用户名: 密码: 验证码:
高中生的算法理解水平及其教学策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪的数学发生了巨大的变化,其中之一是数学与计算机科学的同步发展。一方面,算法是数学及其应用的重要组成部分,是计算理论、计算机技术和理论的基础,其对计算机科学发展的作用是毋庸置疑的。另一方面,计算机的应用离不开程序设计,程序设计即是算法设计,计算机科学的飞速发展对算法的发展起了极大的推动作用。
     算法进入高中数学课程,既体现了中国古代数学的特征,又反映了时代的要求,符合国际化趋势。算法的教与学策略、学生理解算法的水平等方面内容,都备受关注。国内外的数学课程都重视对算法的理解,但对算法理解的层次性研究一直相对薄弱,大多都是重思辨而轻实证。因此,本文以高中生对算法理解的水平作为主要课题,进行比较系统的实验研究。
     实验是基于算法理解水平的测查工具,主要通过文献分析法、课堂观察法、访谈法和问卷法做了五个方面的工作。第一是利用SOLO分类原理进行算法理解评价,初步探析了学生在算法概念、算法结构和程序语句的最低结构、多元结构、关联结构和拓展抽象结构上的理解水平。第二是考察了学生算法理解水平的总体分布情况。第三是探究了学校、年级和性别对算法理解水平的影响。第四是说明了学生在理解算法中出现的主要错误。第五是提出了促进算法理解的教学策略。
     通过研究,得到以下主要结论:
     (1)学生在算法理解的水平上总体存在一定的差异。总体来看,学生在算法特征、思想、应用的三个维度的理解水平差异不大,算法意义理解水平明显低于前三个维度;学生在各算法结构概念理解水平较低,在算法结构功能和应用理解水平高;学生在算法语句的理解水平上总体偏低。其中,对输入、输出和赋值语句的理解明显高于循环语句、条件语句各结构水平的理解,语句功能和语句格式的理解水平明显高于伪代码描述和伪代码书写的理解水平。
     (2)学生对算法概念的理解水平并不一定随着年龄的增长而自然提高。学生在算法意义、算法特征、算法应用三个维度的理解水平随年级越高理解水平越高,但是,高三年级学生在算法思想上的理解水平最低,相对比较弱;不同年级的学生在算法结构理解上具有以下显著特点,高三年级学生对算法结构的理解程度在各个维度均明显优于高一、高二学生;年级越高算法语句功能及格式理解水平越高,而伪代码书写及描述方面的理解相对地随年级越高理解水平反而较低。
     (3)学校对算法概念理解水平的影响在四个维度上具有不同的结果:在算法意义、特征、应用三个维度上,城市学校B学生的理解水平明显高于农村学校C和县城学校K,而C、K两校差异不大;在算法思想理解水平方面,B、C、K三校学生的理解水平旗鼓相当;整体上看,B校学生在算法结构理解上相对C、K两校有显著优势,但在算法结构判别、算法结构概念理解上差异并不显著;而C、K两校的学生在各方面的理解水平均无显著差异;学生不同学校间算法语句的理解在语句功能维度、语句格式维度上均存在显著性差异,主城区B学校在各算法的这两个维度上得分均有显著优势,理解水平比区县K学校和农村C学校都高,其他各变量差距均不显著。
     (4)女生在算法意义、算法特征、算法思想的理解水平相对男生较高,而男生在算法应用理解上更有优势。男女对算法结构和算法语句的理解不存在显著性差异。
     在研究的基础上,提出了促进学生算法理解的教学策略。促进算法概念理解的直面错误概念,引发认知冲突策略,促进算法思想理解的渗透式策略,促进算法结构理解的直观教学策略和探究教学策略,促进算法语句理解的比较教学策略。进而,提出对课程标准修订的建议,合理确定理解的层次,本研究对理解水平的界定和描述,即可以作为一个参考;对教材修改建议,调整内容的安排顺序和呈现方式。对教师的建议,提升自身对算法的理解水平;注意教学策略的选取;处理好数学中的算法与计算机中的算法之间的关系;关注学生错误理解的原因。
     本研究的拟创新之处在于:在国内首先比较系统地研究了高中生对算法的理解,并用SOLO理论给出了算法理解的水平层次;提出了促进算法理解相应的教学策略。其意义在于为我国高中算法教学的科学研究以及数学教育的教学实践提供参考,还有利于课程标准修订确立合理的课程目标、教学目标,实施有效的教与学。另外,这些研究结论能够充实和完善国内数学教学理论的框架和内容提供服务和参考。
Great changes have taken place on mathematics in the twenty-first Century, one of which is the synchronous development of mathematics and computer science. On the one hand, the algorithm is an important part of mathematics and its applications, as well as the basis of computing theory, computer technology and computer theory. Its impact on the development of computer science is beyond doubt. On the other hand, the application of the computer is inseparable from the program design which is equal to the algorithm design. The rapid development of the computer science has played a great role in promoting the development of algorithm.
     It is not only embodies the characteristics of the ancient Chinese mathematics, but also reflects the requirement of the times, in line with international trends, that the algorithm is absorbed into the high school mathematics curriculum. Teaching and learning strategies of Algorithm, students'level of interpretation of the algorithm etc. are of greatest concern. Mathematics curriculum, whatever domestic or abroad, have paid much attention to the interpretation of algorithm, but the studies of interpreting level of algorithm has been relatively weak, most of which attaches importance to speculation rather than verification. Therefore, this paper takes the high school students' interpreting level of algorithm as the main subject, to research systematically.
     Based on the test tool to interpreting level of algorithm, the research work unfolded mainly through literature analysis, classroom observation, interview and questionnaire. The first is to use SOLO classification principle to evaluate the algorithm, meanwhile preliminarily analyze students'interpreting level of the concept, structure and program language of algorithm in the minimum structure, multiple structure, relational structure and extended structure. The second is to examine the overall distribution on students' interpreting level of algorithm. The third is to research the effects on the interpreting level of the algorithm, according to school, grade and gender.The fourth is to elaborate the main errors students make in understanding algorithm. The fifth is to put forward the teaching strategy to promote algorithm understanding.
     (1) Students vary in interpreting level of algorithm. Overall, students have few differences in interpreting level of three dimensions including its feature, thought and application, while of the significance is lower than the first three dimensions; students have lower interpreting level in the conception of algorithm structure, but higher in its function and application; students'comprehension level in arithmetic sentence is low in general. Among them, the comprehension of input, output and algorithmic statements was significantly higher than that of DO statements, conditional statements of each structure. Interpreting level of statement function and statement format is higher than that of pseudo-code description and pseudo-code writing.
     (2) For conception of algorithm, students' interpreting level does not necessarily rise with age. In three aspects of meaning, characteristics, and application, students' interpreting level is in proportion with grade. However, of the algorithmic thought, students in senior three stands at the lowest level, which is relatively weak; students from different grades features greatly on the interpretation of algorithm structure, students in senior three have significantly better interpretation of the algorithm structure in various dimensions, than the senior one and senior two; interpreting level of the function and format of algorithmic statement is in proportion to grade, while the pseudo-code writing and description is on the contrary.
     (3) Here comes four results on the interpreting level of algorithm according to the influence of school in four dimensions:in three dimensions including meaning, characteristics, and application of the algorithm, students'interpreting level from city school B is obviously higher than that of rural school C and county schools K, meanwhile C and K has little difference; in algorithm thought, B, C and K three schools are level with each other; on the whole, students from B have a significant advantage in interpreting the algorithm structure compared to those from C and K, but not in distinguishing and conception of algorithm structure; and there was no significant difference in the interpreting level of different aspects between students from C and K both; in the dimension of statement function and statement format, there are significant differences between different schools' interpretation of algorithmic statement, that students from school B hold a significant advantage in these two dimensions, at the same time, their interpreting level is higher than those from school K and school C locating in rural areas; the gap between other variables were not significant.
     (4) Girls have relative higher interpreting level than boys in the meaning, characteristics and thought of algorithm, while boys have an edge over girls in algorithm application. Interpretation of the algorithm structure and algorithm statement does not show gender discrimination.
     On the basis of the research, the teaching strategy to promote algorithm understanding is put forward to promote conceptual change strategy, penetration strategy thought understanding, the algorithm structure understanding teaching strategy and the comparison algorithm statement of understanding. Then, advised amendments to the curriculum standard is proposed, as well as a reasonable level of understanding based on the definition and description level of understanding in this study., teachers are provided with more curriculum resources in the form of suggestions on teaching materials, adjusting the order and presentation. Suggestions for teachers will improve their understanding of the algorithm level and help them pay attention to the selection algorithm case, deal better with the relationship in algorithm and find out the reason for the misunderstanding of students.
     The innovation of this research lies as follows. First, it is a systematic research on the understanding of the algorithm level of middle school students, constructing the algorithm level survey tool, and it use solo theory to give evaluation to algorithm. Strategies to promote the understanding level are proposed as well as corresponding teaching strategies. Its significance lies in providing reference for algorithm teaching in senior high schools in China and for scientific research and mathematical teaching practice. It also helps to establish reasonable curriculum standards and objectives for teaching, it also contribute to the implementation of effective teaching and learning. In addition, the conclusion of the study can enrich and provide service and reference to perfect the domestic mathematic theories and contents at present.
引文
① 吴文俊.关于研究数学在中国的历史与现状—在《在东方数学典籍<九章算术>及其刘徽注研究》序言[J],自言辩证法通讯,1990(4):37-39
    ② 张奠宙.算法[J],科学,55(2):45-46
    ③ 转自周恩超.高中新课程“算法初步”学与教问题的相关研究[D].华东师范大学硕士学文论文,2006:4
    ① 李建华.算法及其教育价值[J].数学教育学报,2004,(3):46-47
    ② 徐辉.关于新课程改革中教学问题的观察与思考—兼论小学数学算法优化与多样化的关系[J]课程,教材.教法,2003(10):11-14
    ③ 陈碧芬.数学教育现代化的内涵与实施途径——兼评《文化传统与数学教育现代化》[M],高等理科教育2010(2):30-33
    ④ 王林全.数学教师职业发展需要调查研究[J].数学教育学报,2005(1):63-65
    ⑤ 陈国芳,王晓辉,王文芳.高中数学新课程中算法教学现状的调查与分析[J].数学教育学报,2006(4):65-68
    ⑥ 王惠春.对普通高中学生算法思想的调查与教学研究[D].华东师范大学硕士学位论文,2006:31-32
    ① 范雪飞.高中学生算法学习的困难分析与对策研究[D],延边大学硕士学位论文,2010:20-24
    ② 中华人民共和国教育部.普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003:25
    ③ 转自姜华东.高中数学“算法初步”的教学策略[D],山东师范大学硕士学位论文.2008(4):8
    ④ 克罗恩著.李其龙等译,教学论基础[M],北京:教育科学出版社,2005:107
    ⑤ 全美数学教师理事会著,蔡金等译美国学校数学教育的原则和标准[M]:北京:人民教育出版社,2004:21
    ① 鲍建生.周超,数学学习的心里基础与过程[M],上海:上海教育出版社,2009:7
    ② 斯托利亚尔著.丁尔孙等译.数学教育学[M],北京:人民教育出版社,1985:110
    ③ Artigue M. What can be learned from educational research at the university level [M]In D. Holton (Ed.), The teaching and learning of mathematics at university level:AnICMI Study.2001:207-220.
    ① 张奠宙,唐瑞芬.数学教育学[M],南昌:江西教育出版社,1991:124-128
    ① 转自熊丙章,刘丽颖.数学理解研究综述[J].渤海大学学报(自然科学版).2005(1):39-42
    ② 刘志军.走向理解的教学评价初探[J].教育理论与实践,2002,22(5):43-48
    ③ 靳玉乐主编.理解教学[M],成都:四川出版集团.四川教育出版社,2006:15-17
    ④ 张天宝.关于理解与教育的理论思考[J].教育研究与实验,2000(5):33-38
    ① 陈琼,翁凯庆.试论数学学习中的理解[J].数学教育学报,2003,12(1):1719.
    ② 黄燕玲,喻平.对数学理解的再认识[J].数学教育学报,2003,11(3):17-19.
    ③ [美]格劳斯.数学教与学研究手册[M].陈昌平等泽.上海:上海教育出版社,1999,131-194
    ④ Hiebert,J.& Carpenter, T.P.Teaching and learning mathematic with understanding. In D.A. Grouws(Ed.) Handbook of Research on Mathematics Teaching and Learning. New York:Macmillan.1996:65-100.
    ⑤ Hiebert,J., Carpenter, T.P et al. Making Sense:Teaching and learning mathematic with Portrsmouth,NH:Heinemann.Preface,1997:4-6.
    ⑥ 李士锜.PME:数学教育心理[M].上海:华东师范大学出版社,2001,64-87
    ① [德]Rolf Bichler数学教学理论是一门科学[M].唐瑞芬等译.上海:上海教育出版社,1998:162
    ② 陈琼,翁凯庆.试论数学学习中的理解[J].数学教育学报,2003,12(1):17-19.
    ③ Niemi,D..Assessing conceptual understanding in mathematics:Representation, problem solution justification, and explanation.Journal ofEducational Research,1996(6):351-363
    ④ 孔企平等.数学新课程与数学学习[M].北京:高等教育出版社,2003,231-290
    ⑤ 马复.试论数学理解的两种类型[J].数学教育学报2001,10(3):50-53
    ① Byers,V.& Herscovics.N Understanding school mathematics, mathematics Teaching,1977.(81):24-27.
    ② Hersconvics,N & Bergeron, J.C.Models of Understanding. International Reviews on Mathematical Education, 1983,15(2):75-83.
    ③ 李淑文,张同君.“超回归”数学理解模型及其启示[J].数学教育学报,2002,11(1):21—23
    ① 于新华,杨之.数学理解的层次性及其教学意义[J].数学教育学报,2005,14(2):23-46.
    ② 巩子坤.论理解的层次性与接受学习的取向[J].数学教育学报,2006,15(1):45-49.
    ③ 周建华.试论“理解”的层次结构[J].中学数学,1998(6):3—4
    ④ 吕林海.数学理解性学习与教学研究[D].华东师范大学博士学学位论文,2005.4:87
    ① Ed Dubinsky&D.Tall.Advanced Mathematical Thinking and the Computer in Advanced Mathematical Thinking[M] (D.Tall, ed.), Kluwer,1991:231-250.
    ② Ed Dubinsky&M.McDonald. APOS:A Constructivist Theory of Learning in Undergrad Mathematics Education Research[M].In D.Holton et.(Eds.).The teaching and Learning of Mathematics at University Level:An ICMI Study. Kluwer Academic Publishers,2001:273-280
    ③Ed Dubinsky.Reflections on APOS theory in Elementary and Advanced Mathematical Thinking[J], Zaslavsky (Ed.).Proceedings of the 23rd Conference of PME, Haifa, Israel.2002 (1):111-118.
    ④ APOS:One Constructivist Theory of Learning in Under-graduate Mathematics Education Research, Ed Dubinsky and Michael A.McDonald,The China-Japan-US.Semi-naron on mathematical education,1993.
    ① 乔连全.APOS:一种建构主义的数学学习理论[J],全球教育展望,2001(3):16—18
    ① BiggS, J. & Collis. K. Evaluating the Quality of Learning—SOLO Taxonomy. New york:Academic Press, 1982.13-15.
    ② 李佳,吴维宁.SOLO分类理论及其教学评价观[J],教育测量与评价.2009(2):16—19
    ③ JOHN B-BIGGS·Teaching for quality learning at university [M]Open University Press,1999
    ④ Biggs, J. & Watkins, D. Classroom Learning. Singapore:Prentice Hall,1995:176.
    ① 刘艳.SOLO分类评价法及其应用研究[J],宜春学院学报.2008(12):158-166
    ② 聂力.数学算法研究与教学分析[D],山东师范大学硕士学位论文,2004:1
    ③ 中国百科大辞典,卷7[M].北京:中国大百科全书出版社,1999
    ① 徐斌艳.学生算法概念建构中的认知结构研究[M].上海:华东师范大学出版社,2003:26
    ② 人民教育出版社.普通高中课程标准试验教科书数学.必修3(A版)[M],北京:人民教育出版社.2004:3
    ③ 单尊,李善良.普通高中课程标准实验教科书.数学必修3[M],南京:江苏教育出版社,2004:5
    ④ 袁震东主编.高级中学课本《数学》试验本[M],上海:上海世纪出版集团,上海教育出版社,2004
    ⑤ 严士健,王尚志.普通高中课程标准实验教科书.数学必修3[M],北京:北京师范大学出版社.2004:77
    ② 张景中,李尚志.普通高中课程标准实验教科书.数学必修5[M],湖南:湖南教育出版社.2005:2
    ① 转自周恩超.高中新课程“算法初步”学与教问题的相关研究[D].华东师范大学硕士学文论文,2006:8
    ② 秦德生.郭民,德国中小学算法课程设置及其启示[J],外国中小学教育,2010(7):55-58
    ④ ochen Ziegenbalg. Algorithms-fundamental for Mathematics and Mathematics Educatio:A German Perspective on Algorithms and Computer Based Technology in Mathematics Education.Trends and Challenges in Mathematics Education[M],p.234-254
    ④ 陈昌平,数学教育比较与研究(修订本)[M],华东师范大学出版社,2000:18
    ⑤ 杨晓.日本高中数学教材“算法”内容研究[D],东北师范大学硕士学文论文,2010:11
    ① 袁桂珍,韩国21世纪基础数学教育课程评介[J],数学教育学报,2002(3),34-40
    ② Jacob Perrenet, Eric Kaasenbrood, Levels of Abstraction in Students' Understanding of the Concept of Algorithm: the Qualitative Perspective[J], Proceedings ITiCSE'05, Monte de Caparica, Portugal.2005 (6):64-68
    ③ Jacob Perrenet, Jan Fri so Groote, Eric Kaasenbrood, Levels of Abstraction in Students' Understanding of the Concept of Algorithm:the Qualitative Perspective[J], Proceedings ITiCSE'06 Bologna, Italy,2006 (6):270-274
    ① 转自陈晓红.普通高中信息技术教育中的算法思维培养策略研究[D],南京师范大学硕士学位论文,2007:12
    ② 秦德生.孔凡哲.算法思维及其认知发展[J],中学数学教学参考,2009(1-2):116-118
    ③ 李巍.中学生算法理解水平和课程难度的研究[D],东北师范大学硕士学位论文,2011:26
    ④ 胡剑梅.高一学生用自然语言描述算法水平的研究[D],宁波大学硕士学位论文,2007:1
    ① 邵瑞珍:教育心理学[M],上海:上海教育出版社,1997:80
    ② 黄高庆、申继亮、辛涛.关于教学策略的思考[J],教育研究,1998(11):50-54
    ③ 李晓文、王莹.教学策略[M],北京,高等教育出版社,2000:5
    ④ The Reigeluth, C.M. elaboration of instruetion[A].InC.M.Reigeluth(Ed.), Instructionaldesi, theories andmodels[C], Hillsdale, NJ:Erlbaum,1983,335-382
    ④ 盛群力,伍挺.列符.N·兰达的算启教学[J],教育研究与实验.1999(1):32-37
    ① 吴亚萍:21世纪美国教育的课题[J],外国教育资料,1999(2):57-58
    ② 徐斌艳.从”新技术与学校”看德国的课程改革[J],全球教育展望.1996(5):33-40
    ③ 徐斌艳,施万克.论算法思维中的认知结构差异[J],外国教育资料.1996(2):27-33
    ④ 周恩超.高中新课程“算法初步”学与教问题的相关研究[D].华东师范大学硕士学位论文,2006:55
    ⑤ 朱彬.高中数学教师算法知识调查与研究[D].东北师范大学硕士学位论文,2009:19-22
    ① 江志杰.刍议《算法》的教学原则[J].福建中学数学.2007(10):17-21
    ② 沈易.浅谈算法在中学数学中的教学[J].数学教学.2007(11):11-12
    ③ 彭爱辉.高中数学课程中的算法及其教学设计[D],贵州师范大学硕士学位论文:2004:61
    ④ 辛颖.中日高中数学算法内容的比较研究[D].东北师范大学硕士学位论文:2008:摘要
    ⑤ 廖运章.高中课程标准教科书算法内容的比较[J].数学教育学报.2007(8):83-87
    ⑥ 李彬.“算法初步”一章中若干问题的探讨[Jj.数学通讯.2007(23):7-9
    ⑦ 秦德生.郭民,德国中小学算法课程设置及其启示[J],外国中小学教育,2010(7):55-58
    ⑧ 宋宝和.宋乃庆.算法教学策略初探[J].中国教育学刊.2005(5):41
    ① 周丽.基于图形化编程的高中算法教学研究[D].上海师范大学硕士学位论文.2008:36-43
    ② 聂力.数学算法研究与教学分析[D].山东师范大学硕士学位论文.2004:39-46
    ③ Kamii, C.& Dominick, A. The harmful effects of algorithms in grades 1-4[M], National Council of Teachers of Mathematics 1998:130-140
    ④ 徐利治.郑毓信.算法化原则与数学教育[J].数学传播(台湾).1997(2):22-27
    ① Loma J Morrow, Margaret J. Kenney. The Teaching and Learning of Algorithmsin School Mathematics[M]. National Council of Teachers of Mathematics 1998.1-56.230-274
    ② Clarke, D. M. Written algorithms in the primary years:Undoing the "good work"?[C].Making mathematics vital:Proceedings of the 20th biennial conference of the Australian Association of Mathematics Teacher,2005:93-98
    ③ McIntosh, A. The teaching and learning of algorithms in school mathematics[M],National Council of Teachers of Mathematics 1998:44-48.
    ④ Usiskin, Z. Paper-and-pencil algorithms in a calculator and computer age[M],National Council of Teachers of Mathematics 1998:7-20.
    ⑤ MASATERU HISHINA, KEN-ICHI TOKUOKA. KAZUKI KAWAMLIRA. Algorithm Learning Support System with Structured Chart[J].Information Processing Society of Japan,2004,45 (10):2454-2467.
    ⑥ 转自罗程宏.关于职前数学教师算法知识的调查与互助式教学设计初探[D].华东师范大学硕士学位论文.2011:8
    ⑦ 徐斌艳,施万克.论算法思维中的认知结构差异[J],外国教育资料.1996(2):27-33
    ⑧ 吴凯彬.突出本质注重结构——对算法教学的若干思考[J],数学通报.2005(12):8-10
    ① 转自鲍建生.周超,数学学习的心里基础与过程[M],上海:上海教育出版社,2009:258
    ② 巩子坤.数学理解说及其理论与课程意义[J].比较教育研究.2009(4):40-43
    ① 黄翔.对国家数学课程标准中“联系与综合”目标的认识[J],学科教育,2001(1):1-4
    ② 斯托利亚尔.丁而孙等译,数学教育学[M],北京:人们教育出版社.1985:104
    ③ 奥苏伯尔等著,佘星南,宋钧译.教育心理学:认知观点[M].北京:人民教育出版社,1994:7
    ① 李国强,徐丽华.基于SOLO分类理论的数学教师数学史素养水平划分[J].数学教育学报.2012(2):34-37
    ① 杨玉东.“本原性数学问题驱动课堂教学”的比较研究[D].华东师范大学博士学位论文.2004:39
    ① Hersconvics,N.& Bergeron,J.C.(1983). Models of Understanding. International Reviews on Mathematical Education,15(2):75-83.
    ① 李俊.中小学概率的教与学[M].上海:华东师范大学出版社.2003:27-29
    ① 朱德全,宋乃庆.现代教育统计与测评技术[M].重庆:西南师范大学出版社.1998:207
    ② 转自巩子坤.有理数的运算的理解水平及其教与学的策略研究[D],西南大学博士学位论文,2006:28
    ① Niss.M.Assessment of mathematical applications and modeling in mathematics teaching.C.Keitel,I.Huntley, M.Niss(Eds),Innovation in mathematics education by modelling and application.Chichester:Ellis Horwood,1993:41-51
    ① 李善良.数学概念学习中的错误分析[J].数学教育学报.2002(3):6-11
    ② 李善良.关于数学概念意象的研究[J].数学教育学报.2004(8):13-15
    ③ 李亚玲.算法及其学习的意义[J].数学通报,2004(2):7-9
    ① Graeber. A. O. Forms of knowing mathematics:what preservice teachers should team.Educational Studies in Mathematics,1999(38).189-208.
    ① 范良火等.华人如何学数学[M],南京:江苏教育出版社,2005:258
    ② 蔡金法.中美学生数学学习的系列实证研究[M].北京:教育科学出版社.2007:77-93
    ① 姚利民.有效教学论[M],长沙:湖南大学出版社.2005:10
    ② 张大均.教育心理学[M],北京:人民教育出版社.2006:514
    ① 范良火等.华人如何学数学[M],南京:江苏教育出版社,2005:422
    ① 鲍建生,周超.数学学习的心里基础与过程[M],上海:上海教育出版社.2009:127
    ② 吴光耀.中学数学核心概念结构—以算法概念为例[J],上海中学数学.2011,(1-2):4-5
    ① 陈重穆,宋乃庆.淡化形式,注重实质[J],数学教育学报.1993(2):4-9
    ② 鲍建生,周超.数学学习的心里基础与过程[M],上海:上海教育出版社.2009:126
    ③ Chinn C A, Brewer W F.The role of anomalous data in knowledge acquisition:a theoretical framework and implications for science instruction [J].Review of Educational Research,1993,63:1-49.
    ① Limon M.On cognitive conflict as an instructional strategy for conceptual change:a critical appraisal[J] Learning and Instruction,2001,11:357-380.
    ② 杜伟宇,吴庆麟.概念改变的教学策略研究[J],课程.教材.教法,2005(2):27-31
    ③ 赵军.算法思想在中学的渗透[J],高中数学教与学,2008(2):2-5
    ① 杨海兵.算法思想在高中数学教学中的渗透[J].数学教学研究,2008(4):8-10.
    ② 曹怀火,潘杨友.算法能力的提出及其界定[J].池州学院学报,2011(12):21-23
    ③ 杨振宁.杨振宁文集[M].上海:华东师范大学出版社,1998:381
    ① [澳]默塞特著.鲍建生等译.教学的窗口:中学数学案例集[M]:上海:上海教育出版社,2001:6
    ① 李士锜.熟能生巧吗?[J],数学教育学报,1996(8):46-50
    ② 史宁中.数学思想概论.图形与图形关系的抽象[M],长春:东北师范大学出版社,2009:222-224
    ③ 鲍建生.周超,数学学习的心里基础与过程[M],上海:上海教育出版社,2009:267
    ① 李运模.比较教学法略论[J],中央民族学院学报(人文社会科学版),2000(3):1126-128
    ② 徐斌艳.数学教育展望[M],上海:华东师范大学出版社,2001:200
    ① 顾泠沅等.教学任务的变革[J],教育发展研究,2001(10):5-12
    ① 郑毓信.数学教育—动态与反思[M],上海:上海教育出版社.2005:152
    ① 高慎英,刘良华.有效教学论[M],广州:广东教育出版社,2004:3
    ① 李长吉.教学价值观论[M],兰州:甘肃教育出版社,2004:18
    ① 中华人民共和国教育部.普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003:27
    ① 史炳星.王桂霞.算法初步[M],北京:高等教育出版社,2005:序
    [1]中华人民共和国教育部.普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003:25
    [2]克罗恩著.李其龙等译,教学论基础[M],北京:教育科学出版社,2005:107
    [3]鲍建生.周超,数学学习的心里基础与过程[M],上海:上海教育出版社,2009:7,126,127,258,267
    [4]斯托利亚尔著.丁尔孙等译.数学教育学[M],北京:人民教育出版社,1985:104,110
    [5][美]格劳斯.数学教与学研究手册[M].陈昌平等泽.上海:上海教育出版社,1999,131-194
    [6]李士铸.PME:数学教育心理[M].上海:华东师范大学出版社,2001,64-87
    [7]孔企平等.数学新课程与数学学习[M].北京:高等教育出版社,2003,231-290
    [8][德]Rolf Bichler.数学教学理论是一门科学[M].唐瑞芬等译.上海:上海教育出版社,1998:162
    [9]Grant Wiggins & Jay Mctighe.理解能力培养与课程设计[M].么加利译.北京:中国轻工业出版社,2003,73-106
    [10]申大维等译:数学的原理与实践[M].北京:高等教育出版社,1998.8
    [11]中国百科大辞典,卷7[M].北京:中国大百科全书出版社,1999
    [12]徐斌艳.学生算法概念建构中的认知结构研究[M].上海:华东师范大学出版社,2003:26
    [13]人民教育出版社.普通高中课程标准试验教科书数学.必修3(A版)[M],北京:人民教育出版社.2004:3
    [14]单尊,李善良.普通高中课程标准实验教科书.数学必修3[M],南京:江苏教育出版社,2004:5
    [15]袁震东主编.高级中学课本《数学》试验本[M],上海:上海世纪出版集团,上海教育出版社,2004
    [16]严士健,王尚志.普通高中课程标准实验教科书.数学必修3[M],北京:北京师范大学出版社.2004:77
    [17]张景中,李尚志.普通高中课程标准实验教科书.数学必修5[M],湖南:湖南教育出版社.2005:2
    [18]陈昌平,数学教育比较与研究(修订本)[M],华东师范大学出版社,2000:18
    [19]邵瑞珍:教育心理学[M],上海:上海教育出版社,1997:80
    [20]李晓文、王莹.教学策略[M],北京,高等教育出版社,2000:5
    [21]格劳斯.数学教与学研究手册[M].上海:上海教育出版社,1999:131-194
    [22]涂荣豹.数学教学认识论[M].南京:南京师范大学出版社.2003:274
    [23]范良火等.华人如何学数学[M],南京:江苏教育出版社,2005:258
    [24]蔡金法.中美学生数学学习的系列实证研究[M].北京:教育科学出版社.2007:77-93
    [25]姚利民.有效教学论[M],长沙:湖南大学出版社.2005:10
    [26]张大均.教育心理学[M],北京:人民教育出版社.2006:514
    [27]范良火等.华人如何学数学[M],南京:江苏教育出版社,2005:422
    [28]奥苏伯尔等著,佘星南,宋钧译.教育心理学:认知观点[M].北京:人民教育出版社,1994:7
    [29]李俊.中小学概率的教与学[M].上海:华东师范大学出版社.2003:27-29
    [30]朱德全,宋乃庆.现代教育统计与测评技术[M].重庆:西南师范大学出版社.1998:207
    [31]史炳星.王桂霞.算法初步[M],北京:高等教育出版社,2005:序
    [32]徐斌艳.数学教育展望[M],上海:华东师范大学出版社,2001:200
    [33][澳]默塞特著.鲍建生等译.教学的窗口:中学数学案例集[M]:上海:上海教育出版社,2001:6
    [34]全美数学教师理事会著,蔡金等译美国学校数学教育的原则和标准[M]:北京:人民教育出版社,2004:21
    [35]郑毓信.数学教育—动态与反思[M],上海:上海教育出版社.2005:152
    [36]高慎英,刘良华.有效教学论[M],广州:广东教育出版社,2004:3
    [37]李长吉.教学价值观论[M],兰州:甘肃教育出版社,2004:18
    [38]中华人民共和国教育部.普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003:27
    [39]王尚志,张思明主编.走进高中数学新课程[M].上海:华东师范大学出版社,2008:116-117.
    [40]杨振宁.杨振宁文集[M].上海:华东师范大学出版社,1998:381
    [41]张奠宙,唐瑞芬.数学教育学[M],南昌:江西教育出版社,1991:124-128
    [42]靳玉乐主编.理解教学[M],成都:四川出版集团,四川教育出版社,2006:15-17
    [43]周恩超.高中新课程“算法初步”学与教问题的相关研究[D].华东师范大学硕士学文论文,2006:4,8,55
    [44]范雪飞.高中学生算法学习的困难分析与对策研究[D],延边大学硕士学位论文,2010:20-24
    [45]姜华东.高中数学“算法初步”的教学策略[D],山东师范大学硕士学位论 文.2008(4):8
    [46]吕林海.数学理解性学习与教学研究[D].华东师范大学博士学学位论文,2005.4:87
    [47]聂力.数学算法研究与教学分析[D],山东师范大学硕士学位论文,2004:1,39-46
    [48]杨晓.日本高中数学教材“算法”内容研究[D],东北师范大学硕士学文论文,2010:11
    [49]李巍.中学生算法理解水平和课程难度的研究[D],东北师范大学硕士学位论文,2011:26
    [50]胡剑梅.高一学生用自然语言描述算法水平的研究[D],宁波大学硕士学位论文,2007:1
    [51]陈晓红.普通高中信息技术教育中的算法思维培养策略研究[D],南京师范大学硕士学位论文,2007:12
    [52]王惠春.对普通高中学生算法思想的调查与教学研究[D].华东师范大学硕士学位论文,2006:31-32
    [53]朱彬.高中数学教师算法知识调查与研究[D].东北师范大学硕士学位论文,2009:19-22
    [54]彭爱辉.高中数学课程中的算法及其教学设计[D],贵州师范大学硕士学位论文:2004:61
    [55]辛颖.中日高中数学算法内容的比较研究[D].东北师范大学硕士学位论文:2008:摘要
    [56]周丽.基于图形化编程的高中算法教学研究[D].上海师范大学硕士学位论文.2008:36-43
    [57]杨玉东.“本原性数学问题驱动课堂教学”的比较研究[D].华东师范大学博士学位论文.2004:39
    [58]巩子坤.有理数的运算的理解水平及其教与学的策略研究[D],西南大学博士学位论文,2006:7,28
    [59]但琦.大学生数学建模水平及其教学策略研究[D],西南大学博士学位论文,2007:33
    [60]罗程宏.关于职前数学教师算法知识的调查与互助式教学设计初探[D].华东师范大学硕士学位论文.2011:8
    [61]何宵.高中生对反函数的理解水平及其发展规律研究[D],华东师范大学硕士学位论文.2011:7
    [62]张奠宙.算法[J],科学,55(2):45-46
    [63]吴文俊.关于研究数学在中国的历史与现状—在《在东方数学典籍<九章算术>及其刘徽注研究》序言[J],自言辩证法通讯,1990(4):37-39
    [64]李建华.算法及其教育价值[J].数学教育学报,2004,(3):46-47
    [65]徐辉.关于新课程改革中教学问题的观察与思考—兼论小学数学算法优化与多样化的关系[J]课程,教材.教法,2003(10):11-14
    [66]陈碧芬.数学教育现代化的内涵与实施途径——兼评《文化传统与数学教育现代化》[J],高等理科教育2010(2):30-33
    [67]王林全.数学教师职业发展需要调查研究[J].数学教育学报,2005(1):63-65
    [64]陈国芳,王晓辉,王文芳.高中数学新课程中算法教学现状的调查与分析[J].数学教育学报,2006(4):65-68
    [68]熊丙章,刘丽颖.数学理解研究综述[J].渤海大学学报(自然科学版).2005(1):39-42
    [69]张天宝.关于理解与教育的理论思考[J].教育研究与实验,2000(5):33-38
    [70]刘志军.走向理解的教学评价初探[J].教育理论与实践,2002,22(5):43-48
    [71]陈琼,翁凯庆.试论数学学习中的理解[J].数学教育学报,2003,12(1):17-19.
    [72]黄燕玲,喻平.对数学理解的再认识[J].数学教育学报,2003,11(3):17-19.
    [73]李淑文,张同君.“超回归”数学理解模型及其启示[J].数学教育学报,2002,11(1):21—23
    [74]于新华,杨之.数学理解的层次性及其教学意义[J].数学教育学报,2005,14(2):23-46.
    [75]巩子坤.论理解的层次性与接受学习的取向[J].数学教育学报,2006,15(1):45—49.
    [76]周建华.试论“理解”的层次结构[J].中学数学,1998(6):3—4
    [77]马复.试论数学理解的两种类型[J].数学教育学报2001,10(3):50-53
    [78]乔连全.APOS:一种建构主义的数学学习理论[J],全球教育展望,2001(3):16—18
    [79]李佳,吴维宁.SOLO分类理论及其教学评价观[J],教育测量与评价.2009(2):16-19
    [80]刘艳.SOLO分类评价法及其应用研究[J],宜春学院学报.2008(12):158-166
    [81]秦德生.郭民,德国中小学算法课程设置及其启示[J],外国中小学教育,2010(7):55-58
    [82]袁桂珍,韩国21世纪基础数学教育课程评介[J],数学教育学报,2002(3), 34—40
    [83]秦德生.孔凡哲.算法思维及其认知发展[J],中学数学教学参考,2009(1-2):116-118
    [84]黄高庆、申继亮、辛涛.关于教学策略的思考[J],教育研究,1998(11):50-54
    [85]吴亚萍:21世纪美国教育的课题[J],外国教育资料,1999(2):57-58
    [86]徐斌艳.从“新技术与学校”看德国的课程改革[J],全球教育展望.1996(5):33-40
    [87]盛群力,伍挺.列符.N·兰达的算启教学[J],教育研究与实验.1999(1):32-37
    [88]江志杰.刍议《算法》的教学原则[J].福建中学数学.2007(10):17—21
    [89]沈易.浅谈算法在中学数学中的教学[J].数学教学.2007(11):11-12
    [90]廖运章.高中课程标准教科书算法内容的比较[J].数学教育学报.2007(8):83-87
    [91]李彬.“算法初步”一章中若干问题的探讨[J].数学通讯.2007(23):7—9
    [92]宋宝和.宋乃庆.算法教学策略初探[J].中国教育学刊.2005(5):41
    [93]徐利治.郑毓信.算法化原则与数学教育[J].数学传播(台湾).1997(2):22-27
    [94]徐斌艳,施万克.论算法思维中的认知结构差异[J],外国教育资料.1996(2):27-33
    [95]张奠宙,宋乃庆.数学教育概论[M],北京:高等教育出版社,2009:67
    [96]黄翔.数学教育的价值[M],北京:高等教育出版社,2004:38
    [97]孙晓天.数学课程发展的国际视野[M],北京:高等教育出版社,2003:163-165
    [98]吴凯彬.突出本质注重结构——对算法教学的若干思考[J],数学通报.2005(12):8-10
    [99]巩子坤.数学理解说及其理论与课程意义[J].比较教育研究.2009(4):40-43
    [100]李国强,徐丽华.基于SOLO分类理论的数学教师数学史素养水平划分[J].数学教育学报.2012(2):34-37
    [101]徐斌艳,施万克.论算法思维中认知结构的差异[J],外国教育资料.1996(2):27-33
    [102]李善良.数学概念学习中的错误分析[J].数学教育学报.2002(3):6-11
    [103]李善良.关于数学概念意象的研究[J].数学教育学报.2004(8):13-15
    [104]李亚玲.算法及其学习的意义[J].数学通报,2004(2):7-9
    [105]吴光耀.中学数学核心概念结构—以算法概念为例[J],上海中学数学.2011,(1-2):4-5
    [106]杜伟宇,吴庆麟.概念改变的教学策略研究[J],课程.教材.教法,2005(2):27-31
    [107]赵军.算法思想在中学的渗透[J],高中数学教与学,2008(2):2-5
    [108]杨海兵.算法思想在高中数学教学中的渗透[J].数学教学研究,2008(4):8-10.
    [109]曹怀火,潘杨友.算法能力的提出及其界定[J].池州学院学报,2011(12):21-23
    [110]杨海兵.算法思想在高中数学教学中的渗透[J],数学教学研究.2008(4):31-34
    [111]李运模.比较教学法略论[J],中央民族学院学报(人文社会科学版),2000(3):1126-128
    [112]顾泠沅等.教学任务的变革[J],教育发展研究,2001(10):5-12
    [113]李士锜.熟能生巧吗?[J],数学教育学报,1996(8):46-50
    [114]陈重穆,宋乃庆.淡化形式,注重实质[J],数学教育学报.1993(2):4-9
    [115]史宁中.数学思想概论.图形与图形关系的抽象[M],长春:东北师范大学出版社,2009:222-224
    [116]黄翔.对国家数学课程标准中“联系与综合”目标的认识[J],学科教育,2001(1):1-4
    [117]Artigue M. What can be learned from educational research at the university level [M]In D. Holton (Ed.), The teaching and learning of mathematics at university level: AnICMIStudy.2001:207-220.
    [118]Byers,V.& Herscovics.N Understanding school mathematics, mathematics Teaching,1977.(81):24-27.
    [119]Nao Abe,Roni Khardon,Thomas Zeugmann(Eds), Algorithm Learning Theory[M],Springer2001:1-7
    [120]Biggs, J. & Collis, K. Evaluating the Quality of Learning—SOLO Taxonomy. New york:Academic Press,1982.13-15.
    [121]Biggs, J. & Watkins, D. Classroom Learning. Singapore:Prentice Hall,1995:176.
    [122]CarrollWM.Algorithm sine veryday mathematies[J], Teaching Children Mathematies,1997 (7)
    [123]Chinn C A, Brewer W F.The role of anomalous data in knowledge acquisition:a theoretical framework and implications for science instruction [J]. Review of Educational Research,1993,63:1-49.
    [124]Clarke, D. M. Written algorithms in the primary years:Undoing the"good work"?[C].Making mathematics vital:Proceedings of the 20th biennial conference of the Australian Association of Mathematics Teacher,2005:93-98
    [125]Dubinsky&D.Tall.Advanced Mathematical Thinking and the Computer in Advanced Mathematical Thinking[M] (D.Tall, ed.), Kluwer,1991:231-250.
    [126]Dubinsky&M.McDonald.APOS:A Constructivist Theory of Learning in Undergrad Mathematics Education Research[M].In D.Holton et.(Eds.).The teaching and Learning of Mathematics at University Level:An ICMI Study. Kluwer Academic Publishers,2001:273-280
    [127]Dubinsky.Reflections on APOS theory in Elementary and Advanced Mathematical Thinking[J], Zaslavsky (Ed.).Proceedings of the 23rd Conference of PME, Haifa, Israel.2002 (1):111-118.
    [128]Dubinskyand Michael A.McDonald,APOS:One Constructivist Theory of Learning in Under-graduate Mathematics Education Research, Ed The China-Japan-US.Semi-naron on mathematical education,1993.
    [129]Graeber. A. O. Forms of knowing mathematics:what preservice teachers should team.Educational Studies in Mathematics,1999(38).189-208.
    [130]Hersconvics,N & Bergeron, J.C.Models of Understanding. International Reviews on Mathematical Education,1983,15(2):75-83.
    [131]Hersconvics,N. & Bergeron,J.C.(1983). Models of Understanding. International Reviews on Mathematical Education,15(2):75-83.
    [132]Hiebert,J., Carpenter, T.P et al.(1997). Making Sense:Teaching and learning mathematic with Portrsmouth,NH:Heinemann.Preface,4-6.
    [133]Hiebert,J. & Carpenter, T.P (1992).Teaching and learning mathematic with understanding. In D.A. Grouws(Ed.) Handbook of Research on Mathematics Teaching and Learning. New York:Macmillan.65-100.
    [134]JOHN B-BIGGS-Teaching for quality learning at university [M]·Open University Press,1999
    [135]Jochen Ziegenbalg. Algorithms-fundamental for Mathematics and Mathematics Education:AGerman Perspective on Algorithms and Computer Based Technology in Mathematics Education.Trends and Challenges in MathematicsEducation[M],p.234-254
    [136]Jacob Perrenet, Eric Kaasenbrood, Levels of Abstraction in Students' Understanding of the Concept of Algorithm:the Qualitative Perspective[J], Proceedings ITiCSE'05, Monte de Caparica, Portugal.2005 (6):64-68
    [137]Jacob Perrenet, Jan Friso Groote, Eric Kaasenbrood, Levels of Abstraction in Students'Understanding of the Concept of Algorithm:the Qualitative Perspective[J], Proceedings ITiCSE'06 Bologna, Italy,2006 (6):270-274
    [138]Kamii, C. & Dominick, A. The harmful effects of algorithms in grades 1-4[M], National Council of Teachers of Mathematics 1998:130-140
    [139]Lorna J Morrow, Margaret J. Kenney. The Teaching and Learning of Algorithmsin School Mathematics[M].National Council of Teachers of Mathematics 1998.1-56.230-274
    [140]Limon M.On cognitive conflict as an instructional strategy for conceptual change: a critical appraisal [J] Learning and Instruction,2001,11:357-380.
    [141]McIntosh, A. The teaching and learning of algorithms in school mathematics[M],National Council of Teachers of Mathematics 1998:44-48.
    [142]MASATERU HISHINA, KEN-ICHI TOKUOKA. KAZUKI KAWAMLIRA. Algorithm Learning Support System with Structured Chart[J].Information Processing Society of Japan,2004,45 (10):2454-2467.
    [143]Niss.M.Assessment of mathematical applications and modeling in mathematics teaching.C.Keitel,I.Huntley, M.Niss(Eds),Innovation in mathematics education by modelling and application.Chichester:Ellis Horwood,1993:41-51
    [144]Reigeluth, C.M. elaboration of instruetion[A].In.C.M.Reigeluth(Ed.), Instructionaldesi, theories andmodels[C], Hillsdale, NJ:Erlbaum,1983,335-382
    [145]Usiskin, Z. Paper-and-pencil algorithms in a calculator and computer age[M],National Council of Teachers of Mathematics 1998:7-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700