用户名: 密码: 验证码:
长期施肥对温室和大田土壤微生物的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北是我国重要的作物产区,大田及日光温室蔬菜种植是该地区重要的生产方式。施肥是农业生产中的主要管理措施之一,合理施肥能提高肥料利用率、改善土壤条件、并保障作物的稳产和增产。土壤微生物作为衡量土壤质量、肥力以及健康程度的重要指标,可作为参照用以制定农业措施,保证农作物生产的可持续进行。本试验以位于河北省邯郸市曲周县中国农业大学实验站的长期定位试验为依托,以小麦-玉米轮作和日光温室蔬菜种植体系为研究对象,通过2012年连续5次采集土壤样品并进行分析,对不同施肥和种植模式下的土壤理化性质、土壤微生物数量、土壤微生物群落多样性和群落结构变化进行深入研究,旨在探讨不同施肥处理和种植模式对土壤微生物的影响,为保护土壤生物多样性,建立合理的日光温室和大田施肥制度及管理模式,维持土壤质量提供理论依据。主要结论如下:
     (1)不同种植模式对温室土壤养分的影响
     日光温室长期定位实验共设置3个处理:有机种植模式(ORG),无公害种植模式(LOw)和常规种植模式(CON)。在0-20cm和20-40cm土层,土壤有机质、全氮、速效磷、速效钾含量和pH值在三种种植模式下差异显著。与CON相比,ORG和LOW均提高了土壤OM、TN、AP、AK的含量;而ORG比LOW在提高效果更加明显。在0-20cm土层,OM在ORG和LOW处理下比CON分别增长了25.1g·kg-1和9.4g·kg-1; TN分别增长1.4g·kg-1和0.5g· kg-1; AP分别增长194.7mg· kg-1和125.6mg·kg-1; AK分别增长289.9mg· kg-1和91.3mg·kg-1。在20-40cm土层,OM在ORG和LOW处理下比CON分别增长6.6g·kg-1和2.2g·kg-1;TN分别增长0.5g·kg-1和0.2g·kg-1;AP分别增长184.7mg·kg-1和76.7mg·kg-1;AK分别增长222.7mg·kg-1,85.3mg·kg-1。
     (2)不同施肥处理对大田土壤养分的影响
     大田长期定位实验共设置4个不同种类肥料投入处理:EM堆肥(EM);传统堆肥(OF);化肥(CF);不施肥对照(CK)。土壤样品分析结果显示:不同施肥处理对0-20cm和20-40cm土壤有机质(OM)、全氮(TN)、速效磷(AP)、速效钾(AK)的含量和土壤pH值的影响差异显著。4种施肥处理均可以提高土壤OM、TN、AP、 AK的含量而降低pH值,与CF相比,EM和OF处理下土壤各养分指标提高的效果更加明显。在0-20cm土层,OM在EM、OF和CF处理下比CK的分别增加了8.4g·kg-1、5.3g·kg-1、1.6g·kg-1; TN分别增加了为0.7g· kg-1、0.5g·kg(?)1和0.2g·kg-1;AP分别增加了63.6mg· kg-1、59.2mg· kg-1和26.6mg· kg-1; AK分别增加了199.7mg· kg-1,142.1mg· kg(?)1和91.3mg· kg-1,在20-40cm土层,OM在EM, OF和CF处理下较CK分别增加了2.1g·kg-1、1.0g·kg-1和0.5g·kg-1;TN分别增加了0.2g· kg-1、0.2g· kg-1和O.1g· kg-1; AP分别增加了28.3mg· kg-1,11.7mg· kg-1和4.8mg· kg-1;与CK相比,在EM和OF处理下AK别分增加了39.8mg· kg-1和26.1mg· kg-1,而在CF处理下降低了5.7mg·kg-1。
     (3)不同种植模式对温室土壤微生物学特征的影响
     对日光温室种植体系中的土壤微生物研究的结果显示,土壤细菌和真菌在不同种植模式下差异显著。ORG处理的细菌16s rRNA和真菌ITS基因拷贝数数量均显著高于CON处理。不同种植模式下的土壤细菌16s rRNA基因拷贝数为6.63×109-1.13×1012拷贝数每克干土,高于真菌的ITS基因拷贝数(3.30×107-1.14×1010拷贝数每克干土)。用T-RFLP方法对土壤细菌群落结构和多样性进行了研究。结果表明,ORG可以增加土壤微生物多样性,各处理土壤细菌主要分布在厚壁菌门、放线菌门、拟杆菌门和变形菌门;ORG、LOW和CON处理下的优势真菌类群分别为132和368bp,138、154、334bp和347bp,134、150、374和466bp。表明不同种植改变了温室蔬菜土壤细菌和真菌的群落结构。
     (4)不同施肥处理对大田土壤微生物学特征的影响
     对土壤微生物的研究结果显示,土壤细菌和真菌在不同处理间有显著差异。其中EM堆肥处理的细菌16s rRNA和真菌ITS基因拷贝数数量显著高于其它处理,而在CF处理下两个指标显著降低。不同处理下,细菌16s rRNA基因拷贝数在1.83×108-2.33×1011拷贝数每克干土,高于真菌的ITS基因拷贝数(1.88×106-2.28×109)。用T-RFLP方法对土壤细菌群落结构进行了研究。结果表明,EM堆肥处理可以显著增加土壤微生物的多样性。经过对酶切片段鉴别分类,土壤细菌主要分布在厚壁菌门、放线菌门、拟杆菌门、变形菌门、蓝藻门和柔膜菌门。处理间相对丰度差异显著的真菌酶切片段包括了106、108、134、136、152和173bp。EM和OF处理可以增加片段134、173、152和1136bp的相对丰度,而降低106和108bp的相对丰度。上述结果表明长期施肥处理改变了大田土壤细菌和真菌的群落结构。
     本研究表明,土壤微生物对长期施肥处理的不同响应特性在检测土壤质量变化时起到重要的指示作用。土壤中大量微生物的存在也显示了其在生化过程中的潜在价值,为进一步研究其在养分循环中的作用和地位提供了坚实基础。
The crop production in farmland and vegetable production in greenhouse are important modes of production in northern China, which is the important grain-producing region. Fertilization is one of the main agricultural measures, and reasonable fertilization can improve fertilizer use efficiency and soil conditions to guarantee grain yield stable or increasing. As an important indicator for valuating soil quality, fertility and health degree, the acquaintance of soil microbe can be used to help develop agriculture measures to ensure the continuous production of crops. In this study, on the basis of the long-term experiment located in China Agricultural University Experiment Station of Quzhou County, Handan City, Hebei Province, five consecutive times soil samples from wheat-maize rotation and greenhouse vegetable systems were taken for analysis in2012. A deep studies on the soil physic-chemical properties, the microbial number, community diversity and community structure evolution patterns under different fertilization and planting mode were conducted to investigate the effects of different fertilizer application treatments and planting patterns on soil microbes, expecting to maintain the biodiversity in soil, establish a reasonable greenhouse and field fertilization and management regime, and provide a theoretical basis for maintaining soil quality. The main conclusions are as follows:
     (1) Effects of different vegetable production systems on greenhouse soil nutrients
     The greenhouse long-term experiment includes3treatments:organic greenhouse (ORG), low input greenhouse (LOW) and conventional greenhouse (CON). Under different vegetable production systems, the soil organic matter, total nitrogen, available phosphorus, potassium content and pH in0-20cm and20-40cm soil layer had the significant different. Compared with CON, ORG and LOW could improve the soil OM, TN, AP and AK content. While compared with LOW, ORG had more obvious effects. In the0-20cm soil layer, compared with CON, OM under ORG and LOW increased by25.1g· kg-1and9.4g· kg-1, respectively; TN by1.4g· kg-1and0.5g· kg-1, respectively; AP by194.7mg· kg-1and125.6mg· kg-1, respectively; AK by289.9mg· kg-1and91.3mg· kg-1, respectively. In20-40cm soil layer, compared with CON, OM under ORG and LOW increased by6.6g· kg-1and2.2g· kg-1, respectively; TN by0.5g· kg-1and0.2g· kg-1, respectively; AP by184.7mg· kg-1and76.7mg· kg-1, respectively; AK by222.7mg· kg-1and85.3mg· kg-1, respectively.
     (2) Effects of different fertilizer treatments on farmland soil nutrient
     Long-term fertilization experiment includes four treatments:EM compost (EM); tranditional compost (OF); chemical fertilizer (CF) and unfertilizer (CK). In March, May, June, August and October of2012, soil samples were collected for5times. The results showed that different fertilization treatments had significant effects on soil organic matter (OM), total nitrogen (TN), available phosphorus (AP), available potassium (AK) and pH in0-20cm and20-40cm soil layers. Compared with CK, EM, OF and CF could improve soil OM, TN, AP, AK content and reduce pH. Compared with CF, EM and OF could make more increase of the soil nutrient. In0-20cm soil layer, compared with CK, OM under EM, OF and CF increased by8.4g· kg-1,5.3g· kg-1and1.6g· kg-1, respectively; TN by0.7 g· kg-1,0.5g· kg-1and0.2g· kg-1, respectively; AP by63.6mg· kg-1,59.2mg· kg1and26.6mg· kg"1, respectively; AP by199.7mg· kg-1,142.1mg· kg-1and91.3mg· kg-1, respectively. In20-40cm soil layer, compared with CK, OM under EM, OF and CF increased by2.1g· kg-1,1.0g· kg-1and0.5g· kg-1, respectively; TN by0.2g· kg-1,0.2g· kg-1and O.lg· kg-1, respectively; AP by28.3mg· kg-1,11.7mg· kg-1and4.8mg· kg-1, respectively; compared with CK, AK under EM and OF increased by39.8mg· kg-1and26.1mg· kg-1, respectively, while reduced by5.7mg· kg-1under CF.
     (3) Effects of different planting patterns on greenhouse soil microbial characteristics
     The results from microbiological studies in greenhouse showed that the soil bacteria and fungi were significantly different under different treatments. The number of bacterial16s rRNA and ITS fungal gene copy numbers under ORG were significantly higher than CON. The bacterial16s rRNA gene copy numbers under different treatments ranged from6.63x109to1.13x1012copies per gram dry soil, higher than fungi ITS gene copies number (3.30x107-1.14x1010copies per gram dry soil). The community structure and diversity of soil bacteria were studied by the T-RFLP approach. The results show that ORG could increase microbial diversity. Firmicutes, Thallobacteria, Bacteroidetes and Proteobacteria are mainly bacteria. Under ORG, LOW and CON, the privileged fungal taxa were132and368bp,138,154,334bp and347bp,134,150,374and466bp, respectively. These showed that different vegetable production systems have different soil microorganism community structure.
     (4) Effect of different fertilization on farmland soil microbial characteristics
     The results on soil microbiology showed that the soil bacteria and fungi had significant differences under different treatments. The bacteria16s rRNA and fungi ITS gene copy numbers under EM were significantly highest among treatments, and while lowest under CK. Under4treatments, bacterial16s rRNA gene copy numbers ranged from1.83x108to2.33x1011copies per gram dry soil, higher than the fungal ITS gene copy numbers (1.88x106-2.28x109). T-RFLP method was adopted to study the soil bacterial community structure. The results showed that EM compost could significantly increased soil microbial diversity. The results from identification and classification of restriction fragment showed that:Firmicutes, Thallobacteria, Bacteroidetes, Proteobacteria, Cyanobacteria and Tenericutes are mainly bacteria. The relative abundance of fungal fragments with significant differences under different treatments included106,108,134,136,152and173bp. EM and OF could increase the relative abundance of134,173,152and136bp fragment, and reduce the relative abundance of106and108bp. These showed that long-term fertilization treatment could change the soil bacteria and fungi community structures.
     It is concluded that the different microbial characteristics responding to long-term fertilization on for the detection of changes in soil quality can function as the important indicator. And the existence of large number of microorganisms in soil predicts its potential value in the biochemical processes. This makes solid foundation for the future studies on their roles and statuses in the nutrient cycling process.
引文
鲍士旦.土壤农化分析.北京:中国农业出版社,2000
    毕军,夏光利,张昌爱,等.有机生物活性肥料对冬小麦生长及土壤活性质量影响的试验研究.土壤通报,土壤通报,2005,36(2):230-233
    曹慧,杨浩,孙波,等.不同种植时间菜园土壤微生物生物量和酶活性变化特征.土壤,2002(4):197-200
    常艳波,张凤珍,徐海艳.论有机农业技术和无机农业技术相结合对我国农业的影响农业与技术.农业与技术,2014,3:24
    程少敏,林桂凤,张漫龄,等.土壤有机质对土壤肥力的影响与调节.辽宁农业科学,2006,1:13-15
    邓开英,凌宁,张鹏,等.专用生物有机肥对营养钵西瓜苗生长和根际微生物区系的影响.南京农业大学学报,2013,36(2):103-109
    丁长琴.我国有机农业发展模式及理论探讨农业技术经济.农业技术经济,2012,2:122-128
    鄂利锋,秦嘉海,吕彪,等.不同肥料对河西走廊日光温室土壤理化性质和番茄产量的影响.西北农业学报,2012,21(5):136-139
    贾丹,王刚,王文帆,等.利用RAPD技术对牡丹江地区红松根际土壤微生物多样性的分析.森林工程,2013,29(6):33-35
    李达.呼和浩特城郊日光温室土壤微生物多样性的动态研究[硕士学位论文].内蒙:内蒙古农业大学,2012
    李军营,邓小鹏,杨坤,等.施用有机肥对植烟土壤理化性质的影响.中国土壤与肥料,2012(3):12-34
    李轶,唐佳妮,吕绪凤,等.施用沼肥对设施土壤真菌动态变化的影响.中国沼气,2013,31(5):29-39
    李东坡,武志杰,陈利军,等.长期培肥黑土脲酶活性动态变化及其影响因素.应用生态学报,2003,14(12):2208-2212
    梁丽娜.日光温室条件下有机、无公害和常规蔬菜生产土壤硝态氮累积和微生物学特性的季节变化[博士学位论文].北京:中国农业大学,2009
    路盼盼,李建辉,张亚平.新疆泥火山细菌群落PCR-SSCP分析.微生物学通报,2011,38(2):195-198
    刘慧,景春梅,席琳乔,等.冬小麦套种草木樨对土壤理化性质的影响.塔里木大学学报,2013,25(4):1-6
    马俊贵,孙宗发,王平.有机农业的发展现状及物理农业工程技术的应用.世界农业,2014,1:135-137
    马刘峰,易海艳,司马义·巴拉提,等.不同施肥处理对南疆温室蔬菜根际土壤微生物的影响.北方园艺,2013,2:46-48
    乔旭,黄爱军,褚贵新,等.有机肥与无机肥配施对小麦土壤速效养分、酶活性及微生物数量的影响.新疆农业科学,2011,48(8):1399-1403
    乔照华.土壤有机质含量与土壤物理性能参数的相关性分析.中国农村水利水电,2008,2:3-4
    师刚强,赵艺,施泽明,等.土壤pH值与土壤有效养分关系探讨.现代农业科学,2009,16(5): 93-94
    陶水龙,林启美,赵小蓉.土壤微生物量研究方法进展.土壤肥料,1998,5:15-18
    王利利,董民,张璐,等.不同碳氮比有机肥对有机农业土壤微生物生物量的影响.中国生态农业学报,2013,21(9):1073-1077
    王阳,王奇赞.种植年限对大棚蔬菜地土壤微生物群落结构多样性的影响.浙江农业学报,2013,25(3):567-576
    王涛,乔卫花,李玉奇,等.轮作和微生物菌肥对黄瓜连作土壤理化性状及生物活性的影响.土壤通报,2011,42(3):578-583
    王小兵,骆永明,李振高,等.长期定位施肥对红壤地区连作花生生物学性状和土传病害发生率的影响.土壤学报,2011,48(4):725-730
    王鑫,曹志强,王金成,等.微生物发酵有机肥对温室番茄产量、品质和土壤肥力的影响.中国土壤与肥料,2013,1:80-84
    汪海静.氮肥对土壤微生物多样性影响的研究进展[硕士学位论文].吉林:吉林农业大学,2011
    魏猛,张爱君,唐忠厚,等.长期定位施肥对黄潮土土壤酶活性的影响.西北农业学报,2012,21(12):163-167
    魏巍,许艳丽,朱琳,等.长期施肥对黑土农田土壤微生物群落的影响.土壤学报,2013,50(2):372-380
    解宏图,付时丰,张旭东,等.土壤有机质稳定性特征与影响因子研究综述.土壤通报,2003,34(5):459-462
    姚槐应,黄昌勇.土壤微生物生态学及其研究技术.北京:科学出版社,2006:5-6
    雍太文,陈小容,杨文钰,等.小麦/玉米/大豆三熟套作体系中小麦根系分泌特性及氮素吸收研究.作物学报,2010,36(3):477-485
    张玉平,刘强,荣湘民,等.不同有机肥与化肥配施对稻田土壤微生物活性的影响.土壤通报,2013,6:1434-1439
    赵海红.微生物肥料作用及其在蔬菜生产中的应用.黑龙江农业科学,2011,1:51-53
    张瑞,张贵龙;陈冬青,等.不同施肥对农田土壤微生物功能多样性的影响.中国农学通报,2013,29(2):133-139
    张友旺,谷洁;杨玖,等.含四环素的有机肥对土壤酶活性及小白菜生长的影响.西北农业学报,2013,22(6):132-138
    张继舟,马献发,袁磊,等.不同施肥处理对设施农业土壤主要理化性状和芹菜产量的影响.黑龙江农业科学,2012,6:52-57
    周德庆.微生物学教程.北京:高等教育出版社,1993,398
    周崇峻,李凤巧,李明,等.有机肥和化肥配施对温室黄瓜土壤酶活性的影响.沈阳农业大学学报,2013,44(5):634-638
    Aleixo A.P., Kaschuk G., Alberton O. Soil fungal and bacterial biomass determined by epifluorescence microscopy and mycorrhizal spore density in different sugarcane managements. Ciencia Rural, 2014,44(4):588-594
    Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil biology and biochemistry,1978,10:215-221
    Angel R., Soares M.I.M., Ungar E.D., et al. Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME Journal,2010,4:553-563
    Anita T., Deepak C., Rajesh S. Random amplified polymorphic DNA (RAPD) analysis of microbial community diversity in soil affected by industrial pollutants:reference to Mandideep industrial area. African journal of microbiology research,2013,7(30):3933-3942
    Artursson V, Finlay R.D, Jansson J.K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental microbiology,2006,8(1):1-10
    Basak B.B., Biswas D.R., Pal S. Soil biochemical properties and grain quality as affected by organic manures and mineral fertilizers in soil under maize-wheat rotation. Agrochimica,2013, 57(1):49-66
    Balota E.L., Machineski O., Truber P. Viviane Soil enzyme activities under pig slurry addition and different tillage systems. Acta scientiarum-agronomy,2011,33(4):729-737
    Baldrian P., Head I.M., Prosser J.I., et al. Ecology and metagenomics of soil microorganisms. FEMS microbiology ecology,2011,78(1):1-2
    Behnke-Borowczyk J., Kwasna H., Belka M., Molecular methods used in studies of diversity of the soil microorganisms. Sylwan,2012,156(4):294-307
    Bharathkumar S., Rameshkumar N., Paul D., et al. Characterization of the predominant bacterial population of different mangrove rhizosphere soils using 16s rRNA gene-based single-strand conformation polymorphism (SSCP). World journal of microbiology and biotechnology, 2008,24(3):387-394
    Bossio D.A., Scow K.M., Gunapala N., et al. Determinants of soil microbial communities:Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial ecology,1998,36(1):1-12
    Bragazza L., Siffi C., Iacumin P. et al. Mass loss and nutrient release during litter decay in peatland:The role of microbial adaptability to litter chemistry. Soil biology and biochemistry,2007,39:257-267
    Brookes P.C., Landman A., Pruden G., et al. Chloroform fumigation and the release of soil nitrogen:a rapid directec traction method to measure microbial biomass nitrogen in soil. Soil biology and biochemistry,1985,17:837-842
    Brown K.H., Bach E.M., Drijber R.A., et al. A long-term nitrogen fertilizer gradient as little effect on soil organic matter in a high-intensity maize production system. Global change biology,2014,20 (4):1339-1350
    Brockett B.F.T., Prescott C.E., Grayston S.J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil biology and biochemistry,2012,44(1):9-20
    Bryan B.A., King D., Zhao, G. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps. Environmental Research Letters, 2014,9(4):044005
    Bukowska A., Bielczynska A., Karnkowska A., er al. Molecular (PCR-DGGE) versus morphological approach:analysis of taxonomic composition of potentially toxic cyanobacteria in freshwater lakes. Aquatic biosystems,2014,10(1):2
    Cao P., Zhang L.M., Shen J.P., et al. Distribution and diversity of archaeal communities in selected Chinese soils. FEMS microbiology ecology,2012,180:146-158
    Chen G.C., He Z.L., Wang Y.J. Impact of pH on microbial biomass carbon and microbial biomass phosphorus in red soils. Pedosphere,2004,14(1):9-15
    Chu H.Y., Lin X.G., Fujii T., et al. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil biology and biochemistry,2007, 390(11):2971-2976
    Chu H.Y., Fujii T., Morimoto S., et al. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil. Applied and environmental microbiology,2007,73(2):485-491
    Cwalina-Ambroziak B, Bowszys T. Changes in fungal communities in organically fertilized soil. Plant soil environment,2009,55(1):25-32
    de Vries F.T., Hoffland E., van Eekeren N., et al. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil biology and biochemistry,2006,38(8):2092-2103
    de Brito F., Enderson P., Correa N., PCR-DGGE fingerprinting of bacterial community associated to maize rhizoplane under different doses of organic compost fertilization. Bioscience journal,2009, 25(3):41-50
    Donkova R., Koutev V., Dinev N. Response of soil microorganisms to organic and inorganic amendments in heavy metal polluted soils. Ecology and Future-Bulgarian Journal of Ecological Science,2009,8(4):16-18
    Effmert U., Kalderas J., Warnke R., et al. Volatile Mediated Interactions Between Bacteria and Fungi in the Soil. Journal of chemical ecology,2012,38(6):665-703
    Enwall K., Hallin S. Comparison of T-RFLP and DGGE techniques to assess denitrifier community composition in soil. Letters in applied microbiology,2009,48(1):145-148
    Eskelinen A., Stark S. Mannisto M. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia,2009,161:113-123
    Ferreira E.P. de B., Dusi A.N., Costa J.R., et al. Assessing insecticide and fungicide effects on the culturable soil bacterial community by analyses of variance of their DGGE fingerprinting data. European journal of soil biology,2009,45(5):466-472
    Fernandes M.F., Saxena J., Dick R.P. Comparison of Whole-Cell Fatty Acid (MIDI) or Phospholipid Fatty Acid (PLFA) Extractants as Biomarkers to Profile Soil Microbial Communities. Microbial ecology,2013,66(1):145-157
    Fierer N., Schimel J.P., Holden P.A. Influence of drying-rewetting frequency on soil bacterial community structure. Microbial ecology,2003,45(1):63-71
    Fierer N., Schimel J.P., Holden P.A. Variations inmicrobial community composition through two soil depth profiles. Soil biology and biochemistry,2003,35:167-176.
    Fischersg L. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell,1979, (16):191-200
    Fuhrman J. A. Microbial community structure and its functional implications. Nature,2009,459:7244
    Ganzert L., Lipski A., Hubberten H.W., et al. The impact of different soil parameters on the community structure of dominant bacteria from nine different soils located on Livingston Island, South Shetland Archipelago, Antarctica. FEMS microbiology ecology,2011,176:476-491
    Gao G.P, Yin D.H., Chen S J., et al.Effect of Biocontrol Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere Using T-RFLP and DGGE. Plos one,2012,7(2): e31806
    Glaser B., Turrion M.B., Alef K. Amino sugars and muramic acid-biomarkers for soil microbial community structure analysis. Soil biology and biochemistry,2004,36(3):399-407
    Glenn T.C., Field guide to next-generation DNA sequencers. Molecular ecology resource,2011,11 (5):759-769
    Goberna M., Insam H., Klammer S., et al. Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microbial ecology,2005,150: 315-326
    Grantina L., Kenigsvalde K., Eze D., et al. Impact of six-year-long organic cropping on soil microorganisms and crop disease suppressiveness. Zemdirbyste-agriculture,2011,98(4):399-408
    Hababi A., Javanmard A., Mosavi S.B., et al. Effect of green manure on some soil physicochemical characteristics. International journal of agronomy and plant poduction,2013,4(11):3089-3095
    Hack S.K.,Garchow H.,Odelson D.A. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Applied environmental microbiology,1994, 60:483-2493
    Hamid A.A.A., Hamdan S., Ariffin S.H.Z., et al. Molecular prediction of dehalogenase producing microorganism using 16s rDNA analysis of 2,2-dichloropropionate (Dalapon) degrading bacterium isolated from volcanic soil. Journal of biological sciences,2010,10(3):190-199
    Hannula S.E., Wietsede B., Johannesvan V. A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects. Plos one, 2012,7(4):1-13
    Hansel C.M., Fendorf S., Jardine P.M., et al. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Applied environmental microbiology,2008,174:1620-1633
    Hanzel J., Myrold D., Sessitsch A., et al. Microbial ecology of biogeochemical interfaces-diversity, structure, and function of microhabitats in soil. FEMS microbiology ecology,2013,86(1):1-2
    Hartmann M., Widmer F., Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Applied and environmental microbiology, 2006,72(12):7804-7812
    Hassan M.A., Kumar K.A. Intake, retention and depletion of water in different rice soils as related to their physico-chemical properties. Journal of Tropical Agriculture,1994,32(1):89-91
    Hori K., Urashima Y., Shiomi F. Soil microbial biomass and microbial respiratory activity in a field with or without film mulch where composted livestock manure or chemical fertilizer was continuously applied. Soil Microorganisms,2012,66(1):3-11
    Hobara S., Osono T., Hirose D., et al. The roles of microorganisms in litter decomposition and soil formation. Biogeochemistry,2014,118(1):471-486
    Ismail S.M. Influence of effective microorganisms and green manure on soil properties and productivity of pearl millet and alfalfa grown on sandy loam in Saudi Arabia. African Journal of Microbiology Research,2013,7(5):375-382
    Jannoura R., Joergensen R.G., Bruns C. Organic fertilizer effects on growth, crop yield, and soil microbial biomass indices in sole and inter cropped peas and oats under organic farming conditions. European journal of agronomy,2014,52:259-270
    Jaziri K., Casellas M., Dagot C. Comparing the effects of three pre-treatment disintegration techniques on aerobic sludge digestion:biodegradability enhancement and microbial community monitoring by PCR-DGGE. Environmental technology,2012,33(12):1435-1444
    Jenkinson D.S. The effects of biocidal treatments on metabolism in soil.IV. The decomposition off fumigated organisms in soil. Soil biology and biochemistry,1976,8:203-208
    Joergensen R.G., Emmerling C. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils. Journal of plant nutrition and soil science-zeitschriet fur pflanzenernahrung und bodenkunde,2006,169(3):295-309
    Joergensen R.G., Maeder P., Fliessbach A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biology and fertility of soils,2010, 46(3):303-307
    Ju X.T., Kou C.L., Christie P., et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution,2007,145:497-506
    Kara O, Baykara M. Changes in soil microbial biomass and aggregate stability under different land uses in the northeastern Turkey. Environmental monitoring and assessment,2014,186(6):3801-3808
    Keeler B.L., Hobbie S.E., Kellogg L.E. Effects of Long-Term Nitrogen Addition on Microbial Enzyme Activity in Eight Forested and Grassland Sites:Implications for Litter and Soil Organic Matter Decomposition. Ecosystems,2009,12(1):1-15
    Kemnitz D., Kolb S. Conrad R. High abundance of Crenarchaeotain a temperate acidic forest soil. FEMS microbiology ecology,2007,60:442-448
    Kent A.D., Smith D.J., Benson B.J. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Applied and environmental microbiology,2003,69(11):6768-6776
    Kim J., Lim J., Lee C., Quantitative real-time PCR approaches for microbial community studies in wastewater treatment systems:Applications and considerations. Biotechnology advances,2013, 31(8):1358-1373
    Kordlaghari K.P., Panahikordlaghari S., Rahimi A. Variation in soil available phosphorus and potassium and their relationships with soil properties in some Isfahan soil series of Iran. Research on crops, 2013,14(2):604-607
    Kondo R., Mori Y, Sakami T., Comparison of Sulphate-reducing Bacterial Communities in Japanese Fish Farm Sediments with Different Levels of Organic Enrichment. Microbes and environments, 2012,27(2):193-199
    Kong W.D., Zhu Y.G., Fu B.J., et al. Effect of Long-Term Application of Chemical Fertilizers on Microbial Biomass and Functional Diversity of a Black Soil. Pedosphere,2008,18(6):801-808
    Kravchenko I.K., Yu K.W. Relationship between major soil properties and culturable microorganisms affecting CH4 and N2O dynamics in rice soils. Archives of Agronomy and Soil Science, 2006,52(6):607-615
    Kravchenko I.K., Kizilova A.K., Bykova S.A., et al. Molecular analysis of cultured methane-oxidizing microorganisms from the soils of forests and agriculture fields. Mikrobiologiia, 2010,79(1):114-122
    Kuramae E., Gamper H.,, van Veen J., Kowalchuk G., Soil and plant factors driving the community of soil-borne microorganisms across chronosequences of secondary succession of chalk grasslands with a neutral pH. FEMS microbiology reviews,2011,77:285-294
    Lalande R., Gagnon B., Chapman R.A., et al. Soil microbial populations, activity, and community structure in continuous corn or forage systems under organic or inorganic fertilization in eastern Canada. Canadian journal of soil science,2005,85(1):27-38
    Lalande J., Villemur R., Deschenes L. A New Framework to Accurately Quantify Soil Bacterial Community Diversity from DGGE. Microbial ecology,2013,66(3):647-658
    Lefebvre T., Miambi E., Pando A. et al. Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insectes sociaux,2009,56(3):269-276
    Lejon D.P.H., Pascault N., Ranjard L. Differential copper impact on density, diversity and resistance of adapted culturable bacterial populations according to soil organic status. European journal of soil biology,2010,46(2):168-174
    Li R., Khafipour E., Krause D.O., et al. Pyrosequencing Reveals the Influence of Organic and Conventional Farming Systems on Bacterial Communities. Plos one,2012,7(12):e51897
    Liu Y.R., Li X., Shen Q.R., et al. Enzyme activity in water-stable soil aggregates as affected by long-term application of organic manure and chemical fertiliser. Pedosphere,2013,23(11):111-119
    Liu R.J., Li Y, Diao Z.K., et al. Effects of soil depth and season variation on community structure of arbuscular mycorrhizal fungi in greenhouse soils planted with watermelon. Pedosphere,2013, 23(3):350-358
    Lindahl, B.D., Nilsson R.H., Tedersoo L., et al. Fungal community analysis by high-throughput sequencing of amplified markers-a user's guide. New phytologist,2013,199(1):288-299
    Lukow T., Dunfield P.F., Liesack W. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS microbiology ecology,2000,32(3):241-247
    Lv M., Li Z.P., Che Y.P., et al. Soil organic C, nutrients, microbial biomass, and grain yield of rice (OryzasativaL.) after 18 years of fertilizer application to an infertile paddy soil. Biology and fertility of soils,2011,47(7):777-783
    Malla R., Pokharel U., Prasad R., et al. Molecular techniques to study polymorphism between closely related microorganisms in relation to specific protein phosphatase. In:Shukla G., Varma A.(eds). Soil enzymology. Germany:Springer,2011,339-361
    Manuel Montano N., Lidia Sandoval-Perez A., Nava-Mendoza M., et al. Spatial and seasonal variation of soil culturable-bacterial functional groups in a Mexican tropical dry forest. Revista de biology tropical,2013,61(1):439-453
    Manzano M., Moran A.C., Tesser B., et al. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134. Antonie van leeuwenkoek international journal of general and molecular microbiology,2007,91(2):115-126
    Margulies M., Egholmm M., Altman W.E., et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437:376-380
    Martinez-Inigo M.J., Perez-Sanz A., Ortiz I., et al. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke. Chemosphere, 2009,75(10):1376-1381
    Mechri B., Manga A.G.B., Tekaya M., et al. Changes in microbial communities and carbohydrate profiles induced by the mycorrhizal fungus (Glomus intraradices) in rhizosphere of olive trees (Olea europaea L.) Applied soil ecology,2014:75:124-133
    Mitchell R. Soil Ecology and Ecosystem Services. European journal of soil science,2013,64(4):546
    Mohebbisadegh M.J. Investigation of relationships between available phosphorus, potassium and some soil properties in agricultural lands of Varamin-Iran. International journal of agriculture and biosciences,2014,3(1):7-12
    Mohammadi K. Soil microbial activity and biomass as influenced by tillage and fertilization in wheat production. American-Eurasian Journal of Agricultural and Environmental Sciences,2011, 10(3):330-337
    Mohammadi K., Sohrabi Y., Mokhtassi-Bidgoli A., et al. Crop sequences and fertilization affect soil vital enzyme activities. Archives of agronomy and soil science,2013,60(6):793-798
    Monty K., Patel A.K. PLEA profiling of soil microbial community structure and diversity in different dry tropical ecosystems of Jharkhand. International journal of current microbiology and applied sciences,2014,3(3):556-575
    Muyzer G., Decaal E.C., Uitterlinden A.G. Profiling of complex microbial-populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified gene coding for 16s rRNA. Applied and environmental microbiology,1993,59(3):695-700
    Murase J., Shimizu M., Hayashi M., et al.Vertical changes in bacterial communities in percolating water of a Japanese paddy field as revealed by PCR-DGGE. Soil science and plant nutrition,2005, 51(1):83-90
    Murugan R., Koch H.J., Joergensen R.G. Long-term influence of different tillage intensities on soil microbial biomass, residues and community structure at different depths. Biology and fertility of soils,2014,50(3):487-498
    Murugan R., Koch H.J., Joergensen R. Georg Long-term influence of different tillage intensities on soil microbial biomass, residues and community structure at different depths. Biology and fertility of soil,2014,50(3):487-498
    Nakano Y, Takeshita T., Kamio N., et al. Development and application of a T-RFLP data analysis method using correlation coefficient matrices. Journal of microbiological methods,2008, 75(3):501-505
    Nautiyal C.S., Chauhan P.S., Bhatia C.R. Changes in soil physico-chemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. Soil and tillage research,2010,109(2):55-60
    Ndubuisi-Nnaji U.U., Adegoke A.A., Ogbu H.I., et al. Effect of long-term organic fertilizer application on soil microbial dynamics. African journal of biotechnology,2011,10(4):556-559
    Nielsen U.N., Osler G.H.R., Campbell C.D., et al. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of biogeography,2010,37:1317-1328
    Noll M., Matthies D., Frenzel P., et al. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environmental microbiology,2005,7(3):382-395
    Oba H., Okada H. Methods for analysis of soil communities by T-RFLP. Soil Microorganisms, 2010,64(1):41-48
    Okruszko H. Preconditions for the nitrogen transformations in organogenic soils as related to water eutrophication. Journal of water and land development,1998,2:75-84
    Olalemi A.S., Arotupin D.J. Effect of refined petroleum products contamination on bacterial population and physicochemical characteristics of cultivated agricultural soil. Journal of microbiology, biotechnology and food sciences,2012,2(2):684-700
    Orr C.H., James A., Leifert C., et al. Diversity and Activity of Free-Living Nitrogen-Fixing Bacteria and Total Bacteria in Organic and Conventionally Managed Soils. Applied and environmental microbiology,2011,77(3):911-919
    Pandey D., Agrawal M., Bohra J.S. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation. Soil and tillage research,2014,136:51-60
    Patkowska E., Konopinski M. Effect of cover crops on the microorganisms communities in the soil under scorzonera cultivation. Plant soil and environment,2013,59(10),460-464
    Piotrowska-Seget Z., Kozdroj J. Changes in culturable bacterial community of soil treated with high dosages of Cu or Cd. Plant soil and environment,2008,54(12):520-528
    Purcena L.A., DiMedeiros M.C.B., Leandro W.M., et al. Effects of organic and conventional management of sugar cane crop on soil physicochemical characteristics and phosphomonoesterase activity. Journal of agricultural and food chemistry,2014,62(7):1456-1463
    Reed, M. Organic food and agriculture:new trends and developments in the social sciences. UK:InTech, Winchester,2012:216
    Rani I.U., Padmaja G., Rao P.C. Integrated effect of organic manures and inorganic fertilizers on soil dehydrogenase enzyme activity and yield of maize-spinach cropping system. Crop Research(Hisar), 2013,46:39-43
    Raynaud X., Nunan N. Spatial Ecology of Bacteria at the Microscale in Soil. Plos one,2014, 9(1):e87217
    Ribeiro Goncalves I.C., Ferreira Araujo A.S., Pinheiro Leal Nunes, L.A., et al. Soil microbial biomass after two years of the consecutive application of composted tannery sludge. Acta scientiarum-agronomy,2014,36(1):35-41
    Rodriguez L., Macias E, Eutrophication trends in forest soils in Galicia (NW Spain) caused by the atmospheric deposition of nitrogen compounds. Chemosphere,2006,63(9):1598-1609
    Rousk J., Baath E., Brookes P.C., et al. Soil bacterial and fungal communities across a pH gradient in an arable son. ISME Journal,2010,4:1340-1351
    Rui J.P., Peng J J., Lu Y.H. Succession of bacterial populations during plant residue decomposition in rice field soil. Applied and environmental microbiology,2009,75(14):4879-4886
    Ruzicka S., Edgerton D., Norman M., et al. The utility of ergosterol as a bioindicator of fungi in temperate soils. Soil biology and biochemistry,2000,32(7):989-1005
    Sattler V. A., Klose V., Steiner T. DGGE to explore gut microflira. Feed Mix,2008,16(1):9
    Schrumpf M., Kaiser K., Schulze E.D. Soil Organic Carbon and Total Nitrogen Gains in an Old Growth Deciduous Forest in Germany. Plos one,2014,9(2):e89364
    Setala H., Bardgett R.D., Birkhofer K., et al. Urban and agricultural soils:conflicts and trade-offs in the optimization of ecosystem services. Urban ecosystems,2014,17(1):239-253
    Sharma N., Sudarsan Y., Sharma R., et al. RAPD analysis of soil microbial diversity in western Rajasthan. Current science,2008,94(8):1058-1061
    Sharma G., Verma H.N., Sharma R. RAPD Analysis to Study Metagenome Diversity in Soil Microbial Community of Arid Zone Plants. Proceedings of the national academy of sciences india section, 2013,83(2):135-139
    Shendure J., Ji H. Next-generation DNA sequencing. Nature biotechnology,2008,26(10):1135-1145
    Shen C., Xiong J., Zhang H., et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil biology and biochemistry,2013,57:204-211
    Shyu C., Soule T., Bent S.J., et al. MiCA:A web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microbial ecology,2007,53(4):562-570
    Siles JA., Perez-Mendoza D. Ibanez J A. et al. Assessing the impact of biotransformed dry olive residue application to soil:Effects on enzyme activities and fungal community. International biodeterioration and biodegradation,2014,89:15-22
    Skujins JJ. Enzymes in soil [review]. in Soil biochemistry. New York:Marcel Dekker, Inc., 1967,371-414
    Smalla K., Oros-Sichler M., Milling A., et al. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16s rRNA gene fragments:Do the different methods provide similar results? Journal of microbiological methods,2007,69(3):470-479
    Sohrabi V., Rahmani R., Moayeri M.H., et al. Comparison of species abundance distributions in the forests of Iran North. International journal of biology,2011,3(3):156-160
    Someya T. Ecology of soil microorganisms and new methods. Japanese Journal of Ecology (Tokyo),1997,47(1):59-62
    Sradnick A., Murugan R., Oltmanns M., Changes in functional diversity of the soil microbial community in a heterogeneous sandy soil after long-term fertilization with cattle manure and mineral fertilizer. Applied soil ecology,2013,63:23-28
    Stepien W., Gorska E.B., Pietkiewicz S. et al. Long-term mineral fertilization impact on chemical and microbiological properties of soil and Miscanthus x giganteus yield. Plant soil and environment, 2014,60(3):117-122
    Stemmer M., Gerzabek M.H., Kandeler E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil biology and biochemistry,1998,30(1):9-17
    Stralis-Pavese N., Bodrossy L., Reichenauer T.G., et al.16s rRNA based T-RFLP analysis of methane oxidising bacteria-Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Applied soil ecology,2006,31(3):251-266
    Suzuki M.T., Taylor L.T., DeLong E.F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Applied and environmental microbiology,2000, 66(11):4605-4614
    Suzuki C., Takenaka M., Oka N., et al. A DGGE analysis shows that crop rotation systems influence the bacterial and fungal communities in soils. Soil science and plant nutrition,2012,58(3):288-296
    Swanson C.A., Sliwinski M.K. One-dimensional TRFLP-SSCP is an effective DNA fingerprinting strategy for soil Archaea that is able to simultaneously differentiate broad taxonomic clades based on terminal fragment length polymorphisms and closely related sequences based on single stranded conformation polymorphisms. Journal of microbiological methods,2013,94(3):317-324
    Tamm L. Organic agriculture:development and state of the art. Journal of environmental monitoring, 2001,3(6):92N-96N
    Tavi N.M., Martikainen P.J., Lokko K., et al. Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using (CO2)-C-13 pulse-chase labelling combined with C-13-PLFA profiling. Soil biology and biochemistry,2013,58:207-215
    Thomson B.C., Ostle N.J., McNamara N.P., Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil, Microbial Ecology,2010,59: 335-343
    Tunc E., Gul O. Analysis of phospholipid fatty acids (PLFA) as a soil bioindicator in Karkamis/Gazianter pistachio orchards. Fresenius environmental bulletin,2014,23(2):385-394
    Tuti M.D., Hedau N.K., Bisht J.K. et al. Effect of organic and inorganic sources of nutrients on yield, economics, and energetics of pepper and soil properties in naturally ventilated polyhouse. Archives of agronomy and soil science,2014,60(7):1005-1014
    Vajantha B., Reddy K.S., Ramavatharam N. Effect of integrated nitrogen management on soil enzyme activities in maize. Research on crops,2010, 11(1):31-36
    Vendan R.T., Lee S.H., Yu YJ. et al. Analysis of Bacterial Community in the Ginseng Soil Using Denaturing Gradient Gel Electrophoresis (DGGE). Indian journal of microbiology,2012, 52(2):286-288
    Veum K.S., Goyne K.W., Kremer R.J., et al. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry,2014,117(1):81-99
    Vos M., Wolf A.B., Jennings S.J., et al. Micro-scale determinants of bacterial diversity in soil. FEMS microbiology reviews,2013,37(6):936-954
    Wang F.Y., Hu J.L., Lin X.G., et al. Arbuscular mycorrhizal fungal community structure and diversity in response to long-term fertilization:a field case from China. World Journal of Microbiology and Biotechnology,2011,27(1):67-74
    Wardle DA., Bardgett R.D., Klironomos J.N., et al. Ecological linkages between aboveground and belowground biota. Science,2004,304:1629-1633
    West A.W., Grant W.D., Sparling G.P. Use of ergosterol, diaminopimelic acid and glucosamine contents of soils to monitor changes in microbial populations. Soil biology and biochemistry,1987, 19(5):607-612
    Wei G.X., Zhou Z.F., GuoY., et al. Long-term effects of tillage on soil aggregates and the distribution of soil organic carbon, total nitrogen, and other nutrients in aggregates on the semi-arid Loess Plateau, China. Arid land research and management,2014,28(3):291-310
    Wei W., Xu Y.L., Li S., et al. Analysis of Fusarium populations in a soybean field under different fertilization management by real time quantitative PCR and denaturing gradient gel electrophoresis. Journal of plant pathology,2012,94(1):119-126
    Wixon D.L., Balser T.C. Toward conceptual clarity:PLFA in warmed soils. Soil biology and biochemistry,2013,57:769-774
    Wolfe B.E., Klironomos J.N. Breaking new ground:Soil communities and exotic plant invasion. Bioscience,2005,55(6):477-487
    Xiong J., Liu Y, Lin X., et al. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental microbiology,2012,14:2457-2466
    Yadav R.L., Dwivedi B.S., Prasad K, et al. Yield trends, and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manures and fertilisers. Field crops research,2000,68(3):219-246
    Yi H., Kim H.J., Kim C.G., et al. Using T-RFLP to Assess the Impact on Soil Microbial Communities by Transgenic lines of Watermelon Rootstock Resistant to Cucumber Green Mottle Mosaic Virus (CGMMV). Journal of plant biology,2009,52(6):577-584
    Yu W.T., Bi M.L., Xu Y.G., et al. Microbial biomass and community composition in a Luvisol soil as influenced by long-term land use and fertilization.Catena,2013,107:89-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700