用户名: 密码: 验证码:
絮凝搅拌能耗分布优化模式及其实验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
絮凝搅拌能耗分布问题是絮凝池合理设计的关键问题,近二、三十年来,在应用絮凝动力学原理进行絮凝池合理化设计方面,虽已取得不少研究成果,但到目前为止,对于絮凝搅拌能耗的优化分布问题,仍然停留在经验基础上,还未见有理论方面的说明和相关报道。所以,本文采用理论模式探索和专门实验验证相结合的方法进行相关课题的深入研究,无疑具有较好的理论和技术价值。
     为了实现我国新的生活饮用水水质1 NTU浊度标准,考虑到我国大多数中小城镇水厂的技术经济条件,针对工程设计中存在的问题和絮凝过程中水流流态对水处理效果影响,本课题利用已有的经验公式和前人的实验数据进行数学推导,对絮凝最优浊度范围及絮体形成的影响因素之间的协同作用规律进行了研究;并对搅拌容器内水流流态的数值模拟作为研究的主要内容,探索最佳絮凝控制条件,并制定出中小城镇水厂絮凝设施技术改造的实验方法。本文核心即是在这方面进行了探讨。具体内容如下:
     (1)本文推导获得搅拌能耗优化分布的理论模式,其中γ值是与絮体分形维数有关的模型参数,主要与絮凝剂品种和投加量有关。该式表达了在总搅拌时间最短时的相邻的三档絮凝搅拌强度之间的数值比例关系。并据此得到絮凝反应池搅拌能耗分布优化的四个比例计算式,应用其中任意两个来拟定絮凝反应池水力搅拌条件,即可获得搅拌时间最少、所需容积最省的设计方案;
     (2)提出了新的絮凝聚集模型用于絮凝体等效粒径(等含水率和等沉降速度)的计算,由此导出新的絮体沉降计算公式;
     (3)实验证明影响絮体分形维数主要因素是絮凝剂的品种和絮凝剂的投加量。而与水的pH值和搅拌强度无明显关联。实验发现絮体分形维数的大小与絮凝剂投加量成线性关系,随着投加量增大而减小;
     (4)应用多因素正交实验方法,确定了絮凝的最佳操作条件。通过实验所获得的结果验证了絮凝搅拌能耗分布最优模式是正确的;
     (5)应用CFD方法对絮凝水力条件进行数值模拟。模拟计算所得的能量耗散率ε替代絮凝有效能耗是合理可行的,模拟计算的最佳GT值分布也与本文提出的理论模式相符;
     (6)本文提出的絮凝沉降实验装置、絮体图像处理和分形维数计算的方法,为水处理絮凝技术的研究提供了一种新的测试手段。
     本研究通过自制实验装置,对絮凝体进行实时动态观测和测定,得出以下创新点: (1)提出絮凝搅拌能耗分布理论优化模式,并进行了实验验证,可以作为絮凝
     池设计的基本依据;
     (2)借助所提出的絮凝聚集模型假设,提出了可以进行含水率(孔隙率)计算的公式,并导出新的絮体沉降公式,对传统沉淀理论的颗粒沉速公式做出了改进。
Flocculation mixing energy distribution is the key problem of a flocculation reasonable design.In recent years,many research achievements have been made on flocculating rationalization design by means of flocculation dynamics theory, but so far the optimal allocation of flocculation stirring energy consumption can only rely on experience, has yet not seen theoretical instructions and related reports. Therefore, this paper combined theoretical model exploration and specialized experiment method to make in-depth study on related subject, undoubtedly having good theory and technology value。
     In order to reach the new 1 NTU turbidity standard of drinking water quality in China, considering the technical and economic conditions of the majority of water supply plant in the small and medium-sized town, aiming at the influence of the flow pattern on the water treatment effect in the flocculation process and problems existing in the engineering design, This project is supported by the mathematical derivation of existing empirical formula and predecessor's experimental data, the coagulation optimal turbidity range and synergies of the factors influencing flocculants body forming were studied by the beaker experiments. Taking the numerical simulation of the flow pattern within the stirring containers as the main contents, the theoretical analysis and experimental research are combined to explore the best coagulation control conditions, and then develop technical renovation experimental methods for coagulation facilities of waterworks in small and medium-sized town. Flocculation mixing energy consumption assignment problem is the key problem for reasonable design of flocculation tank, but at present the project design can only rely on experience, i. e., adopting design specification experience data, lacking corresponding theoretical support, therefore, this area was discussed as the core of this thesis.The specific content is as follows:
     (1) The theory optimal models for flocculation energy consumption have been conducted;Thereunto,γis model parameters of flocculants body fractal dimension, mainly relevant to flocculants varieties and dosing quantity. This type expressed numerical scale relation between three gears flocculation stir intensity in the shortest total stirring time. Then we get four ratio calculation formulas for energy distribution optimization of flocculation reaction pool. For the any two, developing flocculation reaction pool water force mixing conditions, design proposal can be achieved at the least whisking time and the most province capacity;
     (2) The new flocculation condensed set model has been presented to calculate the flocculation body equivalent size (equivalent low moisture content and sedimentation rate); the new flocculent body settlement formula has been derived;
     (3) Experiments prove themain factors affecting flocculent body fractal dimension is the varieties and coagulants and the dose, without obvious correlation with the water pH value and stir intensity. Experiments have found the size of flocculent body fractal dimension is linear with the dose of coagulant, decreases with dosing quantity; the more the dose, the smaller the size of flocculent body fractal dimension;
     (4) The optimum operating conditions for flocculation has been got through the multi-factors orthogonal experiments. Experimental results have proved the correctness of the optimal pattern;
     (5) The numerical simulation of flocculation of hydraulic conditions was made by means of CFD method. The simulation shows it is reasonable to substitute energy dissipation rateεfor flocculation effective energy consumption,the best GT value distribution conforms to theory model proposed by this thesis;
     (6) The proposed flocculating sedimentation experiment device, flocculent body image processing and fractal dimension calculation methods provides a new means for flocculation technology research in water treatment.
     Through self-made experiment device, we made real-time dynamic observation and determination of flocculation body .The conclusions are as follows:
     (1) Energy distribution theory model was put forward and validated by experiments, serving as basic basis for flocculating design;
     (2) Flocculent collection model was presented, which can undertake moisture content (porosity) calculation, and the new flocculent settlement formulas were derived to make improvements of particles sinking velocity formula in the traditional precipitated theory.
引文
[1]严煦世,范瑾初.给水工程[M].第4版.北京:中国建筑工业出版社, 1999: 254: 256
    [2]汪义强,陈超.水力絮凝池发展与展望[J].净水技术, 2005, 24(1): 36-38
    [3]王乃忠.絮凝效果控制指标的选择[J].中国给水排水, 1989, 5(6): 78-80
    [4]Е.Д.巴宾科夫.论水的絮凝[M].北京:中国建筑工业出版社, 1982: 85
    [5]蒋展鹏,尤作亮.絮凝形态学研究及进展[J].给水排水, 1998, 24(10): 3-7
    [6]曾文曲,刘世耀,戴连贵等.分形几何——数学基础及其应用[M].沈阳:东北大学出版社, 2001: 11-76
    [7]张济忠.分形[M].北京:清华大学出版社, 1992
    [8]滕建标,丁爱中, Catherine Bigs.水处理絮凝动力学模型研究进展[J].净水技术, 2007, 26(3): 56-58
    [9] Thomas D. N, Judd S. J, Fawcett N. Flocculation modeling: a review [J]. Water Research, 1999, 13: 1579-1592
    [10] Tchobano Glous G., Burton F. L, Stensel H. D. Wastewater EnGineering: Treatment, and Reuse[M]. 4th ed. New York: Metcalf and Eddy Inc, McGraw Hill Inc, 2003
    [11] Han M. Y, Lawler D. F. Interactions of two settling spheres: Settling rates and collision efficiency[J]. Journal of Hydraulic Engineering, 1991, 117(10): 1269-1289
    [12] Casson L. W, Lawler D. F. Flocculation in turbulent flow: Measurement and modeling of particle size distributions [J]. JAWWA, 1990, 84: 54-68
    [13] Han M. Y, Lawler D. F. The (relative)insiGnificance of Gin flocculation[J]. JAWWA, 1992, 64(10): 79-91
    [14] Spielman L. A.Viscous interactions in Brownian coagulation [J]. J. Colloid Interface Sci, 1970: 562-571
    [15] Valioulis I., AList E. J. Collision efficiencies of diffusing spherical particles: hydrodynamic, van der waals and electrostatic forces [J]. Advances in Colloid andInterface Science, 1984, 20(1): 1-20
    [16] Han M. Y. Mathematical ModelinG of HeteroGeneous Flocculant Sedimen- tation[C]. University of Texas, 1989
    [17] Han M. Y, Lee H.K.Collision efficiency factor in BrowniancoaGulation: Calculation and experimental verification [J]. Colloids and Surfaces, 2002, 202(1): 23-31
    [18] Mazzolani G, Stolzenbach K. D, Elimelech M. Gravity-induced coaGulation of spherical particles of different size and density [J]. J. Colloid Interface Sci, 1998, 197:334-347
    [19] Wacholder E,Sather N F. Hydrodynamic interaction of two unequal spheres movinG under Gravity through quiescent viscous fluid. Journal of Fluid Mechanics, 1974, 5(3): 417-437
    [20] Haarhoff J,Joubert H.Determination of aGGreGation and breakup constants during flocculation[J]. Water Science and Technolo, 1997, 36(4): 33-40
    [21]童秉纲,尹协远,朱克勤.涡运动理论[M].合肥:中国科技大学出版社, 1994: 18-20
    [22]童秉纲,张炳暄,崔尔杰.非定常流与涡运动[M].北京:国防工业出版社, 1993: 230-236
    [23]王绍文.惯性效应在絮凝中的动力学作用[J].中国给水排水, 1998, 14(2): 45-47
    [24]王绍文.亚微观传质在水处理反应工艺中的作用[J].中国给水排水, 2000, 16(1): 60-62
    [25] Mandetbrot B. B.分形对象—形、机遇和维数[M].北京:世界图书出版公司, 1999: 125-129
    [26]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨—1.从絮凝体分形构造谈起[J].环境科学学报, 2000, 20(3): 257-262
    [27] Jiang Q, Logan B. E. Fraetal Dimensions of aggregates determined from steady—state size distributions [J]. Environment Science Technology, 1991, 25(12): 2031-2038
    [28] Du G. L/, James S. B, Laurie S. G., et at. Modeling coagulation kinetics incorporating fraetal theories: a fractal rectilinear approach [J]. Wat Res, 2000, 34(7): 1987-2000
    [29] Yeung K. C. Peton R.Micromechanics: A new approach to studying the strength and break-up of flocs [J]. J. Colloid Interface Sci., 1996:198-212
    [30] Higashitani K, Iimura K, Sanda H. Simulation ofdeformation and breakup oflarge aggregates in flows ofviscous fluids [J]. Chem. Eng. Sci. 56, 2001: 2927-2938, 84, 579-585
    [31]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨—II致密型絮凝体形成操作模式[J].环境科学学报. 2000, 20(4): 385-390
    [32] Higashitani K. Iimura. Two-dimensional simulation ofthe breakup process of aggregates in shear and elongational flows [J]. J. Colloid Interface Sci., 1998, 204: 320-327
    [33]祝皎琳,林建国.往复隔板絮凝池流场数值模拟及絮凝效果分析[J].环境工程, 2005, 23(2): 72-74
    [34]王东升,汤鸿宵.分形理论在絮凝研究中的应用与展望[J].工业水处理, 2001, 21(7): 16-20
    [35]汤鸿宵.羟基聚合氯化铝的絮凝形态学[J].环境科学学报, 1998, 19(1): 1-10
    [36]黄均.分形发展三十年[J].物理, 1998, 27(2): 90-93
    [37] M. Kostoglou, A. Cx Konstandopoulos. Evolution of Aggregate Size and Fractal Dimension during Brownian Coagulation [J]. Journal of Aerosol Science, 2001, 32: 1399-1420
    [38]辛厚文.分形理论及其应用[M].合肥:中国科学技术大学出版社, 1993: 320-326
    [39]李伯奎,杨凯,刘远伟.分形理论及分形参数计算方法[J].工具技术, 2004, 38(12): 80- 84
    [40]陆谢娟,李孟,唐友尧.絮凝过程中絮凝体分形及其分形维数的测定[J].华中科技大学学报(城市科学版). 2003, 20(3): 46-49
    [41] Q. Jiang, B. E. Logan. Fractal Dimensions of Aggregates from Shear Devices [J]. JAWWA. 1996, 90: 100-113
    [42] C. Dagot. Use Image Analysis and Rheological Studies for the Control of Setingof Filamentous Bacteria Application in SBR Reactor [J]. Water Science Technology. 2001, 44(3): 27-33
    [43] J. Feitz, J. Guan and T. D. Waite. Size and Structure Effects on Centrifugal Dewatering of Digested Sewage Sludge [J]. Water Science Technology. 2001, 40(3): 27-35
    [44] K. Chakraborti, J. F. Atkinson, J. E. Benschoten. Characterization of Alum Floc by Image Analysis [J]. Environment Science Technology. 2000, 34(18): 3969-3979
    [45] M. Armand. Coagulation-flocculation of Natural Organic Mater with Al Salts: Speciation and Structure of Aggregates [J]. Environment Science Technology. 2000, 34(15): 3242-3246
    [46] X. Y. Li, B. E. Logan. Collision Frequencies between Fractal Aggregates and Small Particles in a Turbulently Sheared Fluid [J]. Environment Science Technology. 1997, 31(4): 1237-1242
    [47] T. Serra, B. E. Logan. Collision Frequencies of Fractal Bacterial Aggregates with Small Particles in a Sheared Fluid [J]. Environment Science Technology, 1999, 33(13): 2247-2251
    [48] J. G. Wissink. DNS of separatinG low Reynolds number flow in a turbine cascade with incoming wakes [J]. International , Jouranal of Heat and Fluid Flow, 2003, 24(4): 626-635
    [49]王福军.计算流体动力学分析--CFD软件原理与应用[M].北京:清华大学出版社, 2004: 121-124
    [50] DuTao, WuZi-Niu. Mixed analytical/numerical method applied to the hiGh Reyn- olds number turbulence model [J]. Journal of Computers & Fluids, 2005(34): 97-119
    [51] Johannes Haarhoff, Jeremia J. van der Walt. Towards optimal desiGn parame- ters for around-the-end hydraulic flocculators [J]. Journal of Water Supply: Research and TechnoloGy, 2001, 50(3): 86-88
    [52]张海龙,伍悦滨.往复式隔板絮凝池流场模拟与结构优化[J].沈阳建筑大学学报:自然科学版, 2006, 22(6): 981-984
    [53]窦国仁.紊流力学(上)[M].北京:人民教育出版社, 1981: 140-143
    [54]陈玉锦译.水直接过滤的最佳絮凝时间(E. W. T. J)[C],给水排水技术资料选编, 1985(10): 19-23
    [55]于水利,孙凤鸣,李云华.最优絮凝搅拌条件的研究[J].哈尔滨建筑大学学报, 1999, 32(6): 49-52
    [56]武道吉,吴镰河,修春海.水处理絮凝工艺的优化设计和运行[J].中国给水排水, 2002, 18(1): 61-64
    [57]曹翀,王晓昌,贾森.絮凝池综合指标浅析[J].中国给水排水, 1987, 13(2): 78-80
    [58]曹翀,贾晓珊,王晓昌.不同浊度的水絮凝综合指标探讨[J].中国给水排水, 1988, 14(4): 48-50
    [59]湛含辉,张晓琪,湛雪辉.絮凝机理物理模型中混合剪切阶段的研究[J].环境科学与技术, 2005(28): 4-6
    [60]丹保宪仁.フロツク强度に関する研究[J].水道协会杂志,第427号, 24-35
    [61]王晓昌,曹翀.絮凝池综合指标GT/Re1/2物理意义的探讨[J].中国给水排水, 1989, 5(4): 89-91
    [62] Ali Khelifa, Paul S. Hill. Models for effective density and settling velocity of flocs[J]. Journal of Hydraulic Research , 2006, 44(3): 390-401
    [63] LuGt H. J. Vortex Flow in Nature and Technology[M]. New York: John Wiley & Sons, 1983
    [64]邹林.水处理絮凝动力学的试验研究和数值模拟[D].河海大学
    [65] J. G. Wissink. DNS of separatinG low Reynolds number flow in a turbine cascade with incominG wakes[J]. International , Jouranal of Heat and Fluid Flow, 2003, 24(4): 626-635
    [66]刘琴.絮凝体沉降特性的试验研究[D].武汉科技大学,2008.
    [67] B. E. Launder, D. B. SpaldinG. Lectures in Mathematical Models of Turbulence[M]. London: Academic Press, 1972
    [68] G. machowski. Aggregate structure and size distribution at steady state shear aggregation[J]. Colloid and Surface, 2002, 201: 41-46
    [69] Logan B. E., Kilps J. R. Fractal dimensions of aggregates formed in different mechanical environments[J]. Wat. Res, 1995, 29(2): 443-453
    [70] Jung S. J, Amal R., Raper J. A. Monitoring effects of shearing on floc structure using small-angle light scattering[J]. Powder Technol, 1996, 88(1): 51-54
    [71] Gregory J, Nelson D. W.Montitoring of aggregates in flowing suspensions[J]. Colloids and Surfaces, 1986, 18: 175-186
    [72] Enkataramana R, Somasundaran P, Kapur P. C.Apopulation balance model forflocculation of colloidal suspensions by polymer bridging[J]. Chem. Eng. Sci. 61, 2006: 182-191
    [73] Stanley B. Grant, Joon Ha Kim, Cris Poor. Kinetic theories for the Coagulation and sedimentation of particles[J]. J. Colloid Interface Sci., 2001, 238: 238-250
    [74] P. Somasundaran, V. Runkana, P. C. Kapur. Flocculation and dispersion of colloidal suspensions by polymers and surfactants: experimental and modeling studies, In: H. J. Stechemesser, B. Dobias. (Eds.) [C], Coagulation and flocculation, 2nd ed. Marcel Dekker, New York , 2005: 767-803
    [75] J. J. Ducoste. A Two-scale PBM for modeling turbulent flocculation in water treatment processes[J]. Chem. Eng. Sci. 57, 2002: 2157-2168
    [76] P. Somasundaran, P. C. Kapur, V. Runkana. Population balance modeling of flocculation of mineral suspensions by polymers [C]. Intl. Mineral Process. Congress, Istanbul, Turkey, 2006
    [77] C. Rattanakawin, R. Hogg. Aggregate size distributions in flocculation[J], Colloids Surfaces A 177 , 2001: 87-98
    [78] K. K. Das, P. Somasundaran. Flocculation-dispersion characteristics of alumina using a wide molecular weight range of polyacrylic acids[J], Colloids Surfaces A223 , 2003: 17-25
    [79] S. Schuetz, M. Piesche. A model of the coagulation process with solid particles and flocs in a turbulent flow[J], Chem. Eng. Sci. 57, 2002: 4357-4368
    [80] D. Bouyer, A. Line, Z. Do-Quang. Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank[J], AIChEJ 50, 2004: 2064-2081
    [81] L. Wang, R. D. Vigil, R. O. Fox. CFD simulation of shear-induced aggregation and breakage in turbulent Taylor–Couette flow[J], Chem. Eng. Sci. 60, 2005: 167-178
    [82] D. L. Marchisio, M. Soos, J. Sefcik, et al. Role of turbulent shear rate distribution in aggregation and breakage processes[J].AIChEJ 52, 2006: 158-173
    [83] V. Runkana, P. Somasundaran, P. C. Kapur. Mathematical modeling of polymer-induced flocculation by charge neutralization[J]. J. Colloid Interface Sci, 2004: 347-358
    [84] V. Runkana, P. Somasundaran, P. C. Kapur. Reaction-limited aggregation in presence of short-range structural forces[J].AIChEJ 51, 2005: 1233-1245
    [85] V. Runkana, P. Somasundaran, P. C. Kapur. A population balance model for flocculation of colloidal suspensions by polymer bridging[J]. Chem. Eng. Sci. 61, 2006: 182-191
    [86] P. Somasundaran, P. C. Kapur, V. Runkana. Population balance modeling of flocculation of mineral suspensions by polymers, to be presented at Intl. Mineral Process[J]. Congress (IMPC2006), Istanbul, Turkey, 2006
    [87] Z. Zhou, P. J. Scales, D. V. Boger. Chemical and physical control of the rheology of concentrated metal oxide suspensions[M]. Chem. Eng. Sci. 56, 2001: 2901-2920
    [88] R. S. Farinato, S. Y. Huang, P. Hawkins. Polyelectrolyte-assisted dewatering, in Colloid-polymer interactions: from fundamentals to practice[J].R. S. Farinato, P. L. Dubin (Eds. ), John Wiley & Sons, Inc., 1999: 3-50
    [89] Athanasia M. Goula, MarGaritis KostoGloua, Thodoris D. Karapantsios, et al. A CFD methodoloGy for the desiGn of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle[J]. Chemical EnGineerinG Journal, 2008: 110-121
    [90] William B. Rauen, BinlianG Lin, RoGer A. Falconer et al. CFD and experimental model studies for water disinfection tanks with low Reynolds number flows[J]. Chemical EnGineerinG Journal, 2008, 140(3): 550-560
    [91] Konstantin PouGatcha, Martha Salcudean. Computational modellinG of larGe aerated laGoon hydraulics[J]. Water Research, 2007. 5, 41(10): 2109-2116
    [92] Yannick Fayollea, Arnaud Cockxb. OxyGen transfer prediction in aeration tanks usinG CFD[J]. Chem. Eng. Sci. 62, 2007: 7163-7171
    [93]仲崇军.基于CFD的水处理网格絮凝池优化设计研究[D].华中科技大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700