用户名: 密码: 验证码:
环境因子对三趾跳鼠遗传多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三趾跳鼠(Dipus sagitta)属跳鼠科(Dipodidae)三趾跳鼠属(Dipus)广泛分布于我国蒙新区,是蒙新区区系分布的典型物种。三趾跳鼠适应性强。本实验研究目的是要从分子水平利用线粒体DNA为分子标记来研究三趾跳鼠的遗传多样性与环境因子之间的关系,进一步了解河西走廊及其周边地区三趾跳鼠进化过程及分布的格局、形成此格局的原因。
     本实验对来自内蒙古、甘肃、新疆三地区的78只三趾跳鼠采用哺乳动物细胞色素b通用引物进行扩增及测序分析,测序的结果得到细胞色素b1037bp序列。利用分子生态学软件分析得出以下结果:
     1.三趾跳鼠细胞色素b碱基序列平均碱基含量为:T(U)占29.1%,C30.4%,A26.2%,G14.3%。发现12个转换位点,1个颠换位点,转换颠换比12:1,TC间的转换7个,AG间的转换位点5个。碱基的转化频率大大高于颠换发生频率。
     2.三趾跳鼠总的的核苷酸多样性为0.018±0.025,单倍型多样性为0.963±0.054。各个地理种群中核苷酸多样性最高的是阿克塞AKS种群0.07326,最低的是榆中种群0.0010。在单倍型多样性方面,单倍型多样性最低的是甘肃的金塔种群0.833。三趾跳鼠种群的细胞色素b遗传变异丰富。
     3.三趾跳鼠9个种群78个样本共发现64个单倍型。其中中泉子有9个单倍型,新疆吉木乃有15个单倍型,阿克塞有3个单倍型,安西有8个单倍型,民勤有12个单倍型,苏干湖有7个单倍型,高台有6个单倍型,金塔有3个单倍型,榆中有2个单倍型。其中阿克塞、安西、民勤有1个共享单倍型,安西、苏干湖有1个共享单倍型。其余种群之间无共享单倍型。
     4.核苷酸多样性与温度变异系数之间呈显著负相关关系,说明相对温度变异系数是影响三趾跳鼠遗传多样性的主导因子。
     5.在9个地理种群间吉木乃和榆中种群之间的遗传分化指数最高Fst0.976,高台种群和阿克塞种群之间的遗传分化指数最低Fst0.008。种群之间的遗传差异显著。
     6.根据碱基序列计算,分析结果可知,吉木乃和中泉子种群之间的遗传距离最大0.132。而比较两地的地理距离也是最远的1579公里。
     7.构建贝叶斯分子进化树,结果表明9个三趾跳鼠地理种群聚为两个明显的分支,其他地理种群种群聚为一支,吉木乃聚为另一支。根据BEAST软件分析计算,三趾跳鼠的两大支分歧时间在距今52万年左右。种群扩张分析提示,三趾跳鼠在0.115Ma前曾经历一次种群扩张时间,种群可能受到更新世的庐山-大理间冰期的影响。
Dipus sagitta widely distributed in mengxin district,is a typical species in mengxin district. Mitochondrial DNA sequence of cyothrome b gene from9populations were evaluated the relationship between genetic diversity and climatic factors,investigated the genetic structure. Using molecular ecology software to analysis the sequence information. The research results obtained are as follows:
     1. Dipus sagitta cytochrome b nucleotide sequence nucleotide content:T(U)29.1%,C30.4%, A26.2%,G14.3%.12transition sites and1transversion site among the1137base pairs of cytb transition sites:transversion sites12:1,7conversion sites in TC,5conversion sites in AG.
     2. Dipus sagitta have the nucleotide diversity0.018±0.025, haplotype diversity0.963±0.054. The result show that the population of Dipus sagitta has a high genetic diversity. Dipus sagitta populations nucleotide diversity is highest in AKS(π=0.0733), the lowest in ZQZ(π=0.0010). haplotype diversity is lowest in JT population (h=0.833).
     3. Dipus sagitta9populations have found64haplotypes in78samples.9haplotypes in ZQZ,15haplotypes in JMN,3haplotypes in AKS,9haplotypes in AX,12haplotypes in MQ,6haplotypes in SGH,6haplotypes in GT,3haplotypes in JT,2haplotypes in YZ.AX and AKS MQ share a same haplotype. AX and SGH shared1same haplotyoe. Between the other geographic populations no shared haplotypes based on the cytb sequence.
     4. The correlation between nucleotide diversity and VCT was a significant negative. VCT were the dominant factors that influenced the genetic diversity of Dipus sagitta.
     5. In nine geographic populations of Dipus sagitta,the population of JMN and YZ genetic diversity Fst is the highest0.97518. The geographic populations of AX and YZ genetic diversity Fst is the lowest0.00752. The genetic diversity between populations is significant.
     6.Genetic distance between JMN and ZQZ reach the maximum0.132. Compare with other populations,we found ZQZ and JMN geographical distance also is the furthest,1579km.
     7. Construted bayesian molecular phylogenetic tree, the results show that nine populations clustered into two major lineage.Other geographical populations as a branch, JMN as one branch. On the basis of BEAST software,the two branch divaricated in0.052Ma years ago. Population demography analysis indicated the Dipus sagitta experienced expansion during the past0.115Ma,which indicated that interglacial period might have effect on Dipus sagitta populations.
引文
[1]Alpers, D., G. Gaikhorst, et al. (2003). An extension to the known range of the desert mouse Pseudomys desertor south into the Great Victoria Desert, Western Australia. Australian Mammalogy 25(1):95-96.
    [2]Arbogast, B. S. and J. B. Slowinski (1998). Pleistocene speciation and the mitochondrial DNA clock. Science 282(5396):1955-1955.
    [3]Aris-Brosou, S. and L. Excoffier (1996). The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Molecular Biology and Evolution 13(3):494-504.
    [4]Avise, J. C. (1994). Molecular markers, natural history and evolution, Springer.
    [5]AVISE, J. C. (1998). The history and purview of phylogeography:a personal reflection. Molecular Ecology 7(4):371-379.
    [6]Avise, J. C. (2000). Phylogeography:the history and formation of species, Harvard University Press.
    [7]Avise, J. C., J. Arnold, et al. (1987). Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annual review of ecology and systematics:489-522.
    [8]Belfiore, N., F. Hoffman, et al. (2003). The use of nuclear and mitochondrial single nucleotide polymorphisms to identify cryptic species. Molecular Ecology 12(7): 2011-2017.
    [9]Bernatchez, L. and C. C. Wilson (2002). Comparative phylogeography of Nearctic and Palearctic fishes. Molecular Ecology 7(4):431-452.
    [10]Brown, W. (1983). Evolution of animal mitochondrial DNA. Evolution of genes and proteins 88.
    [11]Bruna, E. M., R. N. Fisher, et al. (1996). Morphological and genetic evolution appear decoupled in Pacific skinks (Squamata:Scincidae:Emoia). Proceedings of the Royal Society of London. Series B:Biological Sciences 263(1371):681-688.
    [12]Drummond, A. J., S. Y. Ho, et al. (2006). Relaxed phylogenetics and dating with confidence. PLoS biology 4(5):e88.
    [13]Dubey, S., N. Salamin, et al. (2007). Molecular phylogenetics of shrews (Mammalia: Soricidae) reveal timing of transcontinental colonizations. Molecular phylogenetics and evolution 44(1):126-137.
    [14]Excoffier, L., G. Laval, et al. (2006). Arlequin ver 3.1 user manual. Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology, University of Berne.
    [15]Freeland, R. and鲁敏(2012).分子生态学.国外科技新书评介(10):6-7.
    [16]Fu, Y.-X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2):915-925.
    [17]Gherman, A., P. E. Chen, et al. (2007). Population bottlenecks as a potential major shaping force of human genome architecture. PLoS genetics 3(7):e119.
    [18]Graves, J., S. Ferris, et al. (1984). Close genetic similarity of Atlantic and Pacific skipjack tuna (Katsuwonus pelamis) demonstrated with restriction endonuclease analysis of mitochondrial DNA. Marine Biology 79(3):315-319.
    [19]Gyllensten, U. and A. C. Wilson (1987). Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice. Genet. Res 49(1):25-29.
    [20]Harihara, S., M. Hirai, et al. (1986). Mitochondrial DNA polymorphism in Japanese living in Hokkaido. Journal of Human Genetics 31(2):73-83.
    [21]Harrison, R. G. (1991). Molecular changes at speciation. Annual review of ecology and systematics:281-308.
    [22]Harrison, R. G. (1993). Hybrid zones and the evolutionary process, Oxford University Press, USA.
    [23]Hewitt, G. M. (1993). Postglacial distribution and species substructure:lessons from pollen, insects and hybrid zones. Evolutionary patterns and processes 14:97-123.
    [24]Hewitt, G. M. (2001). Speciation, hybrid zones and phylogeography-or seeing genes in space and time. Molecular Ecology 10(3):537-549.
    [25]Huang, Z., N. Liu, et al. (2007). Ecological genetics of rusty-necklaced partridge (Alectoris magna):Environmental factors and population genetic variability correlations. Korean Journal of Genetics 29.
    [26]Huang, Z., N. Liu, et al. (2005). Effects of environmental factors on the population genetic structure in chukar partridge (< i> Alectoris chukar). Journal of arid environments 62(3):427-434.
    [27]Hudson, R. R. (1990). Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology 7(1):44.
    [28]Irwin, D. M., T. D. Kocher, et al. (1991). Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution 32(2):128-144.
    [29]Jeanmougin, F. (1998). Multiple sequence alignment with Clustal X. Trends in biochemical sciences 23(10):403-405.
    [30]JIN, Y. T., R. P. BROWN, et al. (2008). Cladogenesis and phylogeography of the lizard Phrynocephalus vlangalii (Agamidae) on the Tibetan plateau. Molecular Ecology 17(8): 1971-1982.
    [31]Kimura, M. (1968). Evolutionary rate at the molecular level. Nature 217(5129):624.
    [32]Kimura, M. (1985). The neutral theory of molecular evolution, Cambridge University Press.
    [33]Ludt, C. J., W. Schroeder, et al. (2004). Mitochondrial DNA phylogeography of red deer (< i> Cervus elaphus). Molecular phylogenetics and evolution 31(3):1064-1083.
    [34]McNeely, J. A., K. R. Miller, et al. (1990). Conserving the world's biological diversity, International Union for conservation of nature and natural resources Gland.
    [35]Merrell, D. J. (1981). Ecological genetics, Longman.
    [36]Mirol, P. M., S. Mascheretti, et al. (2002). Multiple nuclear pseudogenes of mitochondrial cytochrome b in Ctenomys (Caviomorpha, Rodentia) with either great similarity to or high divergence from the true mitochondrial sequence. Heredity 84(5): 538-547.
    [37]Mol, J. and J. Of Evolution of the Cytochrome b Gene of Mammals.
    [38]Nei, M. and S. Kumar (2000). Molecular evolution and phylogenetics, Oxford University Press, USA.
    [39]Nevo, E. (1981). Genetic variation and climatic selection in the lizard Agama stellio in Israel and Sinai. Theoretical and Applied Genetics 60(6):369-380.
    [40]Nordborg, M. (2004). Coalescent theory. Handbook of statistical genetics.
    [41]Noro, M., R. Masuda, et al. (1998). Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. Journal of Molecular Evolution 46(3): 314-326.
    [42]Norusis, M. (2008). SPSS 16.0 guide to data analysis, Prentice Hall Press.
    [43]Pang, J., Y. Wang, et al. (2003). A phylogeny of Chinese species in the genus< i> Phrynocephalus(Agamidae) inferred from mitochondrial DNA sequences. Molecular phylogenetics and evolution 27(3):398-409.
    [44]Petrusewicz, K. (1967). Suggested list of more important concepts in productivity studies (definitions and symbols). Secondary productivity of terrestrial ecosystems 1:51-82.
    [45]Saccone, C., C. Gissi, et al. (2002). Mitochondrial DNA in metazoa:degree of freedom in a frozen event. Gene 286(1):3-12.
    [46]Saccone, N. L., J. M. Kwon, et al. (2000). A genome screen of maximum number of drinks as an alcoholism phenotype. American journal of medical genetics 96(5): 632-637.
    [47]Smith, J. M. and N. Smith (2002). Recombination in animal mitochondrial DNA. Molecular Biology and Evolution 19(12):2330-2332.
    [48]Sorenson, M. D. and T. W. Quinn (1998). Numts:a challenge for avian systematics and population biology. The Auk:214-221.
    [49]TABERLET, P., L. FUMAGALLI, et al. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7(4):453-464.
    [50]TABERLET, P., L. FUMAGALLI, et al. (2002). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7(4):453-464.
    [51]Tajima, F. (1989). The effect of change in population size on DNA polymorphism. Genetics 123(3):597-601.
    [52]Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585-595.
    [53]Tajima, F. (1993). Measurement of DNA polymorphism. Mechanisms of molecular evolution:37-59.
    [54]Thomas, W. K., S. Paabo, et al. (1990). Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. Journal of Molecular Evolution 31(2):101-112.
    [55]Tzedakis, P., I. Lawson, et al. (2002). Buffered tree population changes in a Quaternary refugium:evolutionary implications. Science 297(5589):2044-2047.
    [56]Walker, A. and S. Smith (1987). Mitochondrial DNA and human evolution. Nature 325: 1-5.
    [57]Wayne, R. K., J. A. Leonard, et al. (1999). Full of sound and fury:the recent history of ancient DNA. Annual review of ecology and systematics:457-477.
    [58]WenHsiung, L. (1997). Molecular evolution, Sinauer Associates Incorporated.
    [59]Wilson, A. C., R. L. Cann, et al. (1985). Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society 26(4):375-400.
    [60]Zardoya, R. and A. Meyer (1996). Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Molecular Biology and Evolution 13(7):933-942.
    [61]Zhang, D.-X. and G. M. Hewitt (1996). Nuclear integrations:challenges for mitochondrial DNA markers. Trends in Ecology & Evolution 11(6):247-251.
    [62]Zhang, Q., L. Xia, et al. Tracing the Origin and Diversification of Dipodoidea (Order: Rodentia):Evidence from Fossil Record and Molecular Phylogeny. Evolutionary Biology:1-13.
    [63]Zhang, Y.-J., M. Stock, et al. (2008). Phylogeography of a widespread terrestrial vertebrate in a barely-studied Palearctic region:green toads (Bufo viridis subgroup) indicate glacial refugia in Eastern Central Asia. Genetica 134(3):353-365.
    [64]Zhang, Y.-P. and L.-M. Shi (1991). Riddle of the giant pandav.
    [65]Zhou, R., Y. Li, et al. (2012). Seasonal changes in the genetic diversity of two rodent populations, midday gerbil (Meriones meridianus) and northern three-toed jerboa (Dipus sagitta), detected by ISSR. Biochemical genetics:1-22.
    [66]成述儒,韩建林,et al.(2005).中国绵羊群体mtDNAD-Loop的遗传多样性分析.甘肃农业大学学报40(004):440-447.
    [67]董维惠,侯希贤,et al.(2008).三趾跳鼠种群数量动态及预测研究.中华卫生杀虫药械14(3):181-184.
    [68]葛颂,洪德元,et al.(1994).遗传多样性及其检测方法.生物多样性研究的原理与方法.北京:中国科学技术出版社123:V140.
    [69]黄汲清(1960).中国地质构造基本特征的初步总结.地质学报40(1):1-37.
    [70]赖松家,刘延鑫,et al.(2006).四川黄牛品种线粒体DNA遗传多样性研究.畜牧兽医学报36(9):887-892.
    [71]李吉均,文世宣,et al.(1979).青藏高原隆起的时代,幅度和形式的探讨.中国科学A辑6:608-616.
    [72]李俊生,宋延龄,et al.(2003).7种荒漠啮齿动物食物组成与消化道长度的比较.动物学报49(2):171-178.
    [73]李强,邱铸鼎(2005).对拟蹶鼠属(Sminthoides Schlosser)的重新认识.古脊椎动物学报43(1):24-35.
    [74]李四光(1975).中国冰期之探讨.中国第四纪冰川.北京:科学出版社118:124.
    [75]李四光(1975).中国第四纪冰川,科学出版社.
    [76]梁君,周立志,et al.(2007).长爪沙鼠线粒体细胞色素b基因的遗传变异及地理分化.兽类学报27(2):138-145.
    [77]林鑫,王志恒,et al.(2009).中国陆栖哺乳动物物种丰富度的地理格局及其与环境因子的关系.生物多样性17(6):652-663.
    [78]刘昌景,赵伟,et al.(2012).荒漠沙蜥遗传多样性的地理变异.动物学研究33(2):127-132.
    [79]刘纪有,张万荣(1997).内蒙古鼠疫,内蒙古人民出版社.
    [80]宁恕龙,周立志,et al.(2007).基于线粒体细胞色素b基因的中国大沙鼠系统地理格局.动物学报53(4):630-640.
    [81]潘宝平,卜文俊(2005).线粒体基因组的遗传与进化研究进展.生物学通报40(8):1-3.
    [82]钱亚屏(2001).应用线粒体DNA D-loop区遗传多样性分析云南4个少数民族的遗传关系.遗传学报28(4):291-300.
    [83]邱铸鼎(1996).中国晚第三纪小哺乳动物区系史.古脊椎动物学报34(4):179-296.
    [84]施立明(1990).遗传多样性及其保存.生命科学2(4):158r164.
    [85]宋志刚,王德华(2002).哺乳动物基础代谢率的主要影响因素.兽类学报22(1):53-60.
    [86]苏建平,刘季科(2000).高寒地区植食性小哺乳动物的越冬对策.兽类学报20(3):186-192.
    [87]孙殿卿,周慕林,et al.(1977).中国第四纪冰期.地质学报2:101-108.
    [88]孙儒泳(1992).动物生态学原理,北京师范大学出版社.
    [89]王继文(2004).动物线粒体假基因的识别及其在进化生物学中的应用.动物学杂志39(3):103-108.
    [90]王思博,杨赣源(1983).新疆啮齿动物志,新疆人民出版社.
    [91]王香亭(1991).甘肃脊椎动物志,甘肃科学技术出版社.
    [92]王廷正,许文贤(1993).陕西啮齿动物志,陕西师范大学出版社.
    [93]夏铭(1999).遗传多样性研究进展.生态学杂志18(3):59-65.
    [94]肖增祜,辽宁省科学技术委员会,et al.(1988).辽宁动物志:兽类,辽宁科学技术出版社.
    [95]谢志雄,吕朝阳,et al.(1997).动物线粒体DNA的结构特点及研究概况.南都学坛(自然科学版)17(3):83-85.
    [96]杨倩倩,李志红,et al.(2013).线粒体COI基因在昆虫DNA条形码中的研究与应用.应用昆虫学报49(6):1687-1695.
    [97]张荣祖(1979).中国自然地理,北京:科学出版社:71-81.
    [98]张新阶,王广和,et al.(2007).浑善达克沙地三趾跳鼠的食性与繁殖特征的初步分析.动物学杂志42(3):9-13.
    [99]张亚平,陈欣,et al.(1991).两种锦鸡和环颈雉线粒体DNA (mtDNA)的比较研究.动物学研究12(4):389-392.
    [100]赵肯堂(1964).三趾跳鼠(Dipus sagitta Pallas)的生态研究.动物学杂志2:004.
    [101]赵肯堂(1991).中国的跳鼠.铁道师院学报(S1):29-36.
    [102]周蓉,李佳琦,et al.(2012).环境因子对大石鸡种群遗传多样性的影响.兰州大学学报(自然科学版)2:015.
    [103]朱万龙,刘春燕,et al.云南剑川地区大绒鼠线粒体细胞色素b和D-loop区遗传多样性研究.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700