用户名: 密码: 验证码:
Al_2O_3-BaO-B_2O_3系新型高铝钢连铸保护渣的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铝钢连铸过程中保护渣的SiO2被钢中的[Al]大量还原,造成渣中Si02含量大幅减少和碱度的明显上升,生成的Al2O3进入渣中导致保护渣的熔化温度、黏度急剧增加和玻璃形态的恶化,从而对铸坯表面质量和连铸工艺顺行产生不利影响。
     为此,本研究首先进行了高铝钢连铸保护渣吸收Al2O3的热力学和动力学分析,并针对宝钢20Mn23AlV高铝钢用保护渣进行计算。结果表明:20Mn23AlV高铝钢连铸过程中,为阻止钢中[Al]与保护渣中SiO2反应,当提高渣中A1203含量至30%时,要求渣中SiO2含量小于5%。渣中Al2O3含量于浇铸开始后15min内迅速增加,然后缓慢增加并趋于平衡,其增量约为23wt%。渣中A1203含量随浇铸时间的变化主要与渣中Al2O3的初始含量w0、A12O3的反应平衡含量w*、渣中Al2O3的质量传输系数kF,A12O3、钢液中Al2O3夹杂含量WM和吸收比例常数β等影响因素有关。
     建立了Al2O3-BaO-B2O3三元系的活度模型,讨论了BaO/Al2O3、B2O3含量和温度对各组元活度的影响,并绘制了Al2O3-BaO-B2O3三元系的等活度曲线图。根据计算结果初步选定适合于高铝钢连铸保护渣的Al2O3-BaO-B2O3三元渣系成分范围:Al2O3:40-50%, BaO:30-40%, B2O3:10~20%。通过Al2O3-BaO-B2O3系新型高铝钢保护渣的二次通用旋转设计试验,找出了适用于高铝钢连铸的保护渣成分范围:(CaO+BaO)/Al2O3:0.7-1.1,(B2O3+SiO2):12.5-20%, CaF2:7.5-12.5%,(Na2O+Li2O):11-17%, MnO:2-6%。
     根据20Mn23AlV钢种特点及连铸工艺条件对保护渣的性能要求,在Al2O3-BaO-B2O3系新型高铝钢连铸保护渣成分范围研究的基础上,开发出适用于20Mn23AlV高铝钢浇铸的保护渣,熔化温度为980℃、黏度为2.45dPa.s、结晶率为0%。浇铸后该保护渣的熔化温度为1042℃、黏度为3.11dPa.s、结晶率为15%。浇铸前后保护渣成分及性能变化不大,能够满足连铸生产的要求。
     通过扫描电镜和X射线衍射分析方法对比研究了不同高铝钢连铸保护渣的结晶矿相。结果表明:CaO-Al2O3-SiO2高铝钢连铸保护渣初始SiO2含量较高,属硅酸盐网络结构,保护渣的玻璃形态较好。浇铸过程中随着保护渣Al2O3含量的增加和SiO2含量的减少,保护渣的结晶率增加,玻璃性能变差。渣中主要析出Na3MgAl Si2O8、Na4Al2Si2O9、CaAl2Si2O8、Ba2Al2Si2O8、NaAlO2、Ca7MgAl10O23” Na4Ca3(A102)10等晶体。而Al2O3-BaO-B2O3系新型高铝钢连铸保护渣B2O3含量较高,保护渣的玻璃形态较好。浇铸过程中Al2O3含量小幅增加,渣中主要析出少量的NaAlSi3O8、CaAl2Si2O8等晶体。
     通过对新型高铝钢连铸保护渣及其预熔料在室温-1300℃温度范围内的热重和差热分析,发现该渣在100℃左右脱出吸附水;440℃左右发生低熔点氧化物B2O3的熔化;500-690℃温度范围内发生碳酸盐的分解;玻璃化转变温度约为840℃:950℃左右发生碳酸钠的熔化;保护渣的熔化温度约为1150℃,并伴随NaF气体的挥发。
     通过对新型高铝钢连铸保护渣与普通连铸保护渣在室温-1200℃温度范围内的比热测定可得,新型高铝钢保护渣的比热由1.046J/(g·K)增至2.291J/(g·K),总吸热量约为1925.6J/g,平均热容约为1.638J/(g·K)。普通保护渣的比热由1.046J/(g·K)增至2.514J/(g·K),总吸热量约为1751.7J/g,平均热容约为1.491J/(g·K)。
     本论文研究工作有以下创新之处:
     (1)建立了高铝钢连铸保护渣吸收Al2O3的动力学计算模型,系统研究了浇铸过程中高铝钢连铸保护渣Al2O3含量的变化及影响因素;
     (2)进行了Al2O3-BaO-B2O3三元系的活度计算,讨论了不同因素对各组元活度的影响,并绘制了等活度曲线图;
     (3)针对20Mn23AlV高铝钢,研制出以Al2O3-BaO-B2O3为基础渣系的新型高铝钢连铸保护渣。
During the continuous casting of high aluminum steel, Al in the molten steel reacts with SiO2in the mold slag, which can cause SiO2in the mold slag decreased dramatically while Al2O3increased greatly. As a result, the melting temperature as well as the viscosity rised dramatically and the glass property are deteriorated. Thus, the surface quality of the slab and the continuous casting process are affected.
     On the basis of thermodynamic and kinetic analysis for the change of Al2O3in the mold slag for20Mn23AlV high aluminum steel, it is found that:In order to prevent [Al] reacted with (SiC2), it is required to control the content of SiO2to be lower than5%and that of Al2O3to be more than30%. The change of Al2O3in the mold slag during continuous casting of high aluminum steel which is mainly affected by the initial Al2O3concentration w0of the mold slag, the reaction equilibrium concentration w*of Al2O3at the slag-steel interface, the mass transfer coefficient kF,Al2O3in the molten steel, and the absorption coefficient in the molten steel.
     The activity model of Al2O3-BaO-B2O3ternary slag system is established, and the influence of BaO/Al2O3, B2O3content and temperature on the activity of the system is investigated. The equal activity curves of Al2O3, BaO, B2O3are obtained. According to the activity calculation of Al2O3-BaO-B2O3system, the composition for high aluminum steel mold slag is selected as Al2O3:40~50%, BaO:30-40%, B2O3:10-20%. By using the quadratic general rotary testing, the composition range for the high aluminum steel is selected as (CaO+BaO)/Al2O3:0.7-1.1,(B2O3+SiO2):12.5-20%, CaF2:7.5-12.5%,(Na2O+Li2O):11~17%, MnO:2-6%.
     According to the characteristics of20Mn23AlV steel and the requirements of performance of the mold slag in the continuous casting process, a new kind of mold slag was developed for the casting of20Mn23AlV steel, which is based on the composition range of Al2O3-BaO-B2O3high aluminum mold slag. The melting temperature, the viscosity and the corresponding crystallization rate have become to be1042℃,3.11dPa.s and15%, compared to the previous980℃,2.45dPa.s, and0%before the continous casting.
     By the comparative study on the crystalline morphology of the mold slag of the high aluminum steel with SEM and XRD, it is found that the silicate network structure is the main formation in the CaO-Al2O3-SiO2mold slag for high aluminum steel. During continuous casting, the crystallization rate is increased with the growing concentration of A12O3and the decrease of SiO2The main crystals as Na3MgAlSi2O8, Na4Al2Si209, CaAl2Si208, Ba2Al2Si208, NaA102, Ca7MgAl10O23, Na4Ca3(A102)10are precipitated with the increase of A12O3content. At the same time, Al203-BaO-B2O3mold slag for high aluminum steel has a high B2O3content and good noncrystalline form. The content of Al2O3only has a slight increase, and a small amount of crystals NaAlSi3O8、CaAl2Si2O8were precipitated in this mold slag during continuous casting.
     Thermogravimetric analysis and differential thermal analysis of the new high aluminum steel mold slag were carried out from room temperature to1300℃. The adsorption water is removed from the mold slag at100℃; the B2O3which has a low melting temperature in the mold slag is melting at about440℃; and the carbonates in the mold slag are decomposing in the range of500-690℃. The glass transition temperature of the mold slag is about840℃. The heat absorption in the mold slag at about950℃is mainly caused by the melting of sodium carbonate. The melting temperature of the mold slag is about1150℃, and the NaF which is a volatile gas will also generate when the temperature is above the1150℃.
     The specific heat capacity of the new high aluminum steel mold slag and the previous common mold slag from room temperature to1200℃is measured with the differential scanning calorimetry method. When the temperature ranges from room temperature to1200℃, the specific heat capacity of the new high aluminum steel mold slag rises from1.046J/(g-K) to2.291J/(g-K), the total heat absorption is about1925.6J/g, and the average specific heat capacity is about1.638J/(g-K). However, the specific heat capacity of the common mold slag rises from1.046J/(g-K) to2.514J/(g-K), and the total heat absorption about1751.7J/g, and the average specific heat capacity is about1.491J/(g-K).
     The key innovations of this paper are as follows:
     (1) A kinetic model of the absorption of the Al2O3in mold slag for high aluminum steel is set up, and the change in the concentration of Al2O3in the mold slag during continuous casting is discussed;
     (2) The activity model for ternary slag system of Al2O3-BaO-B2O3is calculated, and the equal activity curves are also obtained;
     (3) A new kind of mold slag which is based on the Al2O3-BaO-B2O3ternary system is developed for the high aluminum steel20Mn23AlV.
引文
[1]迟景灏,甘永年.连铸保护渣[M].沈阳:东北大学出版社,1993.
    [2]J.A.Moore, R.J.Phillips, T.R.Gibbs. An overview for the requirements of continuous casting mold fluxes[C].74th Steelmaking Conference Proceedings, ISS, 1991:615-621.
    [3]H.Y.Chang, T.F.Lee, T.Ejima. Effect of alkali-metal oxide and fluoride on mold flux viscosity Transactions[J]. ISIJ International,1987,27(6):797-804.
    [4]K.C.Mills. Physical properties of casting powders:Part 1 Scheme to represent chemical compositions of powders[J]. Ironmaking and Steelmaking,1988,15(4): 175-180.
    [5]Carl-Ake Dacker, Christer Eggertsson, Johan Lonnqvist et al. Development of a laboratory method for characterisation of mould powder melting rate[C]. VIII International Conference on Molten Slags, Fluxes & Salts, Santiago,2009.
    [6]Verein Deustcher Eisenhuttenleute. Slag ALTAS,2nd Edition[M]. Germany,1995.
    [7]Rama Bommaraju. Optimun Selection and Application of Mold Fluxes for Carbon Steels[C].74th Steelmaking Conference, Warrendale, P.A.,1991:131-146.
    [8]田凤仁.无机材料结构基础[M].北京:冶金工业出版社,1993.
    [9]饶东生.硅酸盐物理化学[M].北京:冶金工业出版社,1991.
    [10]J.A.Bothma. Heat Transfer Through Mould Flux with Titanium Oxide Additions [D]. University of Pretoria, South Africa,2006.
    [11]T.Hardy, C.Camino, S.Diehl et al. The Design of Continuous Casting Mold Fluxes Using Empirical Data[C].80th Steelmaking Conference Proceedings,1997: 215-219.
    [12]舒俊.连铸保护渣传热性能的基础研究[D].北京:北京科技大学,博士学位论文,2001.
    [13]E.T.Turkdogan. Fundamentals of Steelmaking[M]. Cambrige:The University Press,1996.
    [14]M.Mueller, W.Willenborg, K.Hilpert, et al. Structural Dependence of Alkali Oxide Activity in Coal Ash Slags[C]. VII International Conference on Molten Slags, Fluxes and Salts. The South African Institute of Mining and Metallurgy, 2004:615-618.
    [15]Ya MENG, Brian G. THOMAS. Simulation of Microstructure and Behavior of Interfacial Mold Slag Layers in Continuous Casting of Steel[J] ISIJ International, 2006,46 (5):660-669.
    [16]吴夜明.连铸保护渣的层状结构与理化性能的关系[J].特殊钢,1995,16(1):37-40.
    [17]R.V.Brantion. Mold fluxes for continuous casting[C].69th Steelmaking Con-ference Proceedings. ISS,1986:95-105.
    [18]K.C.Mills. The performance of casting powders and their effect on surface quality[C].74th Steelmaking Conference Proceedings. ISS,1991:121-129.
    [19]Danny Rao Pratap Singh. Characterization of carbons and its application to mold powder technology [D]. Master thesis, University of Toronto,2005.
    [20]谢兵.连铸结晶器保护渣相关基础理论的研究及其应用实践[D].重庆:重庆大学,博士学位论文,2004.
    [21]M.S.Jenkins. Heat Transfer in the Continuous Casting Mould[D]. PhD Thesis, Monash Univ. Clayton, Vic. Australia,1999.
    [22]Ya Meng, B.G.Thomas. Heat Transfer and Solidification Model of Contiuous Slab Casting:CON1D[J]. Metallurgical and Materials Transactions B,2003,34(5): 685-705.
    [23]K.Nakajima. Heat transfer and lubrication behavior in mold at high-speed continuous casting of steel slabs[J] CAMP-ISIJ,1992,5(4):1221-1224.
    [24]Y.Meng, B.G.Thomas, A.A.Polycarpou, et al. Mold slag measurements to characterize CC mold-shell gap phenomena[C]. Materials Science & Technology, New Orleans, LA,2004:179-193.
    [25]C. Perrot, J. N. Pontoire, C. Marchionni, et al. Several slag rims and lubrication behaviors in slab casting[C].5th European Continuous Casting Conference, Nice, France,2005:887-896.
    [26]Hideko NAKADA, Kazuhiro NAGATA. Crystallization of CaO-SiO2-TiO2 Slag as a Candidate for FluorineFree Mold Flux[J]. ISIJ International,2006,46(3): 441-449.
    [27]YKashiwaya, C.E.Cicutti, A.W.Cramb, et al. Development of double and single hot thermocouple technique for in situ observation and measurement of mold slag crystallization[J]. ISIJ International,1998,38(4):348-356.
    [28]Yoshiaki KASHIWAYA, Carlos E.CICUTTI, Alan W.CRAMB. An Investigation of the Crystallization of a Continuous Casting Mold Slag Using the Single Hot Thermocouple Technique [J]. ISIJ International,1998,38(4):357-365.
    [29]C.Orrling, A.W.Cramb, A.Tilliander, et al. Observations of the melting and solidification behavior of mold slags[J]. Iron and Steelmaker,2000,27(1):53-63.
    [30]Alan W.Cramb. Quantifying the thermal behavior of slags[M]. AISI/DOE Technology Roadmap Program Report, Pittsburgh, PA, May,2003.
    [31]S.R.Sankaranarayanan, D.Apelian. Evaluation of mold powder performance via crystallization analysis[C].75th Steelmaking Conference Proceedings, ISS,1992: 607-625.
    [32]M.Susa, K.C.Mills, M.J.Richardson, et al. Thermal properties of slag films taken from continuous casting mould[J]. Ironmaking and Steelmaking,1994,21(4): 279-286.
    [33]朱传运,刘承军,史培阳等.保护渣成分对结晶矿相的影响[J].东北大学学报,2004,25(6):559-562.
    [34]P.O.Hooli. Mould flux film between mould and steel shell [J]. Ironmaking and Steelmaking,2002,29(4):293-296.
    [35]Hidenori MIZUNO, Hisao ESAKA, Kei SHINOZUKA, et al. Analysis of the Crystallization of Mold Flux for Continuous Casting of Steel[J]. ISIJ International, 2008,48 (3):277-285.
    [36]李殿明,邵明天,杨宪礼等.连铸结晶器保护渣应用技术[M].北京:冶金工业出版社,2008.
    [37]W.L.McCauley, D.Apelian. The role of slags in steelmaking continuous casting mold fluxes Part I [J]. Iron and Steelmaker,1983,10(8):45.
    [38]W.L.McCauley, D.Apelian. The role of slags in steelmaking continuous casting mold fluxes Part II [J]. Iron and Steelmaker,1983,10(9):50.
    [39]W.L.McCauley, D.Apelian. The role of slags in steelmaking continuous casting mold fluxes Part III[J]. Iron and Steelmaker,1983,10(10):39-41.
    [40]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,2002.
    [41]董金刚,迟景灏,王谦.高碱性高玻璃化连铸保护渣成分区域研究[J].钢铁,2000,35(2):22-23,37.
    [42]唐晓燕译.对结晶器润滑有影响的连铸保护渣的物性实验及其理论分析[J].宝钢情报,1990,(1):33-41.
    [43]WEI En-fa, YANG Yin-dong, FENG Chang-lin, et al. Effect of carbon properties on melting behavior of mold fluxes for continuous casting of steels[J]. Journal of Iron and Steel Research International,2006,13(2):22-26.
    [44]B.Tarrant. Solidification of industrial mold fluxes[J]. Iron and Steelmaker,2003, 30(8):52-60.
    [45]S.Sridhar, K.C.Mills, O.D.C.Afrange, et al. Break Temperatures of Mould Fluxes and Their Relevance to Continuous Casting[J]. Ironmaking Steelmaking,2000, 27(3):238-241.
    [46]J.W.Kim, J.Choi, O.H.Kwon, et al. Viscous Charateristics of Synthetic Mold Powder for High Speed Continuous Casting[C].4th International Conference on Molten Slags and Fluxes, ISU, Tokyo,1992:468-473.
    [47]Pinheiro C A, Samarasekera I V, Brimacombe J K. Mold fluxes for contiuous casting of steel:Part Ⅵ[J]. Iron and Steelmaker,1995,22(3):41-43.
    [48]张洪波,王海之.连铸结晶器振动参数与保护渣物化性能的关系[J].钢铁,1995,30(11):17-20.
    [49]Grieveson P, Bagha S, Machingawuta N et al. Physical properties of casting powders:Part 2 Mineralogical constitution of slags formed by powders [J]. Ironmaking and Steelmaking.1988,15(4):181-186
    [50]李丽霞,贾茹主编.硅酸盐物理化学[M].天津:天津大学出版社,2010.
    [51]K.C.Mills, S.Sridhar. Viscocity of Ironmaking and Steelmaking Slags[J]. Iron and Steelmaking,1999,26(4):262-268.
    [52]G.Brooks, X Tsekouras, Xu Chen. Solidification and flow behavior of mould fluxes[C]. Proceedings of the 84th Steelmaking Conference, Nashville, USA,2002, 85:145-155.
    [54]Brendzy J L, Bakshi I A, Sanarasekera et al. Mould-strand interaction in continuously casting of steel billets, part 2 Lubrication and oscillation mark formation[J].Ironmaking and Steelmaking.1993,20(1):63-74.
    [55]R. Bommaraju. Optimum selection and application of mold fluxes for carbon stee1[C].74th Steelmaking Conference Proceedings, Washington: ISS,1991: 131-146.
    [56]S.Ohmiya, K.H.Tacke, K.Schwerdtfeger. Heat transfer through layers of casting fluxes[J]. Ironmaking and Steelmaking,1983,10(1):24-30.
    [57]C.A.Pinheiro, I.V. Samarasekera, J.K.Brimacombe, et al. Mould heat transfer and continuously cast billet quality with mould flux lubrication:Part1 Mould heat transfer[J]. Ironmaking and Steelmaking,2000,27(1):37-54.
    [58]冶金部钢铁研究总院,吉林梨树冶金保护材料厂.国内连铸保护渣现状及发展趋势[R].连铸保护渣系列化课题,1988.
    [59]王谦,迟景灏.连铸含铝钢中A1203夹杂与结晶器保护渣的作用[J].四川冶金,1991,(3):46-53.
    [60]J.W.Farrel, P.J.Bilek, D.C.Hilty. Inclusions originating from reoxidation of liquid stee1[C]. Electric Furnace Proceedings,1970,28:64-68.
    [63]R. Scheel, H.Stahi, W.Korte. Effect of different flux powder composition on continuous casting slags and casting practice[J]. Metallurgical Plant and Technology,1987, (6):22-23.
    [64]Pozhivanov A.M. Slag-forming mixture in continuous casting of high aluminium steel[J].Steel in USSR,1980,16 (5):425-427.
    [65]马学忠.板坯连铸机粘结漏钢与保护渣的关系[J].炼钢,1996,(2):7-10,34.
    [66]Johnston W., Brooks G.. Effect of Al2O3 and TiO2 Additions on the Lubrication Characteristics of Mould Fluxes[C]. Molten Slags, Fluxes and Salts'97 Conference,1997:845-850.
    [67]Peng Fan. Dissolution of Alumina, Copper Oxide and Nitrogen in Molten Slags Thermodynamics and Kinetics[D]. PhD Thesis, University of Utah,2005.
    [68]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社(第三版)、2004.
    [69]Pinheiro C A, Samarasekera I V, Brimacombe J K. Mold fluxes for contiuous casting of steel:Part Ⅶ[J]. Iron and Steelmaker,1995,22(4):45-47.
    [70]Emi T, Nakato H, Iida Y et al. Influence of physical and chemical properties of mold powders on the solidification and occurrence of surface defects of strand cast slabs[C]. Proceedings of 61st National Open Hearth and Basic Oxygen Steel Conference,1978, ISS:350-361.
    [71]Nakano T., Kishi T., Koyama K. et al. Mould powder technology for continous casting of aluminium-killed steels[J]. Transactions ISIJ,1984, vol.24:950-956.
    [72]Pinheiro C A, Samarasekera I V, Brimacombe J K. Mold flux for continuous casting of stee1:Part II [J]. Iron and Steelmaker,1994,21(11):62-65.
    [73]王德永.稀土及其氧化物对保护渣理化性能影响的研究[D1.沈阳:东北大学博士学位论文,2004.
    [74]T.T.Do, K.W.Lange. Aufnahme von Tonerde durch Stranggieβpulver[J]. Steel Research,1986,57(9):444-450.
    [75]Cooper A R, Kingery W D. Dissolution in ceramic systems: Ⅰ, Molecular Diffusion, Natural Convection, and Forced Convection Studies of Sapphire Dissolution in Calcium Aluminum Silicate[J]. J. Amer. Ceram. Soc.1964,47(1): 37-43.
    [76]Samaddar B N, Kingery W D, Cooper A R. Dissolution in ceramic systems:Ⅱ, Dissolution of Aluminu, Mullite, Anorthite and Silica in a Calcium-Aluminum-Silicate Slag [J]. J.Amer.Ceram.Soc.1964,47(5):249-254.
    [77]X.Yu, R.J.Pomfret, K.S Coley. Dissolution of Alumina in Mold Fluxes[J]. Metallurgical andMaterials Transaction B,1997, vol.28:275-279.
    [78]Anh-Hoa BUI, Hyun-Mo HA, In-Sang CHUNG et al. Dissolution kinetics of alumina into mold fluxes for continuous steel casting[J]. ISIJ International,2005, 45(12):1856-1863.
    [79]刘承军,王云盛,朱英雄等.连铸保护渣的夹杂物吸收速率[J].钢铁研究学报,2000,12:S47-50.
    [80]刘承军,孙丽枫,王德永等.铝镇静钢连铸保护渣对A1203夹杂物的吸收能力[J].特殊钢,2006,27(1):33-35.
    [81]Tse C. Lee S H, Sridhar S et al.. In-situ observations of clean steel phenomenon [C]. Proceedings of 83rd Steelmaking Conference, ISS, Pittsburgh USA,2000: 219-229.
    [82]Sridhar S, Cramb A W. Kinetics of A12O3 dissolution in CaO-MgO-SiO2-Al2O3 s1ags:In Situ observations and analysis[J]. Metallurgical and Materials Transactions B,2000,31 (4):406-410.
    [83]A.W. Cramb. Inpurities in engineering materials[M], Ed. By C.L.Briant, Chapter Four,1993.
    [84]K.Marukawa, H.Kasima. The refining limit of impurity elements in mass production[J]. ISIJ,1996:1-4.
    [85]孙珍宝,朱谱藩,林慧国.合金钢手册[M].北京:冶金工业出版社,1984.
    [861]施威20Mn23AlV高锰低磁钢的连铸生产[J].上海金属,2006,28(3):57-60.
    [87]刘侠.国内38CrMoAl高铝钢现况及开发建议[J].冶金管理,2008(9):22-24.
    [88]WANG Wan-lin, Kenneth B, Alan C. A Study of the Crystallization Behavior of a New Mold Flux Used in the Casting of Transformation-Induced-Plasticity Steels[J]. Metallurgical and Materials Transactions B,2008,39(1):66-74.
    [89]王家荫,迟景灏.含铝钢连铸保护渣的研究[J].重庆大学学报,1988,(4):6-12.
    [90]王谦,迟景灏,姚铭杰.E2钢连铸结晶器保护渣的研制[J].炼钢,1991,(2):24-30.
    [91]何生平,王谦,曾建华.高铝钢连铸保护渣性能的控制[J].钢铁研究学报,2009,21(12):59-62.
    [92]X.Yu, G.H.Wen, P.Tang et al. Investigation on viscosity of mould fluxes during continuous casting of aluminium containing TRIP steels[J]. Ironmaking and Steelmaking,2009,36(8):623-630.
    [93]YU Xiong, WEN Guang-hua, TANG Ping et al. Behavior of Mold Slag Used for 20Mn23Al Nonmagnetic Steel During Casting[J]. Journal of Iron and Steel Research,2010,18(1):20-25.
    [94]宝山钢铁股份有限公司.一种高铝钢用连铸保护渣及其制造方法[P].中国,B22D11/111,2010-05-19.
    [95]Jeffrey J. Becker, Maureen A. Madden, Thinium T. Natarajan et al. Liquid/Solid Interactions During Continuous Casting of High-Al Advanced High-strength Steels[C]. AISTech 2005 Proceedings, volume2:99-105.
    [96]Stuart Street, Keegan James, Nicole Minor et al. Production of High-Aluminum Steel Slabs[J]. Iron & Steel Technology,2008,7:38-49.
    [97]高宏适译.高铝电工钢用"SIPS系列”结晶器保护渣的开发[J].耐火与石灰,2007,32(6):29-31.
    [98]Tomoaki OMOTO, Takayuki SUZUKI, Hirofumi OGATA. Development of "SIPS series" Mold Powder for High Al Electromagnetic Steel[J]. Shinagawa Technical Report,2007,50:57-62.
    [99]株式会社神户制钢所.高铝钢的连续铸造方法及结晶器保护渣[P].日本,CN101472691,2009-07-01.
    [100]Hideaki S, Ryo I. Thermodynamics on Control of Inclusion Composition in Ultraclean Steels[J]. ISIJ International,1996,36(5):528-536.
    [101]曲英译.炼钢过程的物理化学计算[M].北京:冶金工业出版社,1993.
    [102]G.A.Bezuidenhout, P.C.Pistorius. Effect of alumina pickup on mould flux viscosity in continuous slab casting[J]. Ironmaking and Steelmaking,2000,27(5): 387-391.
    [103]Akihito KIYOSE, Ken-ichi MIYAZAWA, Wataru YAMADA, et al. Mathematical Modelling of Change in Composition of Mold Flux in Continuous Casting of Steels[J], ISIJ International,1996,36:S155-158.
    [104]S. Ohguchi, D. G. C. Robertson, B. Deo, P. Grieveson et al. Simultaneous dephosphorization and desulphurization of molten pig iron[J]. Ironmaking Steelmaking,1984,11(4):202-213.
    [105]R.M. McDAVID, B.G. THOMAS. Flow and Thermal Behavior of the Top Surface Flux/Powder Layers in Continuous Casting Molds[J]. Metallurgical and Materials Transactions B,1996,27:672-685.
    [106]魏庆成,丁运桥,彭可雕.含BaO保护渣熔点及粘度的研究[J].重庆大学学报,1995,18(4):110-114.
    [107]李桂荣,王宏明,李敬生等.含B2O3无氟连铸保护渣物理性能的研究[J].特殊钢,2005,26(3):12-14.
    [108]祝贞学,李桂荣,王宏明等BaO, B2O3对CaO基精炼渣熔化性能及脱硫能力的影响[J].北京科技大学学报,2006,28(8):725-727.
    [109]P. Pernice, S. Esposito, A. Aronne et al. Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system[J]. Journal of Non-Crystalline Solids,1999, 258:1-10.
    [110]H. A. Silim. Structure and Properties of BaO-B2O3-Al2O3-NaCl Glass system[J]. Egypt. J. Sol.,2003,26(1):15-24.
    [111]Yin Cheng, Hanning Xiao, Bingzhong Tang. Non-isothermal crystallization kinetics of MgO-BaO-B2O3-Al2O3-SiO2 glass[J]. Ceramics International,2009,35: 3503-3506.
    [112]Tao Sun, Hanning Xiao, Wenming Guo et al. Effect of Al2O3 content on BaO-Al2O3-B2O3-SiO2 glass sealant for solid oxide fuel cell[J]. Ceramics International,2010,36:821-826.
    [113]张鉴.冶金熔体和溶液的计算热力学[M].北京:冶金工业出版社,2007.
    [114]赵定国,郭培民,赵沛CaO-SiO2-B2O3熔渣的热力学计算模型[J].钢铁研究学报,2010,22(9):18-21.
    [115]汪金良,张传福,张文海CaO-Cu2O-Fe2O3三元渣系组元活度热力学计算模型[J].中国有色金属学报,2009,19(5):955-959.
    [116]郭汉杰,赵伟洁,李林等.基于共存理论的二元系强电解质水溶液质量作用浓度通用热力学模型[J].过程工程学报,2007,7(2):347-353.
    [117]ZHAO Ding-guo, GUO Pei-min, ZHAO Pei. Activity Model of Fe-Si-B Ternary Metallic Melts[J]. Journal of Iron and Steel Research International,2010,18(6): 16-21.
    [118]http://www.crct.polymtl.ca/FACT/phase_diagram.php?file=Al-B-O B2O3-A12 O3.jpg&dir=FToxid
    [119]http://www.crct.polymtl.ca/FACT/phase_diagram.php?file=AlOl.5-BaO.jpg& dir=TDnucl
    [120]http://www.crct.polymtl.ca/FACT/phase_diagram.php?file=BO1.5-BaO.jpg& dir=TDnucl
    [121]叶大伦,胡建华.无机物热力学数据手册(第二版)[M].北京:冶金工业出版社,2002.
    [122]余浩.碱金属和碱土金属硼酸盐相图研究[D].长沙:中南工业大学,博士学位论文,1999.
    [123]高允彦.正交及回归试验设计方法[M].北京:冶金工业出版社,1988.
    [124]王艺慈,郭俊玉,董方等.B203对低氟结晶器保护渣理化性能的影响[J].特殊钢,2008,29(5):10-12.
    [125]王敏,周超梅,姚长贵等.高锰无磁钢50Mn18Cr4V的研究[J].热加工工艺,2008,37(18):69-71.
    [126]黄晓云,王希靖,王丽.化学成分对改性高锰钢力学性能的影响[J].热加工工艺,2007,36(13):16-19.
    [127]张长军,贺林,陈伟.铝对高锰钢铸态组织及性能的影响[J].重型机械,1994,(6):54-56.
    [128]Taylor R. Physical properties of casting powders:Part 3 thermal conductivities of casting powders[J]. Ironmaking and Steelmaking,1998,15(4):187-194.
    [129]P.Grieveson, S.Bagha, N.Machingawuta et al. Physical properties of casting powders:Part 2 mineralogical constitution of slags formed by powders[J]. Ironmaking and Steelmaking.1988,15(4):181-186.
    [130]廖俊林,张梅,郭敏等.高铝保护渣结晶性能的基础研究[J].中国稀土学报,2010,28(4):481-486.
    [131]杜希文,原续波主编.材料分析方法[M].天津:天津大学出版社,2006.
    [132]曾毅,吴伟,高建华编著.扫描电镜和电子探针的基础及应用[M].上海:上海科学技术出版社,2009.
    [133]马礼敦.X射线衍射在材料结构表征中的应用[J].理化检验,2009,45(8):501-510.
    [134]张小辉.X射线衍射在材料分析中的应用[J].沈阳工程学院学报,2006,2(3):281-282.
    [135]王海风,张春霞,齐渊洪.高炉渣非晶态组分的定量研究[J].钢铁,2008,43(8):16-19.
    [136]程金树,李宏,汤李缨等.微晶玻璃[M].北京:化学工业出版社,2006.
    [137]张培新,文歧业,朱才镇等.矿渣微晶玻璃材料设计与计算[M].北京:化 学工业出版社,2010.
    [138]赵珊茸.结晶学与矿物学[M].北京:高等教育出版社,2004.
    [139]刘属兴.陶瓷矿物原料与岩相分析[M].武汉:武汉理工大学出版社,2007.
    [140]罗谷风,薛继越,陈武等编.基础结晶学与矿物学(第二版)[M].南京:南京大学出版社,1998.
    [141]刘振海,畠山立子.分析化学手册第八分册热分析(第二版)[M].北京:化学工业出版社,1999.
    [142]杨兆荷.用DSC法测量晶体的比热容[J].山东大学学报(自然科学版),1989,24(1):122-126.
    [143]黄伯龄.矿物差热分析鉴定手册[M].北京:科学出版社,1987.
    [144]陈肇友.化学热力学与耐火材料[M].北京:冶金工业出版社,2005.
    [145]Alexander I. Zaitsev, Abram V. Leites, Alexandra D. Litvina et al. Investigation of the mould powder volatiles during continuous casting [J]. Steel Research,1994, 65(9):368-374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700