用户名: 密码: 验证码:
生物柴油和石化柴油碳烟形成的数值模拟及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以三维CFD(KIVA3V-R2)数值模拟为主,结合定容燃烧弹光学测试和发动机台架试验,系统研究了石化、生物柴油不同燃烧边界条件下的碳烟形成机理,揭示不同初始环境温度、环境氧浓度、生物柴油掺混比例、供油定时和EGR率下碳烟和燃烧中间产物的形成历程及空间分布。
     本文首先在定容燃烧弹中采用光源前置消光法(FILE)研究初始温度和氧浓度对石化、生物柴油燃烧和碳烟形成的影响。研究发现初始温度降低,预混燃烧比例增大,燃烧由以扩散燃烧为主的双峰放热转变为以预混燃烧为主的单峰放热,碳烟净质量降低;初始温度700K时,全程碳烟质量(NTISM)趋近于0,接近无烟燃烧。高温环境下,随氧浓度降低生物柴油碳烟净质量升高;低温环境下,随氧浓度降低碳烟净质量降低。与石化柴油相比,生物柴油燃烧压力峰值小,碳烟净质量少。
     为进一步阐释容弹中石化柴油碳烟形成历程,本文改进了石化柴油现象学碳烟模型,考虑了表面氧化反应对碳烟数密度的影响,并利用不同初始温度和氧浓度条件下高时间分辨的定量碳烟测量数据对模型进行广泛验证,并与Hiroyasu-NSC碳烟模型的预测精度进行比较。结果表明,改进的碳烟模型耦合KIVA3V程序计算所得碳烟浮起长度、碳烟净质量及其空间分布均与试验结果吻合较好,且其预测精度优于Hiroyasu-NSC碳烟模型。氧浓度降低,氧化反应是影响碳烟变化的决定性因素,低氧浓度下氧化反应速率降低,石化柴油碳烟净质量、净个数和燃烧中间产物净质量峰值升高,碳烟平均摩尔质量减小。初始温度降低,碳烟生成反应受到梯级抑制:碳烟生成反应速率首先开始降低,随后碳烟前驱物生成反应速率亦降低;最终,碳烟净质量和净个数峰值降低,碳烟平均摩尔质量增大。700K初始温度,整个燃烧室内当量比均低于2,碳烟生成质量趋近于零。
     在改进的石化柴油现象学碳烟模型基础上,耦合生物柴油官能团结构对碳烟形成的化学作用,提出了生物柴油现象学碳烟模型,并应用不同初始温度和氧浓度的容弹燃烧和碳烟结果进行广泛验证。将该模型耦合KIVA3V程序对容弹中生物柴油碳烟形成历程进行机理分析表明:该模型可以很好预测由温度和氧浓度改变引起的燃烧压力、放热率及碳烟净质量的变化;氧浓度降低,不同温度环境的碳烟质量变化趋势相悖是因为主导碳烟变化的机理不同:高温环境下,碳烟生成反应速率增大,氧化反应速率减小,生物柴油碳烟净质量、净个数峰值升高;而低温环境下,生成和氧化反应速率同时降低,但生成反应是影响碳烟变化的决定性因素,碳烟净质量、净个数峰值降低。不同氧浓度下乙炔净质量变化不明显,这是因为乙炔生成反应的温度界限和浓度界限更宽。初始温度降低,生物柴油碳烟及燃烧中间产物变化与石化柴油类似。对燃烧过程、燃烧中间产物及碳烟的分析表明,生物柴油化学特性对碳烟形成的影响要大于其物理特性。
     基于所提出的石化、生物柴油现象学碳烟模型,构建了可计算混合燃料碳烟形成的石化-生物柴油碳烟模型,并构建了多组分蒸发模型以独立计算混合燃料中各组分的蒸发速率。采用高压共轨柴油机测试数据对模型进行验证,研究结果表明,石化-生物柴油碳烟模型耦合KIVA3V程序对燃料组分、供油定时、EGR率等多种条件下燃烧和碳烟形成的预测与试验结果吻合;提高生物柴油掺混比例或推迟供油时刻将导致碳烟生成反应速率降低,碳烟净质量峰值减小、柴油机碳烟排放降低。增大EGR率,环境氧浓度降低,碳烟氧化反应速率降低,碳烟排放升高,EGR率在42%时的碳烟排放较无EGR时提高了1.7倍。
     本文发展了石化柴油现象学碳烟模型,提出了生物柴油现象学碳烟模型,构建了生物柴油碳烟生成简化机理,并在广泛的试验条件下加以验证,这对于发展更为完善的生物柴油碳烟模型有重要的理论意义和应用价值。
In order to in-depth study the soot evolution mechanisms of diesel and biodieselfuels under various combustion boundary conditions, both computational andexperimental research was employed. Simulations through three dimensional CFDprogram (KIVA3V-R2) as well as experiments conducted in optical constant volumechamber and common rail diesel engine are adopted to investigate the time relatedevolution and spatial distribution of soot and intermediate species with different initialambient temperature, ambient oxygen concentrations, biodiesel ratio, start of fuelsupply timings and EGR rates.
     Initially, a laser diagnostic technology known as FILE (Forward illuminationlight extinction) was applied to investigate the combustion and soot evolution ofdiesel and biodiesel fuels with different initial ambient temperature or ambient oxygenconcentrations in constant volume chamber. Measurements showed that withdecreasing initial ambient temperature, the ratio of premixed combustion increased,which was evidenced by the transaction from two-peak diffusion dominantcombustion to one-peak premixed dominant combustion in heat release rate traces,and soot net mass decreased. At700K initial ambient temperature, the normalizedtime integrated soot mass (NTISM) was close to zero, so the combustion is sootless.As ambient oxygen concentration decreased, soot net mass of biodiesel increasedwithin high temperature environment, but decreased within low temperatureenvironment. Compared to diesel fuel, the combustion pressure peak of biodieseldecreased, so does the soot net mass.
     In order to interpret soot evolution of diesel fuel, a diesel phenomenological sootmodel was revised to describe the effects of surface oxidation reactions on sootnumber density. Computational results predicted by the revised soot model wasvalidated by time-related quantitive soot mass diagnostic results under various initialambient temperature and ambient oxygen concentrations, and the predictive capacity of revised soot model was compared with the Hiroyasu-NSC two-step soot model.Results showed that the soot lift off length, soot net mass and its spatial distributionpredicted by KIVA3V program compiled with revised diesel phenomenological sootmodel matched the measurements pretty well, and they were better than thosepredicted by Hiroyasu-NSC two-step soot model. As ambient oxygen concentrationdecreased, oxidation mechanism dominated soot evolution. Therefore, the peaks ofsoot net mass, net number, net mass of intermediate species increased with decreasingambient oxygen concentration, soot mean mole weight decreased. As initial ambienttemperature decreased, soot formation reaction pathways were restricted step by step:soot formation rates reduced first, and then the formation rate of soot precursor beganto decrease. Finally, peaks of soot net mass and net number became smaller withlower initial ambient temperature, soot mean mole weight got larger. At700K initialambient temperature, the largest local equivalence ratio was lower than2, sootformation rate was close to zero.
     Based on the revised phenomenological diesel soot model, a biodieselphenomenological soot model was proposed and the chemical effects of esterstructure of biodiesel on soot evolution were included. A bunch of experimentalresults conducted in constant volume chamber with various initial ambienttemperature and ambient oxygen concentrations was applied to validate new biodieselphenomenological soot model. Agreements between computational and experimentalresults were observed, which indicated that KIVA3V program complied with biodieselsoot model was capable to precisely predict the effects of temperature and oxygenconcentrations on biodiesel combustion and soot evolution. As ambient oxygenconcentration decreased, time related soot mass trace showed reverse changingtendency. Within high temperature, soot oxidation rate decreased, while sootformation rate increased. As a result, soot net mass and net number increased withdecreasing ambient oxygen concentration. However, soot formation and oxidation rateboth decreased within low temperature, while soot formation mechanism wasdominant, so soot net mass and net number decreased with ambient oxygenconcentration. Nevertheless, the difference in acetylene net mass with various ambientoxygen concentrations under low temperature was negligible because of a largerformation region observed in temperature and equivalence ratio map. Variation inbiodiesel soot evolution caused by decreasing initial temperature was similar to dieselfuel. Also, the analysis of combustion process and the evolution of soot and intermediates species proved that the effects of fuel chemical characteristics seemedto be larger than physical characteristics.
     Through the combination of diesel and biodiesel phenomenological soot model,a phenomenological soot model that could be applied to predict soot evolution ofblend fuels was built. Moreover, a multi-component evaporation model was proposedto predict the evaporation rate of each fuel component independently. Through thecomparison with measurements recorded in common rail diesel engine, it is clear tonotice that the new phenomenological soot model was reliable for wide operationconditions, such as different biodiesel ratio, start of fuel supply timings and EGR rates.As biodiesel ratio increased or start of fuel supply timing retarded, soot formation rateand then the peaks of soot net mass decreased, so soot emission went down. WhenEGR rate increased, the ambient oxygen concentration became lower, so the sootoxidation rates decreased and soot emission increased sharply: soot emission with42%EGR rate was1.7times higher than that without EGR.
     In a word, a diesel phenomenological soot model was revised and a biodieselphenomenological soot model was proposed, in which a simplified soot formationmechanism of biodiesel was built. All models were validated with a number ofexperimental results. And this work is of profound theoretical and practicalsignificance for further development of biodiesel soot model.
引文
[1]中国的能源状况与政策.资源与人居环境2008:18-25.
    [2]史斗,郑军卫.我国能源发展战略研究.地球科学进展2000:406-14.
    [3]延吉生.我国能源资源状况利用现状与发展战略.金属矿山2003:1-4.
    [4]中国统计年鉴[Z].中国统计出版社;2011.
    [5]汪小英,成金华,易杏花.产业结构和能源消费结构协调性分析及对策.武汉理工大学学报(社会科学版)2013:201-8.
    [6]龚金双.2012年我国石油市场特点分析及2013年展望.国际石油经济2013:70-4+213.
    [7]2015年石油对外依存度或达65%新京报2011.
    [8]蔡博峰,冯相昭.中国交通领域的低碳政策与行动.环境经济2011:38-45.
    [9]李永钧.摆脱低迷走势呈恢复性增长2010年汽车进出口市场分析及预测.汽车与配件2011:23-5.
    [10]马艳丽,高月娥.我国未来汽车保有量情景预测研究.公路交通科技2007:121-5.
    [11]赵勇强.车用替代燃料发展状况与前景.中国能源2009:33-6+23.
    [12] Eremin AV. Formation of carbon nanoparticles from the gas phase in shock wavepyrolysis processes. Progress in Energy and Combustion Science2012;38:1-40.
    [13] European Autmobile Manufactures Association. ACEA EUROPEAN OILSEQUENCES;1996.
    [14] European Autmobile Manufactures Association. ACEA EUROPEAN OILSEQUENCES;1998.
    [15] European Autmobile Manufactures Association. ACEA EUROPEAN OILSEQUENCES;1999.
    [16] European Autmobile Manufactures Association. ACEA EUROPEAN OILSEQUENCES;2002.
    [17] European Autmobile Manufactures Association. ACEA EUROPEAN OILSEQUENCES;2004.
    [18] European Autmobile Manufactures Association. ACEA EUROPEAN OILSEQUENCES;2007.
    [19] European Autmobile Manufactures Association. ACEA EUROPEAN OILSEQUENCES;2008.
    [20]张雪雁,高勇. PM2.5污染物现状及防控对策.现代农业科技2012:299+301.
    [21]国家质检总局.车用压燃式发动机排气污染物排放限值及测量方法.2001.
    [22]国家质检总局.车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段).2005.
    [23] Tao F, Foster DE, Reitz RD. Characterization of soot particle distribution inconventional, non-premixed di diesel flame using a multi-stepphenomenological soot model.2007. p.2991-8.
    [24]刘刚,袁静,陈敏东,姜玲.生物质燃烧颗粒物中有机质及源解析研究进展.南京信息工程大学学报(自然科学版)2011:141-5.
    [25]姚志良,刘荣.柴油车排放颗粒物研究进展.科技导报2011:75-9.
    [26] R. L, J. P, C. H. Fuel quality impact on heavy duty diesel emissions—a literaturereview. SAE Paper9826491998.
    [27] TL U. Investigation of the effects of fuel composition on heavy-duty dieselengine emissions. SAE Paper8920721989.
    [28] Choi MY, Hamins A, Mulholland GW, Kashiwagi T. Simultaneous opticalmeasurement of soot volume fraction and temperature in premixed flames.Combustion and Flame1994;99:174-86.
    [29] Tree DR, Svensson KI. Soot processes in compression ignition engines. Progressin Energy and Combustion Science2007;33:272-309.
    [30] Kumar D, Agarwal AK, Gupta T. Effect of engine load on size and numberdistribution of particulate matter emitted from a direct injection compressionignition engine. Aerosol and Air Quality Research2011;11:915-20.
    [31] Agarwal AK, Gupta T, Kothari A. Particulate emissions from biodiesel vs dieselfuelled compression ignition engine. Renewable and Sustainable EnergyReviews2011;15:3278-300.
    [32] Stouffer SD, Pawlik R, Justinger G, Heyne J, Zelina J, Ballal D. Combustionperformance and emissions characteristics for a well-stirred reactor for lowvolatility hydrocarbon fuels.2007. p.6498-509.
    [33] Smith OI. Fundamentals of soot formation in flames with application to dieselengine particulate emissions. Progress in Energy and Combustion Science1981;7:275-91.
    [34] Chen W, Shuai S, Wang J. A soot formation embedded reduced reactionmechanism for diesel surrogate fuel. Fuel2009;88:1927-36.
    [35] Oh KC, Lee CB, Lee EJ. Characteristics of soot particles formed by dieselpyrolysis. Journal of Analytical and Applied Pyrolysis2011;92:456-62.
    [36] Sánchez NE, Millera á, Bilbao R, Alzueta MU. Polycyclic aromatichydrocarbons (PAH), soot and light gases formed in the pyrolysis of acetylene atdifferent temperatures: Effect of fuel concentration. Journal of Analytical andApplied Pyrolysis.
    [37] Haynes BS, Wagner Gg H. Soot formation. Progress in Energy and CombustionScience1981;7:229-73.
    [38] Echavarria CA, Sarofim AF, Lighty JS, D'Anna A. Evolution of soot sizedistribution in premixed ethylene/air and ethylene/benzene/air flames:Experimental and modeling study. Combustion and Flame2011;158:98-104.
    [39] Glassman I. Sooting laminar diffusion flames: Effect of dilution, additives,pressure, and microgravity. Symposium (International) on Combustion1998;27:1589-96.
    [40] Chernov V, Zhang Q, Thomson MJ, Dworkin SB. Numerical investigation ofsoot formation mechanisms in partially-premixed ethylene–air co-flow flames.Combustion and Flame2012;159:2789-98.
    [41] Violi A, D’Anna A, D’Alessio A. Modeling of particulate formation incombustion and pyrolysis. Chemical Engineering Science1999;54:3433-42.
    [42] Vlasov PA, Warnatz J. Detailed kinetic modeling of soot formation inhydrocarbon pyrolysis behind shock waves. Proceedings of the CombustionInstitute2002;29:2335-41.
    [43] Zhang Q, Thomson MJ, Guo H, Liu F, Smallwood GJ. A numerical study of sootaggregate formation in a laminar coflow diffusion flame. Combustion andFlame2009;156:697-705.
    [44] Bryce D, Ladommatos N, Xiao Z, Zhao H. Investigating the effect of oxygenatedand aromatic compounds in fuel by comparing laser soot measurements inlaminar diffusion flames with diesel-engine emissions. Journal of the Institute ofEnergy1999;72:150-6.
    [45] Lee KO CR, Sekar R, Choi MY, Zhu J, Kang J, Bae C. Detailed characterizationof morphology and dimensions of diesel particulates via thermophoreticsampling. SAE Paper2001-01-35722001.
    [46] Bruce CW, Stromberg TF, Gurton KP, Mozer JB. Trans-spectral absorption andscattering of electromagnetic radiation by diesel soot. Appl Opt1991;30:1537-46.
    [47] Tree DR FD. Optical measurements of soot particle size, number density, andtemperature in a direct injection diesel engine as a function of speed and load.SAE Paper9402701994.
    [48] Pinson JA NT. Quantitative imaging study of the effects of intake air temperatureon soot evolution in an optically-accessible D.I. diesel engine. SAE Paper9420441994.
    [49] Ladommatos N ZH. A guide to measurement of flame temperature and sootconcentration in diesel engines using the two-colour method. Part1: principles.SAE Paper9419561994.
    [50] Hara HS GI. Soot formation in diffusion flames of fuel/oxygen mixtures.Proceedings of the22nd international symposium on combustion1988.
    [51] Beatrice C, Bertoli C, Giacomo ND. New Findings on Combustion Behavior ofOxygenated Synthetic Diesel Fuels. Combustion Science and Technology1998;137:31-50.
    [52] Liotta FJ MD. The effect of oxygenated fuels on emissions from a modernheavy-duty diesel engine. SAE Paper9327341993.
    [53] Cheng AS DR, Buchholz BA. The effect of oxygenates on diesel engineparticulate matter. SAE Paper2002-01-17052002.
    [54] Miyamoto N OH, Arima T, Miyakawa K. Improvement of diesel combustion andemissions with addition of various oxygenated agents to diesel fuels. SAE Paper9621151996.
    [55] Miyamoto N OH, Nurun M, Obata K, Arima T. Smokeless, low NOx, highthermal efficiency, and low noise diesel combustion with oxygenated agents asmain fuel. SAE Paper9805061998.
    [56] Musculus MP, Dec, J.E., Tree, D.R. Effects of Fuel Parameters and DiffusionFlame Lift-off on Soot Formation in a Heavy-duty Diesel Engine. SAE pepr2002-01-08892002.
    [57] Buchholz BA, Mueller, C.J., Upatnieks, A., Martin, G.C., Pitz, W.J., Westbrook,C.K. Using Carbon-14Isotope Tracing to Investigate Molecular StructureEffects on the Oxygenate Dibutyl Maleate on Soot Emissions from a DI DieselEngine. SAE paper2004-01-18492004.
    [58] Szybist JP, Boehman AL. Auto-ignition behavior of methyl decanoate.2ed2005.p.730-1.
    [59] Westbrook CK, Pitz WJ, Curran HJ. Chemical kinetic modeling study of theeffects of oxygenated hydrocarbons on soot emissions from diesel engines.Journal of Physical Chemistry A2006;110:6912-22.
    [60] Mueller CJ, Martin, G.C. Effects of Oxygenated Compounds on Combustion andSoot Evolution in a DI Diesel Engine: Broadband Natural Luminosity Imaging.SAE paper2002-01-16312002.
    [61] Zannis TC, Hountalas, D.T., Kouremenos, D.A. Experimental Investigation toSpecify the Effect of Oxygenated Additive Content and Type on di DieselEngine Performance and Emissions. SAE paper2004-01-00972004.
    [62] Pyl SP, Van Geem KM, Puimège P, Sabbe MK, Reyniers M-F, Marin GB. Acomprehensive study of methyl decanoate pyrolysis. Energy2012;43:146-60.
    [63] Sato H TD, Hodges JT, Foster DE. A study on the effect of temperature on sootformation in a jet stirred reactor. Proceedings of the23rd internationalsymposium on combustion1990. p.1469-75.
    [64] B hm H HD, Jander H, Lüers B, Pietscher J, Wagner HG. The influence ofpressure and temperature on soot formation in premixed flames.22ndinternational symposium on combustion1988. p.403-11.
    [65] Flower WL. LIGHT-SCATTERING MEASUREMENTS OF SOOT PARTICLESIN FLAMES.1986. p.28-39.
    [66] Flower WL. An investigation of soot formation in axisymmetric turbulentdiffusion flames at elevated pressure. Symposium (International) onCombustion1989;22:425-35.
    [67] Flower WL, Bowman CT. Soot production in axisymmetric laminar diffusionflames at pressures from one to ten atmospheres. Symposium (International) onCombustion1988;21:1115-24.
    [68] Alriksson M, Rente T, Denbratt I. Low soot, low NOx in a heavy duty dieselengine using high levels of EGR. SAE Technical Papers2005.
    [69] Liu RX, Gao XY, Yang DS, Xu XG. Control of diesel soot and NOx emissionswith a particulate trap and EGR. Journal of Environmental Sciences2005;17:245-8.
    [70] Yin B, Xu Z, He J, Xe Y, Li Y. Investigation on the combustion and emissioncharacteristic of diesel engine with EGR.2011. p.668-71.
    [71] Akihama K, Takatori Y, Inagaki K, Sasaki S, Dean AM. Mechanism of thesmokeless rich diesel combustion by reducing temperature. SAE TechnicalPapers2001.
    [72] Ullman TL SK, Mason RL. Effects of cetane number, cetane improver, aromatics,and oxygenates on1994heavy-duty diesel engine emissions. SAE Paper9410201994.
    [73] Hallgren BE HJ. Effects of oxygenated fuels on DI diesel combustion andemissions. SAE Paper2001-01-06482001.
    [74] Song J, Cheenkachorn K, Wang J, Perez J, Boehman AL, Young PJ, et al. Effectof oxygenated fuel on combustion and emissions in a light-duty turbo dieselengine. Energy and Fuels2002;16:294-301.
    [75] Beatrice C BC, Giacomo ND, Migliaccio MN. Potentiality of oxygenatedsynthetic fuel and reformulated fuel on emissions from a modern DI dieselengine. SAE Paper1999-01-35951999.
    [76] Nabi MN MM, Ogawa H, Miyamoto N. Ultra low emission and highperformance diesel combustion with highly oxygenated fuel. SAE Paper2000-01-02312000.
    [77] Mueller CJ MG. Effects of oxygenated compounds on combustion and sootevolution in a DI diesel engine: broadband natural luminosity imaging. SAEPaper2002-01-16312002.
    [78] Huang K, Chang H, An S, Qin J. The effect of combustion chamber geometryand injection timing on diesel emission.2010. p.672-5.
    [79] Juttu S, Thipse SS, Marathe NV, Gajendra Babu MK. Experimental andsimulation study of fuel injection timing, pressure and EGR for lower exhaustemissions from diesel HCCI combustion.2009. p.283-97.
    [80] Kawano D, Suzuki H, Ishii H, Goto Y, Odaka M, Murata Y, et al. Ignition andcombustion control of diesel HCCI. SAE Technical Papers2005.
    [81] Maurya RK, Agarwal AK. Effect of start of injection on the particulate emissionfrom methanol fuelled HCCI engine. SAE Technical Papers2011.
    [82] Wang RC, Fang T, Lee CFF. Comparisons of computed and measured results fora HSDI diesel engine operating under HCCI mode. SAE Technical Papers2006.
    [83] Badami M, Millo F, D'Amato DD. Experimental investigation on soot and NOxformation in a di common rail diesel engine with pilot injection. SAE TechnicalPapers2001.
    [84] Carlucci P, Ficarella A, Laforgia D. Effects on combustion and emissions of earlyand pilot fuel injections in diesel engines. International Journal of EngineResearch2005;6:43-60.
    [85] Ghaffarpour M, Noorpoor AR. NOx reduction in diesel engines using rateshaping and pilot injection. International Journal of Automotive Technology andManagement2007;7:17-31.
    [86] Han Z, Uludogan A, Hampson GJ, Reitz RD. Mechanism of soot and NOxemission reduction using multiple-injection in a diesel engine. SAE TechnicalPapers1996.
    [87] Husberg T, Denbratt I, Karlsson A. Analysis of advanced multiple injectionstrategies in a heavy-duty diesel engine using optical measurements andCFD-simulations. SAE Technical Papers2008.
    [88] Suh HK, Yoon SH, Lee CS. Effect of multiple injection strategies on the sprayatomization and reduction of exhaust emissions in a compression ignitionengine fueled with dimethyl ether (DME). Energy and Fuels2010;24:1323-32.
    [89] Kennedy IM. Models of soot formation and oxidation. Progress in Energy andCombustion Science1997;23:95-132.
    [90] Hiroyasu H, Kadota T, Arai M. DEVELOPMENT AND USE OF A SPRAYCOMBUSTION MODELING TO PREDICT DIESEL ENGINE EFFICIENCYAND POLLUTANT EMISSIONS (PART1COMBUSTION MODELING).Bulletin of the JSME1983;26:569-75.
    [91] Tesner PA, Smegiriova TD, Knorre VG. Kinetics of dispersed carbon formation.Combustion and Flame1971;17:253-60.
    [92] Surovikin VF. ANALYTICAL DESCRIPTION OF THE PROCESSES OFNUCLEUS-FORMATION AND GROWTH OF PARTICLES OF CARBONBLACK IN THE THERMAL DECOMPOSITION OF AROMATICHYDROCARBONS IN THE GAS PHASE. Solid Fuel Chemistry1976;10:92-101.
    [93] Hiroyasu H, Kadota T. MODELS FOR COMBUSTION AND FORMATION OFNITRIC OXIDE AND SOOT IN DIRECT INJECTION DIESEL ENGINES.SAE Prepr1976.
    [94] Moss JB, Stewart CD, Syed KJ. Flowfield modelling of soot formation atelevated pressure. Symposium (International) on Combustion1989;22:413-23.
    [95] Leung KM, Lindstedt RP, Jones WP. A simplified reaction mechanism for sootformation in nonpremixed flames. Combustion and Flame1991;87:289-305.
    [96] Han Z, Reitz RD. Turbulence modeling of internal combustion engines usingRNG k–ε models. Combustion Science and Technology1995:267–95.
    [97] Fairweather M, Jones WP, Ledin HS, Lindstedt RP. Predictions of soot formationin turbulent, non-premixed propane flames. Symposium (International) onCombustion1992;24:1067-74.
    [98] Fusco A, Knox-Kelecy AL, Foster DE. Application of a Phenomenological SootModel for Diesel Engine Combustion The Third International Symposium onDiagnostics and Modeling of Combustion in Internal Combustion Engines.Japan1994. p.571-6.
    [99] Tao F, Golovitchev VI, Chomiak J. A phenomenological model for the predictionof soot formation in diesel spray combustion. Combustion and Flame2004;136:270-82.
    [100] Tao F, Reitz RD, Foster DE, Liu Y. Nine-step phenomenological diesel sootmodel validated over a wide range of engine conditions. International Journal ofThermal Sciences2009;48:1223-34.
    [101] Neoh KG, Howard JB, Sarofim AF. Effect of oxidation on the physical structureof soot. Symposium (International) on Combustion1985;20:951-7.
    [102] Kislov VV, Sadovnikov AI, Mebel AM. Formation Mechanism of PolycyclicAromatic Hydrocarbons beyond the Second Aromatic Ring. The Journal ofPhysical Chemistry A2013;117:4794-816.
    [103] Appel J, Bockhorn H, Frenklach M. Kinetic modeling of soot formation withdetailed chemistry and physics: Laminar premixed flames of C2hydrocarbons.Combustion and Flame2000;121:122-36.
    [104] Frenklach M. Reaction mechanism of soot formation in flames. PhysicalChemistry Chemical Physics2002;4:2028-37.
    [105] Fisher EM, Pitz WJ, Curran HJ, Westbrook CK. Detailed chemical kineticmechanisms for combustion of oxygenated fuels. Symposium (International) onCombustion2000;28:1579-86.
    [106] Dayma G, Ga l S, Dagaut P. Experimental and kinetic modeling study of theoxidation of methyl hexanoate. Energy and Fuels2008;22:1469-79.
    [107] Herbinet O, Pitz WJ, Westbrook CK. Detailed chemical kinetic mechanism forthe oxidation of biodiesel fuels blend surrogate. Combustion and Flame2010;157:893-908.
    [108] Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK. A comprehensive modeling studyof n-heptane oxidation. Combustion and Flame1998;114:149-77.
    [109] Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK. A comprehensive modeling studyof iso-octane oxidation. Combustion and Flame2002;129:253-80.
    [110] Herbinet O, Biet J, Hakka MH, Warth V, Glaude PA, Nicolle A, et al. Modelingstudy of the low-temperature oxidation of large methyl esters from C11to C19.1ed2011. p.391-8.
    [111] D A. Correlation and Estimation of Vapour-Liquid Critical Properties. I. CriticalTemperatures of Organic Compounds. Nat.Phys.Lab.Rep.Chem.;1978. p.1-35.
    [112] A.L. L. Estimation of Critical Properties of Organic Compounds by the methodof group contributions: University of Wisconsin, Madison, Wisconsin;1955.
    [113] Reid RC, J. M. Prausnitz,T. K. Sherwood. The Properties of Gases and Liquids.New York: McGraw-Hill;1987.
    [114]王双成,张静茹.有机物偏心因子的计算.河南师范大学学报(自然科学版)2003:68-70.
    [115] Tat ME, Van Gerpen JH. Specific gravity of biodiesel and its blends with dieselfuel. JAOCS, Journal of the American Oil Chemists' Society2000;77:115-9.
    [116] Yuan W, Hansen AC, Zhang Q. Predicting the physical properties of biodieselfor combustion modeling. Transactions of the American Society of AgriculturalEngineers2003;46:1487-93.
    [117] Tamanini F. A numerical model for the prediction of radiation-controlledturbulent wall fires. Symposium (International) on Combustion1979;17:1075-85.
    [118] Diwakar RRDaR. Structure of high-pressure fuel sprays. SAE paper8705981987.
    [119] D. Jin GLB. A model for multicomponent droplet vaporization at high ambientpressure.. SAE8502641985.
    [120] Vulis LA, Leont'eva TP, Sakipov ZB, Palatnik IB, Ustimenko BP. Transferprocesses in a free (jet) turbulent boundary layer. International Journal of Heatand Mass Transfer1961;4:111-8.
    [121] Brakora JL, Ra Y, Reitz RD. Combustion Model for Biodiesel-Fueled EngineSimulations using Realistic Chemistry and Physical Properties. SAEInternational Journal of Engines2011;4:931-47.
    [122] Feng Q, Jalali A, Fincham AM, Wang YL, Tsotsis TT, Egolfopoulos FN. Sootformation in flames of model biodiesel fuels. Combustion and Flame2012;159:1876-93.
    [123] Lai JYW, Lin KC, Violi A. Biodiesel combustion: Advances in chemical kineticmodeling. Progress in Energy and Combustion Science2011;37:1-14.
    [124] Ren Y, Abu-Ramadan E, Li X. Numerical simulation of biodiesel fuelcombustion and emission characteristics in a direct injection diesel engine.Frontiers of Energy and Power Engineering in China2010;4:252-61.
    [125] Westbrook CK, Dryer FL. Comprehensive Mechanism for Methanol Oxidation.Combustion Science and Technology1979;20:125-40.
    [126] Malewicki T, Comandini A, Brezinsky K. Experimental and modeling study onthe pyrolysis and oxidation of iso-octane. Proceedings of the CombustionInstitute2013;34:353-60.
    [127] Sirignano M, Kent J, D'Anna A. Modeling formation and oxidation of soot innonpremixed flames. Energy and Fuels2013;27:2303-15.
    [128] Wilson JM, Baeza-Romero MT, Jones JM, Pourkashanian M, Williams A,Lea-Langton AR, et al. Soot formation from the combustion of biomasspyrolysis products and a hydrocarbon fuel, n-decane: An aerosol time of flightmass spectrometer (ATOFMS) study. Energy and Fuels2013;27:1668-78.
    [129] Warnatz J. The structure of laminar alkane-, alkene-, and acetylene flames.Symposium (International) on Combustion1981;18:369-84.
    [130] Pope CJ, Howard JB. Further testing of the fullerene formation mechanism withpredictions of temperature and pressure trends. Symposium (International) onCombustion1994;25:671-8.
    [131] Tao F, Srinivas S, Reitz RD, Foster DE. Comparison of three soot modelsapplied to multi-dimensional diesel combustion simulations. JSME InternationalJournal, Series B: Fluids and Thermal Engineering2006;48:671-8.
    [132] Charest MRJ, Groth CPT, Gülder L. A numerical study on the effects ofpressure and gravity in laminar ethylene diffusion flames. Combustion andFlame2011;158:1933-45.
    [133] Eaves NA, Veshkini A, Riese C, Zhang Q, Dworkin SB, Thomson MJ. Anumerical study of high pressure, laminar, sooting, ethane-air coflow diffusionflames. Combustion and Flame2012;159:3179-90.
    [134] Westlund A, Lindstr m M, ngstr m HE. A one-dimensional model for heatrelease rate and emission formation in diesel engines based on correlations forentrainment rate, lift-off length and ignition delay: Validation for transientconditions. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering2012;226:1243-58.
    [135] Benn T, Herckes P, Westerhoff P. Fullerenes in environmental samples: C60inatmospheric particulate matter.2012. p.291-303.
    [136] Fetzer JC. The chemistry and analysis of large PAHs. Polycyclic AromaticCompounds2007;27:143-62.
    [137] El-Asrag H, Lu T, Law CK, Menon S. Simulation of soot formation in turbulentpremixed flames. Combustion and Flame2007;150:108-26.
    [138] Maricq MM. Coagulation dynamics of fractal-like soot aggregates. Journal ofAerosol Science2007;38:141-56.
    [139] Teini PD, Karwat DMA, Atreya A. Observations of nascent soot: Moleculardeposition and particle morphology. Combustion and Flame2011;158:2045-55.
    [140] Liu F, Guo H, Smallwood GJ, Gülder L. Numerical modelling of sootformation and oxidation in laminar coflow non-smoking and smoking ethylenediffusion flames. Combustion Theory and Modelling2003;7:301-15.
    [141] Skj th-Rasmussen MS, Glarborg P, stberg M, Johannessen JT, Livbjerg H,Jensen AD, et al. Formation of polycyclic aromatic hydrocarbons and soot infuel-rich oxidation of methane in a laminar flow reactor. Combustion and Flame2004;136:91-128.
    [142] Wiedenhoefer JF, Reitz RD. Multidimensional modeling of the effects ofradiation and soot deposition in heavy-duty diesel engines. SAE TechnicalPapers2003.
    [143] Yozgatligil A, Zachariah MR. Measurement of soot surface growth kinetics.Combustion Science and Technology2008;180:941-9.
    [144] Harris SJ, Weiner AM. Chemical Kinetics of Soot Particle Growth. AnnualReview of Physical Chemistry1985;36:31-52.
    [145] Jawed I, Nagle DC. Oxidation protection in carbon-carbon composites.Materials Research Bulletin1986;21:1391-5.
    [146] Echavarria CA, Jaramillo IC, Sarofim AF, Lighty JS. Studies of soot oxidationand fragmentation in a two-stage burner under fuel-lean and fuel-rich conditions.1ed2011. p.659-66.
    [147] Fujimoto H, Kurata K, Asai G, Senda J. OH radical generation and sootformation/oxidation in di diesel engine. SAE Technical Papers1998.
    [148] Liu F, Thomson KA, Smallwood GJ. Effects of soot absorption and scatteringon LII intensities in laminar coflow diffusion flames. Journal of QuantitativeSpectroscopy and Radiative Transfer2008;109:337-48.
    [149] Mathieu O, Chaumeix N, Paillard C-E. Soot formation from a distillation cut ofa Fischer–Tropsch diesel fuel: A shock tube study. Combustion and Flame2012;159:2192-201.
    [150] Weingartner E, Saathoff H, Schnaiter M, Streit N, Bitnar B, Baltensperger U.Absorption of light by soot particles: determination of the absorption coefficientby means of aethalometers. Journal of Aerosol Science2003;34:1445-63.
    [151] Kawano D SJ, Kawakami K, Shimada A, Fujimoto H. Fuel design concept forlow emission in engine systems,2nd report: analysis of combustioncharacteristics for the mixed fuels. SAE Paper2001-01-02022001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700