above-mentioned monoterpenoids in the flow-type reactors respectively are hollow pipe,06mm steel balls fixed pipe,03mm steel balls fixed pipe and fluidized bed reactors show that by increasing of the area to volume ratio, the apparent active energy, apparent rate factor, apparent active enthalpy and apparent active entropy are all increased and close to their intrinsic reaction kinetics finally. Adding small fluidized particle can also promote the reaction yield.
     The new kind of fluidized bed reactor for thermal rearrangement was designed. Preliminary experiments show the novel reactor has the advantages of1-2%higher yield than fixed bed reactor for myrcene, and decreased reaction temperature almost20℃, and has self-clean function.
     On the basis of presented theory of particle bed fluidity mechanics, a more detailed flow physical model was proposed and a flow mechanics calculation model was obtained combined with the theory of fluidization in this study. The concept of fluidized particle resident rate was proposed following the cold experiment and brings up the pressing drop correlation in reactor. A simulated calculation of the reactor was completed combined with thermal conduction model for large scale porous media and the reaction kinetic equations.
     The commercial-scale quenching process was presented for depressing the side reaction at high temperature combined macroporous draining plate with random packing type of cooling tower to resolve coking, scaling and blocking in condensing heat exchanger. Finally,100kg/h scale industrial process and equipments were designed and the piping&instrument diagram, the calculation specification for key equipment and process conditions were also included.
引文
白敏丽,薛莹莹,吕继组,等.隔热材料导热系数的数值模拟预测[J].热科学与技术,2007,6(2):136-140.
    陈强,黄萍,罗彦卿,等.林木生物质化学品的开发利用研究进展[J].生物质化学工程,2012,(06):40-46.
    陈玉昆.萜类天然产物的提取及生产工艺[M].科学出版社,2009.
    董丽萍,许松林.天然香料的提取分离技术[J].化工文摘,2006,(04):45-47.
    范成有,李人英.异戊二烯全合成萜类香料[J].天然气化工(C1化学与化工),1985,(06):57-61.
    福州大学.一种生产二氢月桂烯的新方法[P].CN:CN101891578A,2010-11-24.
    顾永康,谷运璀,钱莉群,等.甲位蒎烯合成芳樟醇的研究[J].香料香精化妆品,2013,(S1):6-10.
    郭廷翘,胡忠勤,刘香环,等.α-蒎烯热异构化的研究初报[J].林产化工通讯,1992,(06):15-18.
    国际新能源网.以生物质为原料生产化学品技术进展[J].石油化工技术与经济,2011,(02):42.
    胡忠勤,郭廷翘,刘香环.α-蒎烯热异构化的研究[J].化学工程师,1995,(02):3-6.
    华贲,王小伍.低碳时代中国有机化工走势的探讨[J].化工学报,2010,(09):2169-2176.
    华南农业大学,遂溪县松林香料有限公司.一种热裂解p-蒎烯制备高纯月桂烯的方法[P].CN:CN101045672,2007-10-03.
    黄文彬,徐泳.球颗粒间幂律流体挤压流动法向黏性力的高效数值算法①[J].中国农业大学学报,2002,7(2):17-21.
    黄永念,胡欣Beltrami流动的球涡解的张量表示及其对称性分析[J].应用数学和力学,2002,23(1):11-15.
    黄致喜,王慧辰.萜类香料化学[M].中国轻工业出版社,1999.
    江绍辉.蒎烷热裂解制二氢月桂烯设备改进[J].林产化工通讯,2003,(03)41-42.
    金家骏.化学反应的活化熵——对反应速率的影响及其在推断反应机理上的应用[J].化学通报,1975,(06):56-60.
    李国彦.低雷诺数绕園球流动的一种新解法[J].昆明理工大学学报(理工版),1982,2:007.
    李健,宋小明,鲁剑超,等.球床规模对孔隙流动特性影响的CFD模拟研究[J].核动力工程,2013(2):25-29.
    李响,王淑彦,何玉荣,等.模块式球床反应堆内颗粒流动特性二维数值模拟[J].核动力工程,2008,29(3):94-98.
    刘旦初,谢关根,郑绳安,等.蒎烷催化异构制取二氢月桂烯[J].精细化工,1988,(01):27-31.
    刘杰,高祖瑛.高温气冷堆球床有效导热系数的计算模型及其在SANA基准试验分析中的应用[J].核科学与工程,1999,19(4):303-308.
    刘时贤,李晓伟,吴莘馨.高温气冷堆堆芯球床流动与温度分布均匀性研究[J].工程热物理学报,2012,33(4):639-643.
    刘先章,蒋同夫,胡樨萼.蒎烯热异构的研究第一报——由p-蒎烯制备月桂烯的研究[J].林产化工通讯,1991,(02):2-6.
    刘祥宽,胡献国.基于球型填充相复合材料有效导热系数的计算[J].合肥工业大学学报:自然科 学版,2008,31(9):1378-1381.
    刘永兵,陈纪忠,阳永荣.固定床流体流动特征数值模拟[J].化学工程,2006,34(6):26-28.
    刘玉兰,吴勇强,徐志刚,等.固定床有效导热系数的研究[J].华东理工大学学报:自然科学版,2004,30(2):130-134.
    刘征宙.生物质化学品的开发和生产现状[J].化学试剂,2008,(02):150.
    龙康侯.萜类化学[M].高等教育出版社,1985.
    罗金岳,王汉忠,彭淑静.β-蒎烯热异构制备月桂烯工艺的研究[J].林产化学与工业,2000,(03):47-50.
    毛丽秋,尹笃林.蒎烷热裂解中反应规律的考察(Ⅰ)[J].湖南师范大学自然科学学报,1997,(01):44-46.
    上海日用化工.萜类香料的合成(二)Ⅱ.由蒎烯合成单萜类香料[J].上海日用化工,1978,(02):23-43.
    上海日用化工.萜类香料的合成(一)[J].上海日用化工,1978,(01):13-31.
    上海日用化工.自乙位蒎烯合成萜类香料的工艺[J].上海日用化工,1976,(03):85-86.
    盛卫群.阿仑尼乌斯公式和活化能[J].舟山师专学报,1996,(01):82-86.
    王海,卢旭东,张慧媛.国内外生物质的开发与利用[J].农业工程学报,2006,(S1):8-11.
    王玉炉.有机合成化学[M].科学出版社,2005.
    王泽,林伟刚,宋文立,et al.生物质热化学转化制备生物燃料及化学品[J].化学进展,2007,(Z2):1190-1197.
    吴双茂,方贵银,张曼,等.蓄冷球堆积床动态放冷性能研究[J].低温与超导,2008,36(10):39-43.
    徐广展,孙中宁,孟现珂,等.球床堆流动与传热数值模拟[J].核动力工程,2013,34(3):63-66.
    尹笃林,李谦和,银董红.松节油和松香催化深度加工合成系列精细化工产品(Ⅱ)B—蒎烯多相催化异构制月桂烯[J].湖南师范大学自然科学学报,1995,(04):26-30.
    英柏宁,邱炳锐,林少苹.p-蒎烯热异构化为月桂烯的反应温度[J].广东化工,1989,(01):31-39.
    于佳平,李开泰.两个旋转球之间粘性不可压缩流动的Lorenz系统[J].应用数学学报,2013,36(4):577-618.
    余莲英,李艳洁,徐泳.等径球颗粒群流动特征实验研究[J].中国农业大学学报,2007,11(6):116-120.
    袁友珠,程芝.p-蒎烯热异构反应的研究[J].林产化学与工业,1989,(01):10-17.
    云南省香料研究开发中心.p-月桂烯的制备方法及装置[P].CN:CN1073158,1993-06-16.
    张楠,孙中宁.随机填充球床通道内单相流动数值模拟方法研究[J].核动力工程,2013,34(4):43-46.
    张淑芬,杨锦宗.生物质精细化学品的发展机遇[J].现代化工,2006,(04):1-5.
    张忠富.β-蒎烯裂解制月桂烯的生产工艺探讨[J].化学工程与装备,2013,(06):74-77.
    周慧辉,闫晓,陈炳德,等.球床内流动与传热特性等效模型的优化研究[J].核动力工程,2012,33(4):81-84.
    Anikeev VI, Ermakova A, Chibiryaev AM, et al. Kinetics of thermal conversions of monoterpenic compounds in supercritical lower alcohols[J]. Kinetics and Catalysis,2010,51(2):162-193.
    Anikeev VI. Thermal transformations of some monoterpene compounds in supercritical lower alcohols[J]. Flavour and Fragrance Journal,2010,25(6):443-455.
    Arbuzov B. Studies on the isomeric transformations of bicyclic terpene hydrocarbons and their oxides [M]. Kazan.1936.
    Bain JP. Preparation of 2,6-dimethyl-2,7-octadiene[P]. US:3277206,1966.
    Buddoo S, Siyakatshana N, Zeelie B, et al. Study of the pyrolysis of α-pinanol in tubular and microreactor systems with reaction kinetics and modelling[J]. Chemical Engineering and Processing: Process Intensification,2009,48(9):1419-1426.
    Robert L, Burwell J. The Mechanism of the pyrolyses of pinenes[J]. Journal of the American Chemical Society,1951,73(9):4461-4462.
    Cant P, Coxon J, Hartshorn M. The pyrolysis of pinanes. x. pyrolysis of some endo-pinen-7-ols[J]. Australian Journal of Chemistry,1975,28(3):621-630.
    Chibiryaev AM, Ermakova A, Kozhevnikov IV. Reaction reversibility in α-pinene thermal isomerization: improving the kinetic model[J]. Russian Journal of Physical Chemistry A,2011,85(8):1347-1357.
    Chibiryaev AM, Anikeev VI, Yermakova A, et al. Thermolysis of α-pinene in supercritical lower alcohols[J]. Russian Chemical Bulletin,2006,55(6):987-992.
    Chibiryaev AM, Yermakova A, Kozhevnikov IV, et al. Comparative thermolysis of β-and α-pinenes in supercritical ethanol:the reaction characterization and enantiomeric ratios of products[J]. Russian Chemical Bulletin,2007,56(6):1234-1238.
    Conant JB, Carlson GH. The apparent racemization of pinene[J]. Journal of the American Chemical Society,1929,51(11):3464-3469.
    Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007,107(6):2411-2502.
    Costa MCC, Johnstone RAW, Whittaker D. Catalysis of gas and liquid phase ionic and radical rearrangements of α-and β-pinene by metal(IV) phosphate polymers[J]. Journal of Molecular Catalysis A:Chemical,1996,104(3):251-259.
    Coxon J, Garland R, Hartshorn M. The pyrolysis of some derivatives of β-pinene[J]. Australian Journal of Chemistry,1971,24(7):1481-1486.
    Coxon J, Garland R, Hartshorn M. The pyrolysis of pinanes. Ⅷ. The pyrolysis of some pinanones[J]. Australian Journal of Chemistry,1972,25(11):2409-2415.
    Coxon J, Garland R, Hartshorn M. The pyrolysis of pinanes. Ⅴ. The pyrolysis of 10α-and 10β-Pinan-2-ols and 2-Hydroxy-10β-pin-3-ene[J]. Australian Journal of Chemistry,1972,25(2): 353-360.
    Coxon J, Garland R, Hartshorn M. The pyrolysis of pinanes. Ⅶ. The pyrolysis of some hydroxypinane derivatives[J]. Australian Journal of Chemistry,1972,25(5):947-957.
    Coxon JM, Garland RP, Hartshorn MP. The pyrolysis of nopiriol[J]. Journal of the Chemical Society D: Chemical Communications,1970,(24):1709b-1710.
    Coxon JM, Garland RP, Hartshorn MP. Pyrolysis of cis-pinocarveol[J]. Journal of the Chemical Society D:Chemical Communications,1970,(9):542-542.
    Coxon JM, Garland RP, Hartshorn MP. The pyrolysis of cis-verbanone[J]. Journal of the Chemical Society D:Chemical Communications,1971,(18):1131-1132.
    Elkobaisi FM, Hickinbottom WJ.260. Molecular rearrangements. Part Ⅴ. The course of the thermal rearrangement of benzyl phenyl ether[J]. Journal of the Chemical Society (Resumed),1960,(0): 1286-1292.
    Ermakova A, Chibiryaev AM, Mikenin PE, et al. The influence of water on the isomerization of a-pinene in a supercritical aqueous-alcoholic solvent[J]. Russian Journal of Physical Chemistry A, 2008,82(1):62-67.
    Fuguitt RE, Hawkins JE. Rate of the Thermal Isomerization of a-Pinene in the Liquid Phase1[J]. Journal of the American Chemical Society,1947,69(2):319-322.
    Fuguitt RE, Hawkins JE. The liquid phase thermal isomerization of a-pinene[J]. Journal of the American Chemical Society,1945,67(2):242-245.
    Fujihara Y, Hata C, Matubara Y. Thermal isomerization of cis-pinane and myrtanol with the catalyst systems composed of copper and zinc under reduced pressure subtitle in japanese[J]. Journal of Synthetic Organic Chemistry, Japan,1974,32(11):933-935.
    Gajewski JJ, Kuchuk I, Hawkins C, et al. The kinetics, stereochemistry, and deuterium isotope effects in the a-pinene pyrolysis. Evidence for incursion of multiple conformations of a diradical[J]. Tetrahedron,2002,58(34):6943-6950.
    Gajewski JJ, Hawkins CM. Gas-phase pyrolysis of isotopically stereochemically labeled.alpha.-pinene. Evidence for a non-randomized intermediate[J]. Journal of the American Chemical Society, 1986,108(4):838-839.
    Goldblatt LA, Palkin S. Vapor phase thermal isomerization of a-and β-pinene[J]. Journal of the American Chemical Society,1941,63(12):3517-3522.
    Hawkins JE, Vogh JW. The rate of thermal isomerization of β-pinene in the vapor phase[J]. The Journal of Physical Chemistry,1953,57(9):902-905.
    Hawkins JE, Hunt HG. The preparation of ocimene from a-pinene[J]. Journal of the American Chemical Society,1951,73(11):5379-5381.
    He J, Gong Y, Zhao W, et al. A comparative study on the gas-phase and liquid-phase thermal isomerization reaction of a-pinene[J]. Journal of Physical Organic Chemistry,2013,26(1):15-22.
    Huber GW, Corma A. Synergies between bio-and oil refineries for the production of fuels from biomass[J]. Angewandte Chemie International Edition,2007,46(38):7184-7201.
    Hunt HG, Hawkins JE. The rates of the thermal isomerization of a-pinene and β-pinene in the liquid phase[J]. Journal of the American Chemical Society,1950,72(12):5618-5620.
    Huntsman WD, Curry TH. Reactions of diolefins at high temperatures. I. Kinetics of the cyclization of 3,7-dimethyl-1,6-octadiene[J]. Journal of the American Chemical Society,1958,80(9):2252-2254.
    Il'ina II, Simakova IL, Semikolenov VA. Kinetics of 2-pinanol isomerization to linalool on the monolith carbon-containing catalyst[J]. Kinetics and Catalysis,2001,42(5):686-692.
    Ipatieff VN, Huntsman WD, Pines H. Studies in the terpene series. XVII. The thermal isomerization of pinane at high pressure [J]. Journal of the American Chemical Society,1953,75(24):6222-6225.
    Kolicheski MB, Cocco LC, Mitchell DA, et al. Synthesis of myrcene by pyrolysis of β-pinene:Analysis of decomposition reactions[J]. Journal of Analytical and Applied Pyrolysis,2007,80(1):92-100.
    Lemee L, Ratier M, Duboudin J-G, et al. Flash vacuum thermolysis of terpenic compounds in the pinane series[J]. Synthetic Communications,1995,25(9):1313-1318.
    Li JJ. Name Reactions:A collection of detailed mechanisms and synthetic applications[M]. Springer, 2010.
    Maksimchuk NV, Simakova IL, Semikolenov VA. Kinetic study on isomerization of verbenol to isopiperitenol and citra[J]. Reaction Kinetics and Catalysis Letters,2004,82(1):165-172.
    Mayer CF, Crandall JK. Pyrolysis of nopinone[J]. The Journal of Organic Chemistry,1970,35(8): 2688-2690.
    Mercier C, Chabardes P. Organometallic chemistry in industrial vitamin A and vitamin E synthesis[J]. Catalysis of Organic Reactions,1994,62:213.
    Monteiro J, Veloso C. Catalytic conversion of terpenes into fine chemicals[J]. Topics in Catalysis, 2004,27(1-4):169-180.
    Ohloff G, Giersch W. Access to optically active ipsdienol from verbenone[J]. Helvetica Chimica Acta, 1977,60(5):1496-1500.
    Ohloff G. Process for the production of linalgol[P]. US:3240821,1966.
    Parker ED, Goldblatt LA. The thermal isomerization of allo-ocimene[J]. Journal of the American Chemical Society,1950,72(5):2151-2159.
    Pines H, Hoffman NE, Ipatieff VN. Studies in the terpene series. XX. The thermal isomerization of pinane at atmospheric pressure[J]. Journal of the American Chemical Society,1954,76(17): 4412-4416.
    Rienacker R, Ohloff G. Optisch aktives β-citronellol aus (+)-oder (-)-pinan[J]. Angewandte Chemie, 1961,73(7):240-240.
    Rocha WR, Milagre HMS, De Almeida WB. On the isomerization of β-pinene:a theoretical study[J]. Journal of Molecular Structure:THEOCHEM,2001,544(1-3):213-220.
    Rummelsburg AL. Vapor-phase Thermal isomerization of pinane[J]. Journal of the American Chemical Society,1944,66(10):1718-1721.
    Sasaki T, Eguchi S, Yamada H. Thermal 1,5-hydrogen migration in cis-β-ocimene[J]. Tetrahedron Letters,1971,12(2):99-102.
    Savich T. Process for producing myrcene from beta-pinene[P]. US:2,507,546 (1950).
    Savich TR, Goldblatt LA. Process for producing myrcene from beta-pinene[P]. US:2507546,1950.
    Schulte-Elte KH, Gadola M, Ohloff G. Thermische umlagerungen von (+)-isopinocampheol und (-)-isopinocamphon[J]. Helvetica Chimica Acta,1971,54(7):1813-1822.
    Scott LT. Thermal rearrangements of aromatic compounds[J]. Accounts of Chemical Research, 1982,15(2):52-58.
    Smith DF. The rate of racemization of pinene. a first-order, homogeneous gas reaction[J]. Journal of the American Chemical Society,1927,49(1):43-50.
    Steinbach L, Theimer ET, Mitzner BM. 1(7),8-p-menthadiene ex pyrolysis of β-pinene[J]. Canadian Journal of Chemistry,1964,42(4):959-960.
    Stolle A, Ondruschka B, Hopf H. Thermal rearrangements of monoterpenes and monoterpenoids[J]. Helvetica Chimica Acta,2009,92(9):1673-1719.
    Stolle A, Brauns C, Nuchter M, et al. Thermal behaviour of selected C10H16 monoterpenes[J]. European Journal of Organic Chemistry,2006,2006(15):3317-3325.
    Stolle A, Bonrath W, Ondruschka B, et al. Kinetic model for the thermal rearrangement of cis-and trans-pinane[J]. The Journal of Physical Chemistry A,2008,112(26):5885-5892.
    Stolle A, Bonrath W, Ondruschka B. Kinetic and mechanistic aspects of myrcene production via thermal-induced β-pinene rearrangement[J]. Journal of Analytical and Applied Pyrolysis,2008,83(1): 26-36.
    Stolle A, Ondruschka B. An effort to generalize the thermal isomerization of 6,6-dimethylbicyclo[3.1.1]heptanes and 6,6-dimethylbicyclo[3.1.1]heptenes:Comparative pyrolysis of pinane, a-pinene, and β-pinene[J]. Journal of Analytical and Applied Pyrolysis,2009,85(1-2): 252-259.
    Stolle A, Ondruschka B, Bonrath W, et al. Thermal isomerization of (+)-cis-and (-)-trans-pinane leading to (-)-β-citronellene and(+)-isocitronellene[J]. Chemistry-A European Journal,2008,14(22): 6805-6814.
    Stolle A, Ondruschka B, Findeisen M. Mechanistic and kinetic insights into the thermally induced rearrangement of a-pinene[J]. The Journal of Organic Chemistry,2008,73(21):8228-8235.
    Stolle A, Ondruschka B, Bonrath W. Comprehensive kinetic and mechanistic considerations for the gas-phase behaviour of pinane-type compounds[J]. European Journal of Organic Chemistry, 2007,2007(14):2310-2317.
    Swift KD. Catalytic transformations of the major terpene feedstocks [J]. Topics in Catalysis, 2004,27(1-4):143-155.
    Szuppa T, Stolle A, Ondruschka B. Fate of monoterpenes in near-critical water and supercritical alcohols assisted by microwave irradiation[J]. Organic & Biomolecular Chemistry,2010,8(7): 1560-1567.
    Tanaka J, Katagiri T, Ozawa K. The thermal isomerization of pinane and its products[J]. Bulletin of the Chemical Society of Japan,1971,44(1):130-132.
    Wattimena F. Verfahren zur umwandlung von pinan, alpha-pinen oder beta-pinen A process for the conversion of pinan, alpha-pinene or beta-pinene[P]. DE:2744386.
    wilhelm k. Process for the production of linalool[P]. GB:953500A,1962.
    Yermakova A, Chibiryaev AM, Kozhevnikov IV, et al. The kinetics of thermal isomerization of β-pinene and a mixture of β-and a-pinenes in supercritical ethanol[J]. The Journal of Supercritical Fluids, 2008,45(1):74-79.
    Yermakova A, Chibiryaev AM, Kozhevnikov IV, et al. Thermal isomerization of a-pinene in supercritical ethanol[J]. Chemical Engineering Science,2007,62(9):2414-2421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700