用户名: 密码: 验证码:
煤与瓦斯突出区域危险性的直流电法响应及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出是一种严重的矿井动力灾害,具有明显的区域分布特征。如何进行准确有效的突出区域探测和划分,是区域防突工作的重点和难点,仍需进一步提升技术和装备水平。基于此,本文提出将地球物理勘探方法之一—主动式直流电法技术引入煤与瓦斯突出危险性区域探测中,揭示煤层突出危险要素对煤体电性特征的影响规律与作用机制,研究煤与瓦斯突出演化过程直流电法响应规律,提出直流电法探测煤与瓦斯区域突出危险性的技术思路及判识方法,并进行现场初步应用。
     (1)实时测试并分析了不同煤体在单轴压缩、循环加载和分级加载过程中电阻率变化规律,发现对于同一导电特性的煤体而言,电阻率随加载压力的变化趋势是一致的;对于不同导电特性的煤体,发生破坏之前电阻率呈现各自不同的变化规律,破坏后电阻率最终都呈上升趋势。深入研究了煤体单轴压缩全应力-应变过程不同阶段电阻率变化规律,发现以体积应变为标志的扩容现象对电阻率具有重要影响,主要体现在扩容点处电阻率会出现突变现象。
     (2)基于煤体瓦斯的吸附/解吸特性,实时测试并分析了瓦斯吸附/解吸过程煤体电阻率变化规律,并针对不同煤样、不同气体压力及不同气体种类,分别研究了煤体电阻率的响应特征,结果表明:不同煤样实验过程中电阻率变化特征也有所不同,因煤体的导电特性的差异,电阻率在气体吸附过程呈上升和下降两种趋势;煤体电阻率在气体吸附阶段与解吸阶段呈相反的变化趋势;气体压力越大,吸附能力越强,煤体电阻率变化幅度就越大。
     (3)从微观角度研究了煤的导电机理和导电特性,提出了煤的弱束缚离子导电机理,揭示了煤体导电特性和孔隙裂隙结构的演化是决定其受载过程电阻率变化特征的主要因素;研究了瓦斯对煤体电阻率作用机制,发现含瓦斯煤的力学特性对煤体电阻率具有重要影响,应力和瓦斯对煤体电阻率的作用机制从本质上讲都是煤体导电通道受到外力作用而改变了力学特性,从而影响了电阻率的变化。
     (4)建立了煤与瓦斯突出模拟及并行电法测试实验系统,测试研究了煤与瓦斯突出演化过程直流电法的响应规律,结果表明:并行电法对应力、瓦斯的作用以及突出发生前后的差异性都有较好的响应,说明并行电法测试结果能够反映煤与瓦斯突出时-空演化过程。提取了视电阻率值、自然电位和一次场电流作为并行电法特征参数,分析发现特征参数在煤与瓦斯突出演化过程中也有各自的变化规律。对比分析了硬煤和构造软煤视电阻率特征,发现构造软煤视电阻率较低,并具有强非均质性的特点。
     (5)提出了直流电法探测煤与瓦斯区域突出危险性的技术思路及判识方法,结合瓦斯地质分析,分别进行了网络并行电法探测回采工作面和掘进工作面区域突出危险性的现场试验,掘进和回采情况也较好的验证了探测结果的可靠性。
     研究成果为煤与瓦斯区域突出危险性探测提供了新的技术手段,对于促进煤田地球物理勘探技术的应用和发展具有重要意义,对于其他煤岩动力灾害的区域性探测和评价也具有重要的参考作用。
Coal and gas outburst is a serious dynamic disaster in mine which has the characteristic of obvious regional distribution. It is emphasis and difficulty of regional outburst prevention that how to carry out accurate and effective prediction and division of region of coal and gas outburst. It requires to enhance the level of technology and equipment yet. Based on this point, this thesis puts forward a method of geophysical exploration known as active DC method to predict the danger region of coal and gas outburst, revealing the law and mechanism of role of element of outburst danger for coal electrical characteristic, studying DC response pattern during the evolution process of coal and gas outburst, putting forward technical approach and identifying method of exploring outburst danger region with DC method, and carried out on-site preliminary application.
     (1) Real-time test and analysis the change rule of different coal resistivity during the process of uniaxial compression, cyclic loading and hierarchical load. It shows that resistivity along with the change trend of load pressure is consistent for the coal of the same electrical conductivity. For the coal of different electrical conductivity, resistivity presents different change rule before outburst and is on the rise after outburst. Through studying change rule of coal resistivity on different stages of uniaxial compression whole stress-strain process, dilatancy that volumetric strain as a symbol has an important influence on coal resistivity were found, mainly embody resistivity appeared catastrophic phenomenon at dilatancy point.
     (2) Based on gas adsorption and desorption characteristics, real-time test and analysis variation regularities of coal resistivity during gas adsorption/desorption process and study the response characteristic of the coal resistivity according to different coal, different gas pressure and different gas species. The results show that variation characteristics of resistivity of different coal are different. Because of difference of coal conductive properties, resistivity presents two trends of rise and fall during gas adsorption phase. Coal resistivity presents the opposite trend during gas adsorption phase and desorption phase, and with gas pressure become bigger, the adsorption capacity become larger, the change range of coal resistivity also become bigger.
     (3) Analyzed conductive mechanism and conductive characteristics of coal from microcosmic angle, putting forward conductive mechanism of weak bound ion, revealing the evolution of conductive characteristics of coal and pore and fissure structure is main factor for change characteristics of coal resistivity. Based on theprinciple of mechanical properties of coal containing gas, mechanism of gas for coalresistivity was studied, The mechanical properties of coal containing gas has essentialinfluence to the coal resistivity was found. From the essence, the change ofmechanical properties of coal containing gas is the mechanism of stress and gas forcoal resistivity.
     (4) Established coal and gas outburst simulation experiment system and parallelelectrical method testing system,studying DC response pattern in the evolutionprocess of outburst. The result shows parallel electrical method has a good responsefor the role of stress and gas and difference during outburst process.It suggests thatparallel electrical method can reflect time-space evolution process of coal and gasoutburst. Apparent resistivity value, spontaneous potential and a field current ascharacteristic parameters of parallel electrical method to analyze and characteristicparameters have own change rule during evolution process of coal and gas outburstwas found. Comparison and analysis characteristics of apparent resistivity of hardcoal and soft coal were carried out. Apparent resistivity of soft coal is lower and softcoal has the characteristics of strong heterogeneity.
     (5) Put forward the technical approache and identifying method of exploringoutburst danger region with DC method. Combined with gas geology analysis, wecarried out field test of detection of working surface by network parallel electricalmethod and regional outburst of drivage roadway, the case of working surface anddrivage roadway also verified the detection results.
     The research results provide a new technical means for coal and gas outburstregional prevention, and have an important significance to promote the applicationand development of coalfield geophysical prospecting technology. Also, it has animportant reference role for prevention of other rock or coal dynamical disasters.
引文
[1]黄盛初.国内外煤炭工业发展趋势与煤矿安全战略[J].中国煤炭,2009,35(9):5-9.
    [2]王显政.抓住机遇,迎接挑战,促进煤炭工业健康可持续发展[J].中国煤炭,2007,33(6):5-7.
    [3]国家安全生产监督管理总局,2011年全国煤矿安全生产情况[EB/OL]. http://www.chinasafety. gov. cn/newpage/Contents/Channel_4181/2012/0114/167213/content_167213.htm.
    [4]赵铁锤.认真落实“十六字工作体系”继续深化切实做好煤矿瓦斯治理工作[J].中国煤炭,2008,34(7):11-14.
    [5] Xu, T., Tang, C.A., Yang, T.H., etc. Numerical investigation of coal and gas outbursts inunderground collieries[J]. International Journal of Rock Mechanics&Mining Sciences,2006,43(6):905-919.
    [6] Lama, R. D., Bodziony, J. Management of outburst in underground coal mines [J].InternationalJournal of Coal Geology,1998,35(1-4):83-115.
    [7]国家安全生产监督管理总局,国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出社,2009.
    [8] Owen M, Hudyma.M, PotvinY. Risk kanalysis for mining indueed seismicitys.5th NorthAmeriean Rock Mechanics Symposium and the17th tunneling Association of CanadaConference[C]. Toronto,2002:1079-1086.
    [9] Xu, T., Tang, C. A., Yang, T. H., Zhu, W. C., Liu, J.,2006. Numerical investigation of coal andgas outbursts in underground collieries[J]. International Journal of Rock Mechanics&MiningSciences43,905-919.
    [10]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1992.
    [11] Shepherd, J., Rixon, L. K., Griffith L,1981. Outbursts and geological structures in coal mines:a review. International Journal of Rock Mechanics and Mining Sciences18,267-283.
    [12] Cao, Y. X., He, D. D., David, C. G.,2001. Coal and gas outbursts in footwalls of reversefaults. International Journal of Coal Geology48,47-63.
    [13] Cao, Y. X., Davis, A., Liu, R. X.,2003. The influence of tectonic deformation on somegeochemical propertiesof coals-a possible indicator of outburst potential. InternationalJournal of Coal Geology53,69-79.
    [14] Li, H. Y.,2001. Major and minor structural features of a bedding shear zone along a coalseam and related gas outburst, Pingdingshan coalfield, northern China. International Journalof Coal Geology47,101-113.
    [15]程五一,张序明,吴福昌.煤与瓦斯突出区域预测理论及技术[M],煤炭工业出版社,2005.
    [16]赵涛.基于多因素概率预测的瓦斯突出预警方法研究[D],成都理工大学,2007.
    [17]国家安全生产监督管理总局,国家安全生产科技“十二五”规划[M].中国科技出版社,2012.
    [18]程志平,电法勘探教程[M].北京:冶金工业出版社,2007.
    [19]岳建华,刘树才.矿井直流电法勘探[M].徐州:中国矿业大学出版社,2000.
    [20]孙希奎,徐进鹏,刘盛东,等.工作面底板突出的理论研究与远程监控[M].徐州:中国矿业大学出版社,2011.
    [21]张玉功,王魁军,范启炜.北票矿区煤与瓦斯突出预测预报的研究与应用[J].煤矿安全.1991(1),17-22.
    [22]彭立世.瓦斯地质研究现状及前景展望[J].焦作矿业学院学报,1995,14(1):5-7.
    [23]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1992.
    [24]曹运兴.瓦斯地质单元法预测瓦斯突出的认识基础与实践[J].煤炭学报,1995,20(增刊):76-78.
    [25]杨陆武.应用瓦斯地质单元法预测煤与瓦斯突出[J].中国地质灾害与防治学报,1997,8(3):21-25.
    [26]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    [27]张子敏,张玉贵,三级瓦斯地质图与瓦斯治理[J].煤炭学报,2005,30(4):455-458.
    [28]杨德方,张子敏,张玉贵,等.基于划分瓦斯地质单元的瓦斯赋存规律研究—以薛湖煤矿二2煤层为例[J].河南理工大学学报,2008,27(4):386-390.
    [29] Zhang Yugui, Cao Yunxin, Xie Hongbao, Lifan, Xie Kechang, Morphological and StructuralFeatures of Tectonic Coal[A]. Proceeding of The10th International Coal Conference[C],Taiyuan: Shanxi Science Press,1999,34-38.
    [30]张子敏,林又玲,吕绍林.中国煤层瓦斯分布特征[M].北京.煤炭工业出版社,1998.
    [31] И. М. Петухов, И. М. Батугина. ГЕОДИНАМИКА НЕДР. Москва:《НЕДРАКОММЮНИКЙШЕНС ЛТД》,1999.
    [32] И. М. БАТУГИНА, М. А. ИЛЬЯШОВ, В. И. БОНДАРЕНКО. ОЦЕНКАЕОДИНАМИЧЕСКОЙ ОПАСНОСТИ TEPPИTOPИЙ HA OCHOBE ГEOДИНАМИKИHEДP. Подписано в печать ФopматБyмагаPOllux.Pизогpaфия. Усп. печ. п.б,0. Уч.-изд.п. б,0.Tиpaж500зкз, Зaк.2001.
    [33] Алексеев В. К, Батугин А. С., Батугина И. М., Гаранбвкин. В., Калинин. М., Летухов.М., Челлан П. И. ГЕОДИНАМИЧЕСКОЕ РАЙОНИРОВАНИЕ ТЕРРИТОРИИ. СМТ:МОСКОВСКОЙ ОБЛАСТИ,2003.
    [34]段克信.北票矿区地质动力区划[J].煤炭学报.1995,20(4):337-341.
    [35]张宏伟.地质动力区划方法在煤与瓦斯突出区域预测中的应用[J].岩石力学与工程学报,2003,22(4):621-624.
    [36]张宏伟,李胜.煤与瓦斯突出危险性的模式识别和概率预测[J].岩石力学与工程学报,2005,224(19):3577-3581.
    [37] Shepherd J, Rixo n L K, Griffiths L. Outburst and geological structures in coal mines[J]. Int. J.Rock Mech. Min. Sci.&Geomech. Abstr,1981,18:267-283.
    [38] HargravesAJ.Instantaneous outburst of coal and gas: a review[J]. ProeAustralia. Inst. Min.Metall.1983,285: l-37
    [39]何俊,陈新生.地质构造对煤与瓦斯突出控制作用的研究现状与发展趋势[J].河南理工大学学报,2009,28(1):1-7,50.
    [40] Cao, Y. X., He, D. D., David, C. G.,2001. Coal and gas outbursts in footwalls of reversefaults. International Journal of Coal Geology48,47-63.
    [41] Cao, Y. X., Davis, A., Liu, R. X.,2003. The influence of tectonic deformation on somegeochemical propertiesof coals-a possible indicator of outburst potential. InternationalJournal of Coal Geology53,69-79.
    [42] Li, H. Y.,2001. Major and minor structural features of a bedding shear zone along a coalseam and related gas outburst, Pingdingshan coalfield, northern China. International Journalof Coal Geology47,101-113.
    [43]刘咸卫,曹运兴.正断层两盘的瓦斯突出分布特征及其地质成因浅析[J].煤炭学报,2000,25(6):571-575.
    [44] TANGYou-yi, CAO Yun-xing (Study on the outburst prone of different fault sides[J].Journalof Coal Science&Engineering,2002,8(1):7-10
    [45]韩军,张宏伟,霍丙杰.向斜构造煤与瓦斯突出机理探讨[J].煤炭学报,2008,33(8):908-913.
    [46]牛森营.豫西煤厚变化控制煤与瓦斯突出的机理分析[J].煤矿安全,2011,42(7):127-128.
    [47]朱兴珊.论地质构造及其演化对煤和瓦斯突出的控制—以南桐矿区为例[J].中国地质灾害与防治学报,1997,8(3):14-15,17-21.
    [48]韩军,张宏伟,朱志敏,等.阜新盆地构造应力场演化对煤与瓦斯突出的控制[J].煤炭学报,2007,32(9):934-938.
    [49]何继善,吕绍林.瓦斯突出地球物理研究M].北京:煤炭工业出版社,1999.
    [50]王恩元,何学秋,李忠辉,等.煤岩电磁辐射技术及其应用[M].北京:科学出版社,2009.
    [51] Nitson U.Electromagnetic emission accompanying fracture of quartz-bearing rocks.Geophysics Research letters,1977(4):333-336.
    [52] Ogawa, T, Oike, K. Electromagnetic radiation from rocks.J Geophys Res,90(D4),1985:6245-6249.
    [53] Brady B T. Rowell G.A.Laboratory investigation of the electrodynamics of rock fracture,Nature,1986,321,488-492.
    [54] Cress, G.O, Brady, B.T.and Rowell, G.A.Sources of electromagnetic radiation from fracture ofrock samples in laboratory, Geophys.Res.Lett,1987(14):331-334.
    [55] Yamada, I,Masuda, K,Mizutani, H. Electromagnetic and acoustic emission associated withrock fracture, Phys.Earth Planet.Inter,1989,57:157-168.
    [56] Frid V. Rockburst hazard forecast by electromagnetic radiation excited by rock fracture[J].Rock Mechanics and Rock Engineering,1997,30(4):229-236.
    [57] A. T. Airuni, I. V. Zverev, M. O. Dolgova, et al. Physical and physico-chemical principles ofprediction and contral of gas emission at coal mines[J]. In: Proceeding of the21stinternational conference of safety in mines research institutes, ed. A.R. Green, Australia,1985,297-303.
    [58] Хамиащвили, Н.Г.论碱卤互素结晶体和岩石中裂隙形成时的电磁辐射效应.见:地震地电学译文集[M].北京:地震出版社,1989.
    [59] Xueqiu He, WenxueChen, BaishengNie, et al. Electromagnetic emission theory and itsapplication to dynamic phenomena in coal-rock [J]. International Journal of Rock Mechanics&Mining Sciences,2011,48:1352-1358
    [60] He Xueqiu, Nie Baisheng, Chen Wenxue, et al. Research progress on electromagneticradiation in gas-containing coal and rock fracture and its applications[J], Safety Science,2011,50(4):728-735
    [61]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [62] Mingju Liu, Xueqiu He. Electromagnetic response of outburst-prone coal[J]. InternationalJournal of Coal Geology2001,45:155-162.
    [63]刘明举.含瓦斯煤断裂电磁辐射及其在煤与瓦斯突出研究中的应用[D].徐州:中国矿业大学,1994.
    [64]王恩元.含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究[D].徐州:中国矿业大学,1997.
    [65] Dazhao Song, Enyuan Wang, Jie Liu. Relationship between EMR and dissipated energy ofcoal rock mass duringcyclic loading process[J]. Safety Science,2012,50(4):751-760.
    [66] Wang Enyuan; He Xueqiu; Wei Jianping, et al. Electromagnetic emission graded warningmodel and its applications against coal rock dynamic collapses[J]. International Journal OfRock Mechanics And Mining Sciences,2011,48(4):556-564.
    [67]王恩元,何学秋,窦林名,等.煤矿采掘过程中煤岩体电磁辐射特征及应用.地球物理学报,2005,48(1):216-221.
    [68]王恩元,何学秋,聂百胜,等.电磁辐射法预测煤与瓦斯突出原理[J].中国矿业大学学报,2000,29(3):225-229.
    [69]王恩元,何学秋,刘贞堂,等.煤岩动力灾害电磁辐射监测仪及其应用[J].煤炭学报,2003,28(4):366-369.
    [70] He Xueqiu, Wang Enyuan, Dou Linming, et al. Electromagnetic radiation monitoring systemforecasting coal&gas outburst (or rock burst) and its application[C]. In: InternationalScientific-Technical Symposium Rockburst2002Research and Prevention SystemsProceedings, Ustron, Poland, November,12~15,2002,423-428.
    [71] Wang Enyuan, He Xueqiu, Dou Linming, et al. Forecasting Rock Burst with the Non-contactMethod of Electromagnetic Radiation[C]. In:2002International proceedings of safetyscience and technology, Tai’an,2002,10,111-116.
    [72]邹银辉,赵旭生,刘胜.声发射连续预测煤与瓦斯突出技术研究[J].煤炭科学技术,2005,33(6):61-65.
    [73] Jiang, Changbao, Yin, Guangzhi. Experiment of crack evolution and acoustic emission in theprocess of coal containing gas failure[J]. Disaster Advances,2011,4(Supp):94-97.
    [74] Wu Yu-liang, Chen Jie, Zeng Sen-mao. The acoustic emission technique research on dynamicdamage characteristics of the coal rock [C].1st International Symposium on Mine SafetyScience and Engineering, Beijing,2011.
    [75]赵洪宝,尹光志.含瓦斯煤声发射特性试验及损伤方程研究[J].岩土力学,2011,32(3):667-671.
    [76]马衍坤,王恩元,李忠辉,等.煤体瓦斯吸附渗流过程及声发射特性实验研究[J].煤炭学报,2012,37(4):641-646.
    [77]宋大钊,王恩元,赵恩来,等.煤体充放瓦斯连续循环过程声发射特性研究[J].煤炭科学技术,2009,37(11):14-17.
    [78]煤炭科学研究总院重庆分院. AE声发射监测煤与瓦斯突出技术[R].重庆:煤炭科学研究总院重庆分院,2003.
    [79]石显鑫,蔡栓荣,冯宏,等.利用声发射技术预测预报煤与瓦斯突出[J].煤田地质与勘探,1998,03:61-66.
    [80]田时秀.声发射监测在煤与瓦斯突出中的应用[J].应用声学,1993,02:1-8.
    [81]窦林名,何学秋.采矿地球物理学[M].中国科学文化出版社,2002.
    [82] Liu Baoxian, Shu Zhile, Zhang Kun. Experimental Study of the Mechanism of Coal and GasDelay Outburst[J]. Disaster Advances,2011,4(Supp):55-62
    [83]樊栓保.国内外煤与瓦斯突出预测的新方法[J].矿业安全与环保,2000,27(5):17-19.
    [84] McKavanagh B M, Enever J R. Developing a microseismic outburst warning system[M].1978,211-215.
    [85] Leighton F. Microseismic activity associated with outbursts in coal mines[M].1981,467-477.
    [86] Davies A W, Styles P, Jones V K. Developments in outburst prediction by microseismicmonitoring from the surface[J]. MinEng1987,147:486-498.
    [87] Peter S. Implications of harmonic-tremor precursory events for the mechanism of coal andgas outbursts[M].1993,415-421.
    [83] Cai-Ping Lu, Lin-MingDou, HuiLiu. Case study on microseismic effect of coal and gasoutburst process[J]. International Journal of Rock Mechanics&Mining Sciences,2012,53:101-110.
    [84]王庆利.微震监测在煤与瓦斯突出预测中的应用研究[D].东北大学,2009.
    [85]段东.煤与瓦斯突出影响因素及微震前兆分析[D].东北大学,2009.
    [86] Qin, S, Cheng, JY, Zhu, SJ. The Application and Prospect of Microseismic Technique inCoalmine[C].2011International Conference of Environmental Science And Engineering,Bali Island, INDONESIA2012.
    [87]郭立稳.含瓦斯煤破裂过程的热效应研究[D].北京:中国矿业大学,1999
    [88]郭立稳,俞启香,蒋承林,等.煤与瓦斯突出过程中温度变化的实验研究[J].岩石力学与工程学报,2000,19(3):366-368.
    [89]郭立稳,蒋承林.煤与瓦斯突出过程中影响温度变化的因素分析[J].煤炭学报,2000,25(4):401-403.
    [90]钟晓晖,朱令起,郭立稳,等.煤体破裂过程辐射温度场的研究[J].煤炭科学技术,2006,34(2):57-59.
    [91]马衍坤.含瓦斯煤层多参数实时监测及其应用研究[D].徐州:中国矿业大学,2011.
    [92]赵庆珍.红外探测技术用于预测煤与瓦斯突出的试验[J].采矿与安全工程学报,2009,24(6):529-533.
    [93]王云刚.受载煤体变形破裂微波辐射前兆规律的实验研究[D].徐州:中国矿业大学,2008.
    [94]王恩元,王云刚,李忠辉,等.受载煤体变形破裂微波辐射前兆规律的实验研究[J].地球物理学报,2011,54(9):2429-2436
    [95] Varotsos P., Sarlis, N., Eftaxias, K., et al. Review on the statistical significance of VANpredictions[J]. Physics and Chemistry of the Earth Part A: Solid Earth and Geodesy,1999,24(2):111-114.
    [96] Varotsos P, Alexopoulos K and Lazaridou M,1993. Latest aspects of earthquake prediction inGreece based on seismic electric signals II [J], Tectonophysics,1993,224:1-37.
    [97] Uyeda S, Hayakawa M, Nagao T, et al. Electric and magnetic phenomena observed before thevolcano-seismic activity in2000in the Izu Island Region[C], Japan, Proc. Natl. Acad. Sci.USA,2002,99:7352-7355.
    [98] Uyeda S, Nagao T, Orihara Y, et al.2000. Electric potential changes: Possible precursors toearthquakes in Japan[C], Proc. Natl. Acad. Sci. USA,2000,97:4561-4566.
    [99]吴小平,施行觉,郭自强.花岗岩压缩带电的实验研究[J].地球物理学报.1990,33(2):208~211.
    [100] Akihiro Takeuchi, Bobby W.S. Lau, Friedemann T. Freund. Current and surface potentialinduced by stress-activated positive holes in igneous rocks[J]. Physics and Chemistry of theEarth,2006,(31):240-247.
    [101] Chen DaYuan, Zhang DeHua, Sun ZhengJiang, et al. Laboratory Studies on ULFElectric-potential Changes and Mechanical Changes in Rock Samples Under Stress up toFaliure[C]. International Workshop on Electromagnetic Phenomena Related to EarthquakePrediction,1993.
    [102]李忠辉.受载煤体变形破裂表面电位效应及其机理的研究[D].徐州:中国矿业大学.2007.
    [103]李忠辉,王恩元,刘贞堂,等.煤岩破坏表面电位特征规律研究[J].中国矿业大学学报.2009,38(2):187-192.
    [104]王恩元,李忠辉,刘贞堂,等.受载煤体表面电位效应的实验研究[J].地球物理学报,2009,52(5):1318-1325.
    [105]吕绍林,地球物理方法预测瓦斯突出研究综述[J].焦作矿业学院学报,1997,16(2):95-100.
    [106] C. Fowler. Application of the formation detection with Radar[J]. Mining Engieering,1981(8):1266-1270.
    [107] J. B. Kuhn. Application of ground-penetrating radar in mining[J]. Bureau of minesinformation circular.1984:1-16.
    [108]王连成.地质雷达探测矿井地质构造[J].世界煤炭技术,1993(10):27-32.
    [109]王连成,高克德,李大洪.地质雷达探测掘进工作面前方瓦斯突出构造[J].煤炭科学技术,1997,25(11):13-16.
    [110]杨陆武.煤休结构类型的力学特征[D].焦作矿业学院,1993.
    [111]吕绍林.孔测超声波预测瓦斯突出煤体结构的理论基础[J].焦作矿业学院学报,1995,14(1):59.
    [112] LU Shao-lin, HE Ji-shan. Ultrasonic characteristics of the disturbed coal mass [J] Journal ofCentral South University of Technology.1997,4(1):42-45.
    [113]吕绍林.超声波探测瓦斯突出煤体[J].煤炭工程师,1997,3:15-18.
    [114]吕绍林等.煤体声波特征及其应用[A].瓦斯地质论文集[C].北京:煤炭工业出版社,1995.
    [115]孙立广,施行觉,倪守斌.超声波探测在构造地质研究中的初步应用[J].地质与勘探,1992,28(2):36-40.
    [116] R. Ro driguez, D. Skroback.用地震方法预测煤层的构造及煤质[J].煤田物探,1988(4):59-64.
    [117]戚敬华.煤矿地质灾害的弹性波探测技术[J].煤田地质与勘探,1992,20(6):51-57
    [118]左德坤,马超群,李新田,等.槽波地震法探测煤层的不连续构造[J].煤炭科学技术,1986,(3):18-22.
    [119]赵秋芳.煤层震波参数测试与研究[D].淮南:安徽理工大学,2005.
    [120]彭苏萍,高云峰,杨瑞召,等. AVO探测煤层瓦斯富集的理论探讨和初步实践—以淮南煤田为例[J].地球物理学报,2005,48(6):1475-1486.
    [121]吕绍林,何继善.瓦斯突出煤层的无线电波响应特征[J].物探与化探,1998,(3):222-226.
    [122]汤友谊,陈江峰,李云霞.瓦斯突出煤体探测的物性前提及应用[J].焦作工学院学报,2000,19(6):407-410.
    [123]汤友谊,陈江峰,彭立世.无线电波坑道透视构造煤的研究[J].煤炭学报,2002,27(3):254-258.
    [124] WU Yan-qing, Application of radio wave penetration coal mine disaster. Coal mine Safetyand Health [C]//Proceedings of the International Mining Tech.’98Symposium, Chongqing,China,1998:14-16.
    [125]吴燕清.地下电磁波探测及应用研究[D].长沙:中南大学,2002.
    [126]文光才.无线电波透视煤层突出危险性机理的研究[D].徐州:中国矿业大学,2003.
    [127]康建宁.电磁波探测煤层突出危险性指标敏感性研究[D].重庆:煤炭科学研究总院重庆分院,2003.
    [128]葛宝堂,李德春.岩体电阻率观测技术预报顶板失稳的前景[J].中国矿业大学学报,1993,22(2):48-52.
    [129] B. B.霍多特.煤和瓦斯突出[M].宋世钊,王佑安译.北京:中国工业出版社,1966.
    [130]康建宁,黄学满.煤的电性参数与瓦斯突出危险性之间关系研究[J].煤炭科学技术,2005,33(1):56-58.
    [131]康红普.煤矿井下应力场类型及相互作用分析[J].煤炭学报,2008,33(12):1329-1335.
    [132]吕绍林.瓦斯突出地球物理场研究[D].长沙:中南工业大学,1998.
    [133]刘贞堂,贾迎梅,王恩元,等.受载煤体电阻率变化规律研究[J].中国煤炭,2008,34(11):47-49.
    [134] Wang Yungang, Wei Jianping, Yang song. Experimental research on electrical parametersvariation of loaded coal [C]. Procedia Engineering,2011,26:890-897.
    [135]孟磊,刘明举,王云刚.构造煤单轴压缩条件下电阻率变化规律的实验研究[J].煤炭学报,2010,35(12):2028-2032.
    [136]王云刚.大尺度冲击性煤体电阻率变化规律的实验研究[J].南华大学学报,2010,24(2):15-18,23.
    [137]杨耸.受载含瓦斯煤体电性参数的实验研究[D].焦作:河南理工大学,2012.
    [138]吕绍林,何继善,李舟波.模拟储层条件下突出煤的导电性质研究[J].世界地质,2000,19(1):78-81.
    [139]康建宁.煤的电导率随地应力变化关系的研究[J].河南理工大学学报,2005,24(6):430-433.
    [140] Ma Yankun, Wang Enyuan, Xiao Dong,et al. Acoustic emission generated during the gassorption-desorption process in coal[J]. International Journal of Mining Science andTechnology.2012,22(3):391-397.
    [141] Satya Harpalani, Guoliang Chen. Estimation of changes in fracture porosity of coal with gasemission [J]. Fuel,1995,74(10):1491-1498.
    [142] G. X. Wang, X. R. Wei. K. Wang, et al, Sorption-induced swelling/shrinkage andpermeability of coal under stressed adsorption/desorption conditions[J]. InternationalJournal of Coal Geology,2010,83(1):46-54.
    [143]徐龙君,鲜学福,刘成伦,等.一种充甲烷无烟煤导电特性的研究[J].重庆大学学报(自然科学版),1999,22(5):133-137.
    [144]李远红.煤岩物理力学性质对煤与瓦斯突出的影响研究[J].煤炭技术.2011,30(10):105-106.
    [145]郭德勇.煤与瓦斯突出的构造物理环境及其应用[J].北京科技大学学报.2002,24(6):581-592.
    [146]吕绍林,何继善.瓦斯突出煤体的导电性质研究[J].中南工业大学学报,1998,29(6):511-514.
    [147]汤友谊,孙四清,郭纯,等.不同煤体结构类型煤分层视电阻率值的测试[J].煤炭科学技术.2005,33(3):70-72.
    [148]陈健杰,江林华,张玉贵,等.不同煤体结构类型煤的导电性质研究[J].煤炭科学技术.2011,39(7):90-92,101.
    [149] JIN Hong-wei, HU Qian-ting, LIU Yan-bao. Failure Mechanism of Coal and Gas OutburstInitiation. Procedia Engineering,2011,26(7):1352-1360.
    [150]李楠,王恩元,赵恩来,等.岩石循环加载和分级加载损伤破坏声发射实验研究[J].煤炭学报,2010,35(7):1099-1103.
    [151]董延朋,万海.高密度电阻率法在堤坝洞穴探测中的应用[J].物探装备,2006,16(1):56-58.
    [152]蔡美峰.岩石力学与工程.北京:科学出版社,2002.
    [153]赵文.岩石力学.长沙:中南大学出版社,2010.
    [154]陈季丹,刘子玉.电介质物理学.北京:机械工业出版社,1982.
    [155]马金宝,张毅,马向前.岩石(体)应力扩容试验及本构进展研究[J].水利与建筑工程学报,2011,9(1):77-82,100.
    [156]潘立友.冲击地压前兆信息的可识别性研究及应用[D].青岛:山东科技大学,2003.
    [157]潘立友,蒋宇静,李兴伟,等.煤层冲击地压的扩容理论[J].岩石力学与工程学报,2002,21(增1):2301-2303.
    [158] Levy J H, Day S J, Killingley J S. Methane capacities of Bowen Basin coals related to coalproperties [J]. Fuel,1997,76(9):813-819.
    [159] Amarasekera G, Scarlett M J, Mainwaring D E. Micropore size distribution and specificinteractions in coals [J]. Fuel,1995,74(1):115-118.
    [160]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [161] Harpalani S, Pariti U M. Study of coal sorption isotherms using a multicomponent gasmixture[C]. International Coalbed Methane Symposium, Alabama, USA,1993:151~160.
    [162] Krooss B M, Bergen Fvan, Gensterblum Y, et al. High-pressure methane and carbondioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. InternationalJournal of Coal Geology,2002,51(2):69-92.
    [163]聂百胜,段三明.煤吸附瓦斯的本质[J].太原理工大学学报,1998,29(4):417-422.
    [164]温兴宏.煤基碳材料对甲烷的吸附解吸性能研究[D].西安:西安科技大学,2007.
    [165]王鹏刚.不同温度下煤层气吸附/解吸特征的实验研究[D].西安:西安科技大学,2010.
    [166] Moffat D H, Weale K E. Sorption by coal of methane at high pressure[J]. Fuel,1955,34:449-460.
    [167] Green T, Kovac J, Brenner D, et al.The macromolecular structure of coals. In “CoalStructure”, ed. R. A. Megers, New York: Academic Press,1982.
    [168]张代钧,鲜学福.煤中大分子结构的X射线衍射研究.高等学校化学学报,1990,11(8):912.
    [169]虞继舜.煤化学[M].北京:冶金工业出版社,2000.166-170.
    [170]张广洋,谭学术,杜贵云.煤的导电机理研究[J].湘潭矿业学院学报,1995,10(1):15-18.
    [171]徐龙君.突出区煤的超细结构、电性质、吸附特征及其应用的研究[D].重庆:重庆大学,1997.
    [172]孟磊.煤电性参数的实验研究[D].焦作:河南理工大学,2010.
    [173] Shreeman Narayan Tiwary, Mukhdeo. Measurement of electrical resistivity of coalsamples[J]. Fuel,1993,72(8):1099-1102.
    [174] Verma R K., Bhuin N C. Use of electrical resistivity methods for study of coal seams inparts of the Jharia Coalfield, India[J]. Geoexploration,1979,17(2):163-176.
    [175] Hasan D, Bai Xiao-Hong, William B. Krantz. Thermal and electrical property measurementsfor coal[J]. Fuel,1989,68(2):185-192
    [176] Podder J, Majumder S. A study on thermal and electrical characterization of Barapukuriacoal of northwestern Bangladesh[J]. Thermochimica Acta,2001,372(1):113-118
    [177] Zubkova V, Prezhdo V, Change in electric and dielectric properties of some Australian coalsduring the processes of pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2006,75(2):140-149.
    [178]陶著.煤化学[M].北京:冶金工业出版社,1984.
    [179]原永涛,赵毅,张建平.不同煤化程度煤种对飞灰导电特性影响的实验研究[J].中国环境科学,1997,15(5):450-461.
    [180]徐宏武.煤层电性参数的测试和研究[J].煤田地质与勘探,1996,24(2):53-56.
    [181]徐宏武.煤层电性参数测试及其与煤岩特性关系的研究[J].煤炭科学技术,2005,33(3):42-46,41.
    [182]邵震杰,任文忠,陈家良.煤田地质学[M].北京:煤炭工业出版社,1993.
    [183]王云刚,魏建平,刘明举.构造软煤电性参数影响因素的分析[J].煤炭科学技术,2010,38(8):78-80.
    [184]万琼芝.煤的电阻率和相对介电常数[J].煤矿安全技术,1982(1):19-26.
    [185] Branch I, Giuntini J C, Zanchetta J V. Real Part of the Permittivity of Coals and TheirRank[J]. Fuel.1994,73(5):738-739.
    [186]徐龙君,刘成伦,鲜学福.频率对突出区煤导电性的影响[J].矿业安全与环保,2000,27(6):25-26.
    [187]徐龙君,张代钧,鲜学福.煤的电特性和热性质[J].煤炭转化,1996,19(3):56-62.
    [188] Van Krevenlen D W. Coal[M], Amsterdam: Elsevier,1961.
    [189] Balanis C A, Cooper B R, Petrake L.Chemistry and Physics of Coal Utilizatlon[M]. NewYork: American Institute of Pyhsies,1981.
    [190]秦跃平,王丽,李贝贝,等.压缩实验煤岩孔隙率变化规律研究[J].矿业工程研究,2010,25(1):1-3.
    [191]陶云奇,许江,彭守建,等.含瓦斯煤孔隙率和有效应力影响因素试验研究[J].岩土力学,2010,319(11):3417-3422.
    [192]刘延保,曹树刚,李,等.煤体吸附瓦斯膨胀变形效应的试验研究[J].岩石力学与工程学报,2010,29(12):2484-2491.
    [193]卢平,沈兆武,朱贵旺,等.含瓦斯煤的有效应力与力学变形破坏特性[J].中国科学技术大学学报,2001,31(6):687-693.
    [194]陈金刚,张世雄,秦勇,等.煤基质收缩能力内在控制因素的试验研究[J].煤田地质与勘探,2004(5):78-80.
    [195]傅雪海,秦勇,张万红.高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J].高校地质学报,2003,9(3):373-377.
    [196]孙可明,梁冰,王锦山.煤层气开采中两相流阶段的流固耦合渗流[J].辽宁工程技术大学学报,2001,20(1):36-39.
    [197]李祥春,郭勇义,吴世跃.煤体有效应力与膨胀应力之间关系的分析[J].辽宁工程技术大学学报,2007,26(4):535-537.
    [198]李传亮,孔祥言,徐献芝,等,多孔介质的双重有效应力[J].自然杂志,1999,21(5):288-292.
    [199]刘鸿文.材料力学[M].北京:高等教育出版社,1982:26.
    [200]何学秋,王恩元,林海燕.孔隙气体对煤体变形及蚀损作用机理[J].中国矿业大学学报,1996,25(1):6-11.
    [201]刘盛东,刘士刚,吴荣新,等.网络并行电法仪与稳态电法勘探方向[J].中国科技成果,2007(24):31-33.
    [202]刘盛东,张平松.分布式并行智能电极电位差信号采集方法[P].中国发明专利:zl2004100140200,2004.6.18.
    [203]吴荣新,张平松,刘盛东.双巷网络并行电法探测工作面内薄煤区范围[J].岩石力学与工程学报,2009,28(9):1834-1838.
    [204]刘树才.煤矿底板突水机理及破坏裂隙带演化动态探测技术[D].徐州:中国矿业大学,2008.
    [205] HUDECEK V. Analysis of safety precautions for coal and gas outburst-hazardous strata [J].Journal of Mining Science,2008,44(5):464-472.
    [206] LI S, WANG Q J, LUAN Q L. Development of regional prediction information system ofcoal and gas outburst [J]. Journal of Coal Science and Engineering,2006,12(1):79-81.
    [207]王维忠,陶云奇,许江,等.不同瓦斯压力条件下的煤与瓦斯突出模拟实验[J].重庆大学学报.2010,33(3):82-86.
    [208]许江,陶云奇,尹光志,等.煤与瓦斯突出模拟试验台的研制与应用[J].岩石力学与工程学报,2008,27(11):2354-2362.
    [209]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [210]欧建春.煤与瓦斯突出演化过程模拟实验研究[D].徐州:中国矿业大学,2012.
    [211]蒋承林.煤壁突出孔洞的形成机理研究[J].岩石力学与工程学报,2000,19(2):225-228.
    [212]刘保县,鲜学福,姜德义.煤与瓦斯延期突出机理及其预测预报的研究[J].岩石力学与工程学报,2002,
    [213]方健之,俞善炳,谈庆明.煤与瓦斯突出的层裂粉碎模型[J].煤炭学报,1995,20(2):149-153.
    [214]赵伟,高密度电法在煤层底板破坏规律中的应用研究[D].邯郸:河北工程大学,2010.
    [215]吴荣新,张卫,张平松.并行电法监测工作面“垮落带”岩层动态变化[J].煤炭学报,2012,37(4):571-577.
    [216]李宏,张伯崇.水压致裂实验过程中自然电位测量研究[J].岩石力学与工程学报,2006,25(7):1425-1429.
    [217] Zhou Wangfang, Barry F Beck, J Brad Stephenson. Investigation of groundwater flow inkarst areas using component separation of natural potential measurement [J].Environmental Geology,1999,37(1-2):19-25.
    [218]吴超凡,刘盛东,杨胜伦.煤层围岩破裂过程中的自然电位响应[J].煤炭学报,2013,38(1):50-54.
    [219]李忠辉,王恩元,谢绍东,等.煤体瓦斯运移诱发电位信号的实验研究[J].煤炭学报,2010,35(9):1481-1485.
    [220]国家安全生产监督管理总局. AQ1024-2006《煤与瓦斯突出矿井鉴定规范》(S).北京:煤炭工业出版社,2006.
    [221]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [222] Mandelbrot B B. The Fractal Geometry of Nature (updated and augmented edition)[M].New York: Freeman,1983.
    [223] Hirata T, Satoh T, Ito K. Fractal structure of spatial distribution of microfracturing in rock.Geophys. J. Roy. Astron. Soc,1987,90(2):369-374.
    [224]王恩元,何学秋.煤层孔隙裂隙系统的分形描述及其应用[J].阜新矿业学院学报(自然科学版).1996,15(6):407-410.
    [225]陈颙,陈凌.分形几何学[M].北京:地震出版社,1993.
    [226]王建,白世彪,陈晔. Surfer8地理信息制图[M].北京:中国地图出版社,2004.
    [227]孙本凯(译).用无线电波电波透视法研究煤层破坏的实验[J]. УгопБ,1979(11):57-60.
    [228]张广洋,谭学术,鲜学福,等.煤的导电性与煤大分子结构关系的实验研究[J].煤炭转化,1994,17(2):10-13.
    [229]张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学,2006.
    [230] MAURIELLO P, PATELLA D. Resistivity anomaly imaging byprobability tomography[J].Geophysical Prospecting,1999,47(3):411–429.
    [231] LOKE M H, DAHLIN T. A comparison of the Gauss-Newton and quasi-Newton methods inresistivity imaging inversion[J]. Journal of Applied Geophysics,2002,49(3):149–162.
    [232] OLAYINKA A I, YARAMANCI U. Use of block inversion in the2D interpretation ofapparent resistivity data and its comparison with smooth inversion[J]. Journal of AppliedGeophysics,2000,45(2):63–81.
    [233] CHRISTIANSEN A V, AUKEN E. Optimizing a layered and laterally constrained2Dinversion of resistivity data using Broyden′s update and1D derivation[J]. Journal ofApplied Geophysics,2004,56(4):247–261.
    [234]张平松,刘盛东,吴荣新.采煤面覆岩变形与破坏立体电法动态测试[J].岩石力学与工程学报,2009,28(9):1870-1875.
    [235]中国矿业大学.淮北矿业集团朱仙庄煤矿10煤层煤与瓦斯突出危险性鉴定报告[R],2010.
    [236]康红普,王金华,高富强.掘进工作面围岩应力分布特征及其与支护的关系[J].煤炭学报,2009,34(12):1585-1593.
    [237]刘青雯.井下电法超前探测方法及其应用[J].煤田地质与勘探,2001,29(5):60-62.
    [238]张平松,李永盛,胡雄武.巷道掘进直流电阻率法超前探测技术应用探讨[J].地下空间与工程学报,2013,9(1):135-140.
    [239]张平松,刘盛东,曹煜.坑道掘进立体电法超前预报技术研究[J].中国煤炭地质,2009,21(2):50-53.
    [240]胡雄武,张平松.矿井多极供电电阻率法超前探测技术研究[J].地球物理学进展,2010,25(5):1709-1715.
    [241]胡雄武,张平松.深部矿井电阻率法超前探测多极偏移处理与应用[J].安徽理工大学学报(自然科学版),2010,30(1):21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700