用户名: 密码: 验证码:
杨树基因型及混交模式对根际土壤养分和微生物学特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以杨树不同无性系[(1)南林895杨:I-69杨(Populus deltoides Bartr. cv.“Lux”)×I-45杨(P. euramericana (Dode) Guinier cv.‘I-45/51’)杂交组合F1(2)南林80351杨:I-69×I-63(P. deltoides Bartr. cv.“Harvard”)杂交组合F1(3)75杨:I-72(P×euramericana(Dode) Guinier cv.“San Matino” ex I-72/58)×I-63杂交组合F1纯林]及杨树(南林895杨)与江南桤木(Alnus trabeculosa)和苏柳799(Salix×jiangsuenis cv.J799)六种不同混交模式(杨树×柳树×桤木、杨树×柳树、杨树×桤木、杨树、柳树、桤木)作为研究对象,采用田间原位根箱试验与室内盆栽根箱试验相结合的方法,研究不同无性系及不同混栽模式下根际土壤养分和微生物群体特征及其季节动态变化,主要研究结果如下:
     (1)室内模拟盆栽试验条件下,不同混交模式根际土壤的矿化速率及无机态氮的含量显著高于非根际土壤,而在不同混交模式之间,杨树桤木混交模式根际土壤氮的矿化最为迅速,其根际无机态氮的含量也最高,随着根际土壤N净矿化速率的增大,铵态氮和硝态氮的含量均显著增加。
     (2)杨树与不同树种混栽根际土壤微生物生物量碳和生物量氮均显著高于杨树纯林。不同组成模式根际土的碳氮比值存在显著差异,其中杨树~桤木混交模式最高,其次为杨树~桤木~柳树混交模式、杨树纯林模式、柳树纯林模式、杨树~柳树混交模式,桤木纯林模式最低。杨树~柳树~桤木混交、杨树~柳树混交和杨树~桤木混交模式根际土壤天冬酰胺酶、尿酶活性显著高于杨树纯林,而蛋白酶活性不同混交模式差异不显著。相关性分析表明,根际土壤酶活性与土壤微生物量之间呈显著正相关或负相关。
     (3)杨树桤木混栽模式根际土壤细菌、真菌群落丰富度和多样性指数显著高于杨树纯林土壤。杨树~柳树、杨树~柳树桤木混栽模式根际土壤细菌、真菌群落丰富度和多样性指数显著低于杨树纯林土壤。不同混栽模式根际土壤细菌、真菌群落丰富度和多样性指数均显著高于非根际土壤。相关分析表明,土壤细菌和真菌群落多样性与土壤养分和微生物生物量间有很好的相关。土壤细菌和真菌群落多样性指数与土壤蛋白酶以及天冬酰胺酶活性均呈显著或极显著相关。
     (4)田间试验下,除2011年7月份根际与非根际土壤硝态氮含量无显著差异外,三种杨树不同无性系根际及非根际土壤铵态氮含量、无机态氮含量和pH值在相同采样时间下均存在显著差异,其中根际土壤pH值均显著低于非根际土壤,而铵态氮、硝态氮和无机态氮含量均显著高于非根际土壤。在同一采样时间下,杨树不同无性系根际土壤间铵态氮、硝态氮、无机态氮含量和pH值差异均不明显。从季节动态变化上来看,三种杨树不同无性系根际土壤硝态氮含量的季节动态变化存在显著差异。南林895杨根际土壤氮净矿化速率在夏季显著高于春季和冬季。75杨季节差异不显著。南林80351杨净矿化速率最高值出现在冬季。三种杨树无性系根际土壤硝化率趋于稳定,在不同采样时间下均无显著差异。同一采样时间下,三种杨树无性系根际土壤氮净矿化速率在3个不同采样季节都显著高于非根际土壤,而硝化率均显著低于非根际土壤。南林80351杨根际土壤氮净矿化速率在三个不同采样时间均显著高于75杨和南林80351杨。
     (5)三种杨树无性系在三个不同采样季节微生物生物量总的变化规律一致,均表现为南林895杨>75杨>南林80351杨,根际土>非根际土。从季节动态变化来看,南林895杨、75杨和南林80351杨根际土壤微生物生物量碳、氮冬季较高,而春夏季节较低。三个杨树无性系根际土壤MBC/MBN比值受季节影响差异显著,最高值均出现在2010年11月,最低值均出现在2011年7月,各无性系根际土壤MBC/MBN比值均在5.0以下。同一采样时间下,三种杨树无性系根际土壤尿酶、蛋白酶、天冬酰胺酶活性均存在显著差异。从季节动态变化来看,各种酶活性均在2011年7月份最高。相关分析表明,氮硝化速率与pH之间呈极显著正相关,与尿酶、蛋白酶、天冬酰胺酶活性和微生物碳含量呈极显著负相关;pH值与尿酶、天冬酰胺酶活性和微生物碳含量呈显著负相关,与蛋白酶活性呈极显著负相关;硝态氮含量与微生物碳氮均呈极显著正相关;铵态氮含量与尿酶活性呈显著相关,蛋白酶活性与天冬酰胺酶呈极显著正相关,与微生物量碳呈显著正相关,天冬酰胺酶活性与微生物量碳呈显著正相关。
     (6)通过对细菌16S rRNADGGE图谱分析发现,同一采样时间三种杨树无性系根际土壤之间条带数不同,说明各无性系的根际土壤细菌群落结构存在着多样性。各无性系之间均存在相同的条带,说明各无性系根际土壤细菌之间存在着相同的类群;并且各条带的亮度也不相同,说明相同细菌种类的数量也存在着差异。与细菌16S rRNADGGE图谱相比,每个土壤样品扩增产物真菌图谱条带数量明显少于细菌图谱,条带少而疏,说明根际土壤真菌类群数低于细菌。不同杨树无性系有许多共同条带,也有一些特殊条带。和细菌的DGGE图谱相比,各样品的泳道带型变异较小,优势条带明显。从季节动态变化上来看,三种杨树不同无性系均表现为11月份细菌、真菌条带数高于7月份和3月份。所以从整体看,冬季(11月份)土壤细菌、真菌多样性组成较春季(3月份)和夏季(7月份)有所提高。相同采样时间下,各无性系土壤细菌、真菌群落相似性系数不大。说明不同无性系在根际土壤微生物群落结构组成方面存在较明显的差异。
     (7)在长江滩地立地条件下,根际土壤微生物活性在0~2mm和2~4mm处,无显著差异,但与4~10mm处差异显著。因此,选择0~4mm处作为根际土壤采集,是比较正确可靠的根际土壤采集距离。土壤pH值、微生物生物量碳含量、微生物呼吸商、微生物量氮占总氮含量的比例、微生物生物量碳氮比可以作为评价土壤质量的重要参数。本研究中5种不同树种或无性系的根际土壤微生物系数在0.27~0.65之间,划分为4个等级。根据不同树种及不同无性系根际土壤的生物学特性和年平均树高、胸径生长量的研究调查,作者认为本试验中根际土壤微生物系数大于0.5的树种(南林895杨、苏柳799)适合在我国东南部地区季节性淹水滩地或人为干扰比较严重的土壤条件下栽植。
This study was conducted with the primary aim of revealing characteristics of soil microbialproperties and nutrient conditions in the rhizosphere of different poplar genetypes and treespecies compositions. The pH values, available N, microbial biomass, enzyme activities,microbial diversities as well as net N mineralization and nitrification rates were investigated inrhizosphere and bulk soils of three poplar clones and six treatments of tree compositions. Threepoplar clones including Nanlin895(a hybrid of I-69(Populus deltoides Bartr. cv.‘Lux’)×I-45(P.euramericana (Dode) Guinier cv.‘I-45/51’),75(a hybrid of I-72(P×euramericana (Dode)Guinier cv.‘San Matino’ ex I-72/58)×I-63(P. deltoides Bartr. cv.‘Harvard’)) and NL80351(ahybrid of I-69×I-63), were selected to be used in this study. These poplars grew in eastern lowerreaches of the Yangtze River where near Ma-an-shan City, Anhui Province, in southeast China.At the same time, laboratory stimulus experiments also carried out of six tree speciescompositions including PAW(poplar×alder×willow), PA (poplar×alder), PW (poplar×willow), P(poplar), A (alder) and W (willow). For the field study, three different sampling times (earlierNovember2010, later March2011and middle July2011) were selected to explore seasonalvariation of soil microbial properties and nutrient availability in rhizosphere soils of differentpoplar clones. The key findings are as follows:
     (1)Net N mineralization rate and inorganic N concentration in the rhizosphere soils weresignificantly higher than bulk soil among all six different tree coexistence treatments, whileamong different trees coexistence treatments, the highest N mineralization rate and inorganic Nconcentration were observed in treatment PA which significantly higher than other treatments.Among all six treatments, with the increasing of N mineralization rate in rhizosphere soil,concentration of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) were alsoproportionally increased.
     (2)Soil microbial biomass C (MBC) and microbial biomass N (MBN) varied significantlyin the rhizosphere soils among different tree species compositions. The content MBC and MBNin rhizosphere of PAW, PA, and PW were significantly higher than P. Significant difference ofmicrobial C/N ratios was observed in rhizosphere soils of treatments tested. The highest wasobserved in PA, followed by PAW, P, W and PW, with the lowest observed in A. Soil urease andL-asparaginase activities in the rhizosphere of PAW, PA, and PW were significantly higher than P.Significantly positive or negative correlation between tested enzyme activity and microbialbiomass were observed in soils evaluated.
     (3)Soil microbial bacterial and fungal diversity varied significantly in the rhizosphere soilsamong different tree species compositions. In PA microbial diversity was significantly higherthan in P, in the contrest in PAW and PW. Microbial diversity in rhizosphere soil wassignificantly higher than bulk soils in tree species compostions tested. There were significant positive correlations between L-asparaginase, protease enzyme activities, and soil microbialbiomass in the rhizosphere soils.
     (4)For the same sampling time, a significant difference in all measured chemicalproperties between rhizosphere and bulk soils of all three poplar colones were observed, exceptfor soils sampled in the middle of July2011. Generally, the pH value in the rhizosphere soils aresignificantly lower than in the bulk soils, on the anther hand the concentrations of NO3-N,NH4+-N and inorganic N were significantly higher in the rhizosphere than in bulk soils.Concentrations of NO3-N and NH4+-N in the rhizosphere showed significant variations amongdifferent sampling times, but clonal variation in these concentrations was not significant amongthe rhizosphere soils of the three tested poplar clones. There were significant differences inpotential net nitrogen mineralization and nitrification rate between the rhizosphere soils and bulksoils tested. The potential net nitrogen mineralization rate in NL80351was more than150%greater than the values of clones75, Nanlin-895and bulk soil at three sampling times. However,nitrogen nitrification rate was warkedly lower in the rhizosphere soils compared to bulk soils. Nosignificant seasonal variations in nitrogen nitrification rate was founded for each poplar clones aswell as for bulk soil, whereas a significant difference in net nitrogen mineralization rate amongthe three different sampling times for clones Nanlin-895and NL80351were observed.
     (5)The trends of microbial biomass among three poplar clones at all sampling times weresimilar, which was Nanlin-895>75> NL80351and rhizosphere soil> bulk soil. MBN and MBCof all three poplar clones were significantly higher in winter than summer or spring. Seasonalvariation had extremely significant influence on microbial biomass and soil enzyme activities ofall poplar rhizosphere soil. There was a significant difference in microbial C/N ratio in bothrhizosphere and bulk soils for all three poplar clones among different sampling times. Thehighest C/N ratio appeared in later October2010, while the lowest was observed in middle July2011, where the C/N ratios for three poplar clones were below5.0. Significant variations in thecontents of MBC and MBN as well as the C/N ratio were observed between rhizosphere and bulksoil for all tested poplar clones. In the rhizosphere soil, significant differences in tested enzymes(means of three poplar clones) were observed among three sampling times, and the greatestenzyme activities always appeared in the middle July2011. However, seasonal dynamics of theenzyme activities varied among the poplar clones.
     (6)Soil microbial bacteria and fungi diversities varied significantly in the rhizosphere soilsamong different three poplar clones in the same sampling time. In the early November of2010,Nanlin-895was observed significantly higher than in75and NL80351. In the later march of2011, Soil microbial bacteria and fungi diversities in the rhizosphere of Nanlin-895and NL80351were significantly higher than in75clones. Significant difference in microbial diversity was notobserved between Nanlin-895and NL80351. For the seasonal aspects, rhizosphere soil microbialdiversity of all three poplar clones was significantly higher in winter than in summer or spring.
     (7)RSMIs were estimated from various sampling positions of rhizosphere soils. The RSMIvalue varied from0.23to0.66for the rhizosphere soil sampled within0-2mm to the root mats,0.27-0.65within the0-4mm, and0.39-0.59within the0-10mm, respectively. However, a significant difference in RSMI was observed among the five tree species for all samplingpositions of rhizosphere soils. All the highest RSMI occurred in Nanlin-895, while the lowestwas found in alder. A significant difference in microbial biomass and enzymatic activities wasobserved among the three sampling positions. However little difference in microbial biomass andtested enzymes was detected between the0-2mm and2-4mm distances to the root mats. Resultsfrom this study suggest that defining the soil at0-4mm distance from the root mats asrhizosphere soil should be more reliable for this in situ rhizobox design and experiment.Microbial properties of rhizosphere soil are significantly affected by trees species. MBC, pH,MBN/TN, MBC/MBN and MBC/SOC could be important properties for appraising rhizospheresoil quality of seasonal flooded lands. The RSMI calculated by integrating microbial propertiessuggested that two poplar clones (Nanlin-895and75) and a willow clone (Salix×jiangsuensiscv. J799) could be used for afforestation at seasonal flooded lands of Yangtse River.
引文
[1]方升佐.中国杨树人工林培育技术研究进展[J].应用生态学报,2008,19(10):2308-2316.
    [2]孙翠玲,朱占军,王珍,等.杨树人工林地力退化及维护与提高土壤肥力技术的研究[J].林业科学,1995,31(6):506-512.
    [3]樊奔,高喜荣,郭良,等.施肥对杨树人工林土壤养分及环境影响的研究[J].林业科学,1999,35(专刊):101-105.
    [4]刘福德,姜岳忠,王华田,等.杨树人工林连作地力维持技术探讨[J].林业科学,2007,43(3):58-64.
    [5]庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养学报,2000,6(4):476-480.
    [6]Buyer J S, Drinkr L E. Comparison of substrate utilization assay and fatty acid analysis of soil microbialcommunities[J]. Journal of Microbiological Methods,1997,30:3-11.
    [7]Harris J A. Measurements of the soil microbial community for estimating the success of restoration[J].European Journal of Soil Science,2003,54:801-808.
    [8]Jenkinson D S. The determination of microbial biomass carbon and nitrogen in soil. Advances in NitrogenCycling in Agricultural Ecosystems[J]. C A B International, Wallingford,1988,368-386.
    [9]Chander K, Brookes P C, Harding S A. Microbial biomass dynamics following addition of medal2enrichedsewage sludge to as an dyloma[J]. Soil Biology and Biochemistry,1995,27:7-14.
    [10]Schloter M, Dilly O, Munch J C. Indicators for evaluating soil quality[J]. Agriculture Ecosystems andEnvironment,2003,98:255-262.
    [11]Doran J W, Coleman D C, ezdicek D F, Stewart B A. Defining soil quality for a sustainable Environmentsoil of society of America publication[J]. Soil Biology and Biochemistry,1995,35(8):1409-141.
    [12]Dilly O, Munch J C. Microbial biomass content, basal respiration and enzyme activities during the courseof decomposition of leaf litter in a black alder forest[J]. Soil biology and Biochemistry,1996,28(8):1073-1081.
    [13]Dilly O, Munch J C. Ratios between estimates of microbial biomass content and microbial activity insoils[J]. Biology and Fertility of Soils,1998,27:374-379.
    [14]Van Bruggen A H C, Semenov A M. In search of biological indicators for soil health and diseasesuppression[J]. Applied Soil Ecology,2000,15:13-24.
    [15]Schloter M, Dilly O, Munch J C. Indicators for evaluating soil quality[J]. Agriculture Ecosystems andEnvironment,2003,98:256-262.
    [16]Bossio D A, Girvan M S, Verchot L. Soil Microbial Community Response to Land Use Change in anAgricultural Landscape of Western Kenya[J]. Microbial Ecology,2005,28:1256-1262.
    [17]Han X G,Huang J H. Advanced in the effects of organisms in pedosphere on the decomposition of soilorganics[J]. Advanced plant science,2007,2:132-139.
    [18]Tanja A J,Krift V D,Frank B. The effect of microbial species on soil nitrogen mineralization[J]. Ecology,2001,89:555-561.
    [19]Riley D, Barber A. soil science methods[J]. American Mathematical Society,1966,33:900-908.
    [20]Miller M H. The Plant and Its Environment[M]. New York: Academic Press,1974,643-668.
    [21]Shane M W, Lambers H. Cluster Roots: A Curiosity in Context[J]. Plant and soil,2005,274:101-125.
    [22]Gomes N C. Dynamics of fungal communities in bulk and maze rhizosphere soil in the tropics[J]. AppliedEnvironmental Microbial,2003,69:3758-66.
    [23]Grayston S J. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biologyand Biochemistry,1998,30,369-378.
    [24]钦绳武,刘芷宇.土壤-根系微区养分状况的研究[J].土壤学报,1984,21(3):238-246.
    [25]范晓晖,施卫明,刘芷宇.石灰性土壤上植物根际中Fe,Mn的形态分布及其与植物吸收的关系[J].应用生态学报,1994,5(l):62-67.
    [26]石英,沈其荣,茆泽圣,等.早作水稻根际土壤钱态氮和硝态氮的时空变异[J].中国农业科学,2002,35(5):520-524.
    [27]Zoysa A K N, loganathan P, Hedley M J. A technique for studying rhizosphere processes in tree crops: soilphosphorus depletion around camellia (Camellia japonica) root[J]. Plant Soil,1997,190:253-265.
    [28]Avini I, Raviv. Limitations and potential of in situ rhizobox sampling for assessing microbial activity infruit tree rhizosphere[J]. Plant Soil,2006,279:327-332.
    [29]庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响[J].植物营养学报,2000,6(4):476-480.
    [30]马万里.土壤微生物多样性研究的新方法[J].土壤学报,2004,41(1):18-25.
    [31]郑洪元,张德生,郑莲娣.人参连栽对土壤生物化学活性影响的研究[J].土壤通报,1982,1:12-14.
    [32]Vossbrinck C R, Coleman D C, Woolley T A. An biotic and biotic factors in litter decomposition in asemiarid grassland[J]. Ecology,1979,60:265-271.
    [33]许光辉,郑洪元,张德生,卢耀波,等.长白山北坡自然保护区森林土壤微生物生态分布及其生化特性的究[J].生态学报,1984,4(3):207-223.
    [34]Scholle G, Wolters V, Joergensen R G. Effects of mesofauna exclusion on the microbial biomass in twomodern profiles[J]. Biology and Fertility of Soils,1992,12:253-260.
    [35]Singh J S, Raghubanshi A S, Singh R S, Srivastava S C. Microbial biomass acts as a Source of plantnutrients in dry tropical forestry and savanna[J]. Nature(London),1989,338:499-500.
    [36]Roy S, Singh J S. Consequences of habitat heterogeneity for availability of nutrients in a dry tropicalforest[J]. Journal of Ecology,1994,82:503-509.
    [37]Abbott L K, Murphy D V. Soil Biological Fertility[M]. Netherlands: Kluwer Academic Publisher,2003.
    [38]Smith K A, Ball T, Conen F, Dobbie K E. Exchange of greenhouse gases between soil and atmosphere:interactions of soil physical factors and biological processes[J]. European Journal of Soil Science,2003,54:779-791.
    [39]Bartelt R J, Joshi J, Schmid B, Brand H, Balser T. Soil feedbacks of plant diversity on soil microbialcommunities and subsequent plant growth, Perspectives in Plant Ecology[J]. Evolution and Systematic,2005,7:27-49.
    [40]韩兴国,王智平.土壤生物多样性与微量气体(CO2、CH4、N2O)代谢[J].生物多样性,2003,1,322-332.
    [41]Boopathy R. Factors limiting bioremediation technologies[J]. Bioresearch Technology,2006,74:63-67.
    [42]樊军,郝明德.长期轮作与施肥对土壤主要微生物类群的影响[J].水土保持研究,2003,10(1):88-114.
    [43]吴晓芙,胡曰利.土壤微生物生物量作为土壤质量生物指标的研究[J].中南林学院学报,2002,22(3):51-53.
    [44]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    [45]Díaz S, Symstad A J, Chapin F S, Wardle D A, Huenneke L F. Functional diversity revealed by removalexperiments[J]. Trends in Ecology and Evolution,2003,18:140-146.
    [46]Wilson D S, Puettmann K J. Density management and biodiversity in young Douglas-fir forests: challengesof managing across scales[J]. Forestry Ecology Management,2007,246:123-134.
    [47]Jennifer M, Fratrrigo, Teri C, Monica G. Microbial community variation and its relationship with nitrogenmineralization in historically altered forests[J]. Ecology,2006,87:570-579.
    [48]Ma W K, Siciliano S D, Germida J J. A PCR–DGGE method for detecting arbuscular mycorrhizal fungi incultivated soils[J]. Soil Biology and Biochemistry.2005,37(8):1589-1597.
    [49]Royer T S, Bradley R L, Parsons W F J. Evidence that plant diversity and site productivity confer stabilityto forest floor microbial biomass[J]. Soil Biology and Biochemistry.2010,42:813-821.
    [50]Zhao Y, Li W, Zhou Z. Preliminary study on short-term dynamics of agricultural soil microbial communityby PCR-RFLP and PCR-TGGE techniques[J]. Journal of Nanjing Agricultural University,2005,28:53-57.
    [51]Haynes R J, Tregurtha R. Effects of increasing periods under intensive arable vegetable production onbiological, chemical and physical indices of soil quality[J]. Biology and Fertility of Soils,1999,28:259-266.
    [52]Guo M J, Jing C, Wang C Y, Wang G. Microbial biomass and nutrients in soil at the different stages ofsecondary forest succession in Ziwulin, northwest China[J]. Forest Ecology and Management,2005,217:117-215.
    [53]Barbhuiya A R, Barbhuiya A, Pandey H N. Dynamics of soil microbial biomass C, N and P in disturbedand undisturbed stands of a tropical wet-evergreen forest[J]. European Journal of Soil Biology,2004,40:113-121.
    [54]Allen A S, Schlesinger W H. Nutrient limitations to soil microbial biomass and activity in loblolly pineforests[J]. Soil Biology and Biochemistry,2004,36:581-589.
    [55]Elizabeth A B, Parwinder S, Benjamin R. Non-target effects of entomopathogenic nematodes on soilmicrobial community and nutrient cycling processes: A microcosm study[J]. Applied Soil Ecology,2006,36:250-257.
    [56]Annelies S, George A, Paulien J A. Rhizosphere bacterial community composition in natural stands ofCarexarenaria (sand sedge) is determined by bulk soil community composition[J]. Soil Biology andBiochemistry,2005,37:349-357.
    [57]Feike A, Cheng W X, Dale W. Plant biomass influences rhizosphere priming effects on soil organic matterdecomposition in two differently managed soils[J]. Soil Biology and Biochemistry,2006,38:2519-2526.
    [58]Jenkinson D S, Powlson D S. The effects of biotical treatment on metabolism in soil method for measuringsoil biomass[J]. Soil Biology and Biochemistry,1976,8:209-213.
    [59]Collins H P, Rasmussen P E, Douglasjr C L. Crop rotation and residue management effects on soil carbonand bacterial dynamics[J]. Soil Science Society of American Journal,1992,56:783-788.
    [60]Insam H, Domsch K H. Relationship between soil organic carbon and microbial biomass onchronosequences of reclamation sites[J]. Microbial Ecology,1988,15:177-188.
    [61]Ding M M, Yi W M, Liao L Y, Martens R. Effects of afforestation on microbial biomass and activity in soils oftropical China[J]. Soil Biology and Biochemistry,1992,24:865-872.
    [62]靳正忠,雷加强,许新文.极端干旱区防护林地土壤微生物多样性[J].生态学报,2009,8:35-43.
    [63]毕江涛,贺汉达,黄泽勇.退化生态系统植被恢复过程中土壤微生物群落活性响应[J].水土保持学报,2008,4:75-84.
    [64]Bossio D A, Scow K M, Gunapala N. Determinants of soil microbial communities: an effects of Agriculturalmanagement, season and soil type on phospholipids fatty acid profiles[J]. Microbial Ecology,1998,36:1-12.
    [65]杨靖春,张春丽,辛华,等.老参地轮作不同年限的紫穗槐对人参土壤微生物区系的影响研究[J].东北师大学报(自然科学版),1995,2:101-109.
    [66]Lal R, Reddy M V. Soil management and soil biotic processes[M]. Management of tropical ecosystems andthe beneficial soil biota,1999,67-81.
    [67]Nilsson M C, Wardle D A, Dahlberg A. Effects of plant litter species composition and diversity on the brealforest plant soil system[J]. Soil Biology and Biochemistry,1999,30:635-642.
    [68]Sderberg K H, Probanza A, Jumpponen A. The microbial community in the rhizosphere determined bycommunity-level physiological profiles(CLPP) and PLFA techniques[J]. Applied Soil Ecology,2004,25:135-145.
    [69]赵勇,李武,周志华,等.秸秆还田后土壤微生物群落结构变化的初步研究[J].农业环境科学学报,2005,24(6):1114-1118.
    [70]郑华,欧阳志云,王效科,等.不同森林恢复类型对土壤微生物群落的影响[J].应用生态学报,2004,15:2019-2024.
    [71]Rao M A, Violante A, Gianfreda L. Interaction of acid phosphatase with clays, organic molecules andorgano mineral complexes: Kinetics and stability[J]. Soil Biology and Biochemistry,2000,32:1007-1014.
    [72]蒲小鹏,胡自天.高寒草甸土壤酶活性分析[J].土壤学报,26,2006,6:7-9.
    [73]周志彬,徐新文.塔里木沙漠公路防护林土壤酶分布特征及其与有机质的关系[J].水土保持学报,2004,18(5):10-14.
    [74]安韶山,黄懿梅,刘梦云.宁南宽谷丘陵区植被恢复中土壤酶活性的响应及其评价[J].水土保持研究,2005,(3):32-35.
    [75]Bergstrom D W, Monreal C M, King D J. Sensitivity of soil enzyme activities to conservation practices[J].Soil Science Society of American Journal,1998,62:1286-1295.
    [76]Bossio D A, Fleck J A, Scow K M, Fuji R. Alteration of soil microbial communities and water quality inrestored wetlands[J]. Soil Biology and Biochemistry,2006,38:1223-1233.
    [77]Ingestad T.Plant Grow in Relation to Nitrogen Supply In Clark Terrestrial Nitrogen Cycles [J] SoilBiology and Biochemistry,1981,33(303):268-271.
    [78]李仁岗,王淑敏等.冬小麦对土壤氮和肥料氮的吸收及氮素平衡的研究[J].土壤通报,1982,13(4):122-124.
    [79]刘芳.小麦吸收肥料氮和土壤氮的探讨[J].核农学报,1994,15(2):81-84.
    [80]田茂洁.土壤氮素矿化影响因子研究进展[J].西华师范大学学报(自然科学版).2004,(3):298-303.
    [81]李辉信,毛小芳,胡锋等.食用菌线虫与真菌的相互作用及其对土壤氮素矿化的影响[J].应用生态学报.2004,15(12):2304-230.
    [82]Murphy D S, Parling G. Stratification of microbial biomass C and N and gross N mineralization with soildeath in two contrasting Western Australian agriculture soils[J]. Australia Journal of Soil Research,1999,36:45-55.
    [83]杨凯,朱教君,张金鑫,等.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化[J].生态学报,2009,29(10):5500-5507.
    [84]Pumomo E, Blaek A S, Conyers M K. The distribution of net nitrogen mineralization within surface soil:Factors influencing the distribution of net N mineralization[J].Australian Journal soil Research.2000,38:643-652.
    [85]Flynn R.W.S,Haynes R J,ConnorT G. Burning causes long term changes in soil organic Matter content ofSouth African grassland[J]. Applied Soil Ecology,2006,31(3):220-227.
    [86]Zak D R, Holmes W E, White D C. Plant diversity, soil microbial communities, and ecosystem function:Are there any links?[J]. Ecology,2003,84:2042-2050.
    [87]王光华,金剑,徐美娜,等.植物、土壤及土壤管理对土壤微生物群落结构的影响[J].生态学杂志,2006,25(5):550-556.
    [88]Vance E.D. An extraction method for measuring soil microbial biomass C[J]. Soil Biology andBiochemistry,1987,19:703-707.
    [89]Wu J. The turnover of organic C in soils[M]. University of Reading, UK,1991.
    [90]Brookes P C. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method tomeasure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry,1985,17:837-842.
    [91]Anderson J P E, Domsch K H A. Physiological biological method for the quantitative measure of microbialbiomass in soils[J]. Soil Biology and Biochemistry,1978,10:215-221.
    [92]Banerjee M R, Burton D L, Depoe S. Impact of sewage sludge application on soil biologicalcharacteristics[J]. Agricultural Ecosystem of Environment,1997,66:241-249.
    [93]Busse M D, Ratcliff A W. Shestak C J, Powers R F. Glyph sate toxicity and the effects of long-termvegetation control on soil microbial communities[J]. Soil Biology and Biochemistry,2001,33(12-13):1777-1789.
    [94]姚斌,汪海珍,徐建民,等.除草剂对水稻土微生物的影响[J].环境科学学报,2004,24(2):349-359.
    [95]White D C, Stair J0, Itingelberg D B. Quantitative comparisons of in situ microbial biodiversity bysignature biomarker analysis[J]. Journal of Indus Microbiology,1996,17:185-196.
    [96]Ringelberg D B, Davis J D, Smith G A. Validation of signature polar lipid fatty acid biomarkers foralkane-utilizing bacteria in soils and subsurface aquifer materials[J]. FEMS Microbiology Ecology,1989,62:39-50.
    [97]Bligh E G, Dyer W J A. rapid method of total lipid extraction and purification[J]. Canadian Journal ofBiochemistry Physiology,1959,37:911-917.
    [98]Werker A C, Hall E R. Quantifying Population Dynamics Based on Community StructureFingerprints Extracted from Biosolids Samples[J]. Microbial Ecology,2001,41:195-209.
    [99]Waid J S. Does soil biodiversity depend upon metabolic activity and influences[J]. Appl Soil Ecol,1999,13:151-158.
    [100]Gall J G, Pardue M L. Formation of RNA-DNA hybrid molecules in cytogenetical Preparations[J].Proceedings of the National Academy of Science of USA,1969,63:378-383.
    [101]Uphoff H U, Felske A, Fehr W. The microbial diversity in picoplankton enrichment cultures a molecularscreening of marine isolates[J].FEMS Microbiology Ecology.2001,35;29-258.
    [102]Muyzer G, Ellen C D W, Andre G U. Profiling of complex microbial populations by denaturing gradientgel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16SrRNA[J].Applied Environmental Microbiology,1993,59(3):695-700.
    [103]Backman J S K, Hermansson A, Tebbe C C, Lindgren P E. Liming induces growth of a diverse flora ofammonia-oxidizing bacteria in acid spruce forest soil as determined by SSCP and DGGE[J]. Soil Biologyand Biochemistry,2003,35(10):1337-1347.
    [104]Clegg C D, Lovell R D L, Hobbs P J. The impact of grassland management regime on the communitystructure of selected bacterial groups in soil[J]. FEMS Microbiology Ecology,2003,43(2):263-270.
    [105]Ibekwe A M, Papiernik S K, Gan J. Impact of fumigants on soil microbial Communities [J]. AppliedEnvironmental Microbiology,2001,69:3245-3257.
    [106]贾建丽,李广贺,张旭.石油污染土壤生物修复的中试系统构建与运行效果[J].中国环境科学,2005,25(3):339-342.
    [107]Buckley D H, Schmidt T M. The structure of microbial evolution, diversity, and ecology: A decade ofribosomal RNA analysis of uncultivated microorganisms[J]. Microbial Ecology,1998,35:1-21.
    [108]Frank S, CHristoph C T. Effect of field inoculation with sinorhizobium meliloti L33on the composition ofbacterial communities in rhizospheres of a target plant(Medicgo sativa)and a non-targetplant(Chenopodium)linking of16SrRNA gene-based single-strand conformation polymorphismcommunity profiles to the diversity of cultivated bacteria[J]. Applied Environmental Microbiology,2000,66(8):3556-3565.
    [109]Sabine P, Stefanie K, Frank S. Succession of microbial communities during hot composting as detected byPCR single strand conformation polymorphism based genetic profiles of small-sub unit rRNA genes[J].Applied Environmental Microbiology,2000,66:930-960.
    [110]Pan M H, Wang M K, Chi Y. Soil mineral–organic matter–microbe interactions: Impacts onbiogeochemical processes and biodiversity in soils[J]. Pedobiologia,2005,49:605-639.
    [111]ülo N, Kalevi K. Leaf structure vs. nutrient relationships vary with soil conditions in temperate shrubsand trees[J]. Acta Oecologica,2003,24:209-219.
    [112]Macedo M O, Resende R S, Garcia P C. Changes in soil C and N stocks and nutrient dynamics13yearsafter recovery of degraded land using leguminous nitrogen-fixing trees [J]. Forest Ecology andManagement,2008,255:1516-1524.
    [113]Sonia M, Daniel A, Harry A J. Effects of mulching and fertilization on soil nutrients, microbial activityand rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR amplified16SrRNA genes[J]. Applied Soil Ecology,2002,31:21-28.
    [114]Kandeler E. Physiological and biochemical methods for studying soil biota and their function[M]. In: PaulA (Eds) Soil microbiology, ecology, and biochemistry(3rdedition). Academic Press, New York.2007,53-84.
    [115]Frank D A, Groffman P M. Plant rhizospheric N progress: what we don’t know and why we should care[J].Ecology,2009,90:1512-1529.
    [116]刘芷宇,李良谟,施为民.根际研究法[M].1997,南京,江苏科技出版社.339-347.
    [117]田野,张焕朝,方升佐.盐胁迫下土壤-杨树系统中离子运移与分布特征[J].南京林业大学(自然科学版),2003,27:5-9.
    [118]张金龙,田野,丁应祥.滨海土壤I-69杨根际无机磷形态分布及有效性研究[J].土壤通报,2003,34:44-47.
    [119]中国标准出版社总编室.中国国家标准汇编[M].北京;中国标准出版社.1999.
    [120]Hall J M, Killham K, Paterson E. The effect of elevated C02concentration and soil pH on the relationshipbetween plant growth and rhizosphere denitrification potential [J]. Global Change Biology,1998,4(2):209-216.
    [121]包青,郑晓光.白桦和红松根际土壤养分的林龄分布及季节动态[J].东北林业大学学报,1997,25(1):56-57.
    [122]Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities onbasis of patters of community level sole-carbon-source utilization [J]. Applied EnvironmentalMicrobiology,1991,57:2351-2359.
    [123]张学利,杨树军,张百习.我国林木根际土壤研究进展[J].沈阳农业大学学报,2002,33(6):461-465.
    [124]董兆佳,孟磊.海南蕉园根际与非根际土壤氮素含量特征[J].中国农学通报,2010,26(6):309-312.
    [125]Li L, Tang C, Rengel Z, Zhang F. Chickpea facilitates phosphorus uptake by Inter cropped wheat from anorganic phosphorus source [J]. Plant and soil,2003,248:297-303.
    [126]白尚斌.落叶松根际pH值与供磷水平及土壤磷有效性的关系[J].林业科学,2001,37(4):129-133.
    [127]刘建军,陈海滨,田呈明,等.秦岭火地塘林区主要树种根际微生态系统土壤性状研究[J].土壤侵蚀与水土保持学报,1998,4(3):52-56.
    [128]翟明普,胡延杰,武觐文,等.杨树刺槐混交林及纯林土壤养分的季节性动态研究[J].北京林业大学学报,2001,23(5):23-26
    [129]朱毅,韩敬,闫常智,等.速生杨树套栽杞柳的试验研究[J].西北林学院学报,2007,22(4):103-105.
    [130]崔浪军,梁宗锁,韩蕊莲,等.沙棘-杨树混交林生物量、林地土壤特性及其根系分布特征研究[J].林学,2003,39(6):1-7.
    [131]林培群,余雪标,刘苇.桉农间作系统对土壤性质变化的影响研究[J].广东农业科学,2010,(1):24-27.
    [132]厉婉华.栓皮栋、杉木和火炬松根际与非根际土壤氮素及pH差异的研究[J].南京林业大学学报,1996,20(2):49-52.
    [133]Sahrawat J. Nitrification in some tropical soils[J]. Plant and Soil,1982,65:281-286.
    [134]Prosser J L. Autotrophic nitrification in bacleria[J]. Advanced Microbial Physilolgy,198,30:125-181.
    [135]Lea P L. Nitrogen metabolism of Plant[M]. Oxford University Press, New York,1992, pp:1153-1861.
    [136]张福锁.植物根引起的根际pH值改变的原因及效应[J].土壤通报,1993,24(1):43-45.
    [137]程国玲,邵士文,陈永亮.水曲柳落叶松纯林与混交林根际土壤pH值变化对比[J].东北林业大学学报,2001,29(2):102-105.
    [138]巨晓棠,张福锁.中国北方土坡硝态氮的累积及其对环境的影响[J].生态环境,2003,12(1):22-28.
    [139]Nancy J. Relation between mineral N content and N mineralization rate in disturbed and undisturbed soilsamples incubated under field and laboratory condition[J]. Australia Journal Soil Research,1992,30:70-92.
    [140]李贵才,韩兴国,黄建辉,等.森林生态系统土壤氮矿化影响因素研究进展闭[J].生态学报,2001,21(7):1187-1195.
    [141]Satefanic F, Eliade G, Chirnoganu I. Researches concerning a biological index of soil fertility [A]. In5thSymp. On soil biology [C]. Bucharest, Romaina, February1981. Romanian National Society of SoilScience. Bucharest. Fedbreuary1981,35-45.
    [142]Doran J W, Parkin T B. Defining and assessing soil quality [A]. In:Doran J W, Coleman D C, Bezdicek DF eds. Defining soil Quality for a Sustainable Environment [C]. Soil Society of America SpetialPublication (SSSA Spec. Pub1).35.SSSA and ASA. Ma dison.Wisconsin.1994,3-21.
    [143]Parkhust C E. Bioindicators of soil health United Kingdon[M]. Oxon: C A B International,1997.
    [144]Glover L. Composition of soil microbial and fauna communities: new insight from new technologies.17thWCSS. Abstracts. Bangkok Thailand,2002,263-298.
    [145]Frankenberger J W T, Tabatabai M A. L-Asparaginase activity of soils[J]. Biololgy and Fertility of Soils,1991,11,6-12.
    [146]李振高,骆永明,滕应.土壤与环境微生物研究法[M].北京:科学出版社,2008.
    [147]林英杰,高芳,张佳蕾,等.不同种植方式对花生土壤微生物生物量及活性的影响[J].应用生态学报,2010,21(9):2323-2328.
    [148]Parham J A, Deng S P. Detection, quantification and characterization of β-glucosaminidase activity in soil[J]. Soil Biology and Biochemistry,2000,32:1183-1190.
    [149]Harris J A. Measurement of the soil microbial community for estimating the success of restoration[J].European Journal of Soil Science,2003,54:801-808.
    [150]张超兰,徐建民.外源营养物质对表征土壤质量的生物学指标的影响[J].广西农业生物科学,2004,23(1):81.
    [151]陈兴丽,周建斌,王春阳,等.黄土高原区几种不同植物残落物碳、氮矿化特性研究[J].水土保持学报,2010,24(3):109-112.
    [152]李仁洪,胡庭兴,涂利华,等.模拟氮沉降对华西雨屏区慈竹林凋落物分解的影响[J].应用生态学报,2009,20(11):2588-2593.
    [153]Edwardsk A, Mcculloch J, Kershaw G P. Soil microbial and nutrient dynamics in a wetArcticsedgemeadow in late winter and early spring [J]. Soil Biology and Biochemistry,2006,38:2843-2851.
    [154]陈国潮,何振立.红壤不同利用方式下的微生物量的研究[J].土壤通报,1998,29(6):276-278.
    [155]Wardle D A. Controls of temporal variability of the soil microbial biomass: A global synthesis [J]. SoilBiology and Biochemistry,1998,30(13):1627-1637.
    [156]Lovell R D, Jarvis S C, Bardgett R D. Soil microbial biomass and activity in long-term grassland: effectsof management changes [J]. Soil Biology and Biochemistry,1995,27(7):969-975.
    [157]Kandeler E, Tscherko D, Spiegel H. Long-term monitoring of microbial biomass, N mineralisation andenzyme activities of a Chernozem under different tillage management [J]. Biology and Fertility of Soils,1999a,28:343-351.
    [158]Bardgett R D, Lovell R D, Hobbs P J. Seasonal changes in soil microbial communities along a fertilitygradient of temperate grasslands [J]. Soil Biology and Biochemistry,1999,31:1021-1030.
    [159]Zeller V, Bardgett R D, Tappeiner U. Site and management effects on soil microbial properties ofsubalpine meadows: a study of land abandonment along a north-south gradient in the European Alps [J].Soil Biology and Biochemistry,2001,33:639-649.
    [160]任天志,Stefano G.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    [161]李东坡,陈利军,武志杰,等.不同施肥黑土微生物量氮变化特性及相关因素[J].应用生态学报,2004,15(10):1891-1896.
    [162]杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(3):152-159.
    [163]章铁,刘秀清,孙晓莉.栗茶间作模式对土壤酶活性和土壤养分的影响[J].中国农学通报,2008,24(4):265-268.
    [164]王耀生,张玉龙,黄毅.渗灌对保护地土壤脲酶和过氧化氢酶活性的影响[J].安徽农业科学,2006,34(1):103-105.
    [165]胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林土壤酶活性的季节性动态研究[J].北京林业大学学报,2001,23(5):23-26.
    [166]李志建,倪恒,周爱国.额济纳旗盆地土壤过氧化氢酶活性的垂向变化研究[J].干旱区自然与环境,2004,18(1):86-89.
    [167]何斌,温远光,袁霞.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,38(2):21-26.
    [168]胡竞辉.梨园间作芳香植物对土壤微生物、土壤酶活性与土壤养分的影响[D].北京,北京农学院,2010.
    [169]沈宏,曹志洪,徐本生.玉米生长期间土壤生物量与土壤酶变化及其相关性研究[J].应用生态学报,1999,10(4):471-474.
    [170]郭继勋,姜世成,林海俊.不同草原植被碱化草甸土的酶活性[J].应用生态学报,1997,8(4):412-416.
    [171]Zantua M L, Bremner J M. Production and persistence of urease activity of soils[J]. Soil Biology andBiochemistry,1976,8:369-374.
    [172]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.
    [173]夏文建.长期施肥对石灰性潮土某些物理化学及生物学性质的影响[D].北京,中国农业科学院,2007.
    [174]林英杰,高芳,张佳蕾,等.不同种植方式对花生土壤微生物生物量及活性的影响[J].应用生态学报,2010,21(9):2323-2328.
    [175]Harris J A. Measurement of the soil microbial community for estimating the success of restoration[J].European Journal of Soil Science,2003,54:801-808.
    [176]薛冬.茶园土壤微生物群落多样性及硝化作用研究[D].浙江大学,2007.
    [177]Tiedje J M, Asuming-Brempong S, Nusslein K. Opening the black box of soil microbial diversity[J].Applied Soil Ecology,1999,13:109-122.
    [178]张瑞福,曹慧,崔中利,等.土壤微生物总DNA的提取和纯化[J].微生物学报,2003,43(2):276-282.
    [179]Maarit R N, Ilse H, Kaisa W. Extraction and purification of DNA in rhizosphere soil samples forPCR-DGGE analysis of bacterial consortia[J]. Journal of Microbiological Methods,2001,45(1):155-165.
    [180]王光华,金剑,徐美娜,等.植物、土壤及土壤管理对土壤微生物群落结构的影响[J].生态学杂志,2006,25(5):550-556.
    [181]Bossio D A, Fleck J A, Scow K M, Fujii R. Alteration of soil microbial communities and water quality inrestored wetlands[J]. Soil Biology and Biochemistry,2006,38:1223-1233.
    [182]杨芳,徐秋芳.土壤微生物多样性研究进展[J].浙江林业科技,2001,11(6):39-41.
    [183]钟文辉,蔡祖聪.土壤管理措施及环境因素对土壤微生物多样性研究进展[J].生物多样性,2004,12(4):456-465.
    [184]Naseby D, Pascual J, Lynch J. Effect of biocontrol strains of Trichoderma on plant growth, Psnhiumoptimum populations, soil microbial communities and soil enzyme activities[J]. Journal of AppliedMicrobiology,2000,88:161-169.
    [185]Kamimura Y, Hayano K. Properties of protease extracted from tea-field soil[J]. Biology and Fertility ofSoils,2000,30(4):351-355.
    [186]Hinsinger P, Bengough A G, Vetterlein D, Young I M. Rhizosphere: biophysics, biogeochemistry andecological relevance[J]. Plant Soil,2009.321:117-152.
    [187]Norton J M, Firestone M K, N dynamics in the rhizosphere of Pinus ponderosa seedlings[J]. Soil Biologyand Biochemistry,1996,28:351-362.
    [188]Jackson L E, Burger M, Cavagnaro T R. Roots, nitrogen transformations, and ecosystem services[J].Annual Reverse Plant Biology,2008:59,341-363.
    [189]Colin B M, Dambrine E, Bienaimé S, Nys C, Turpault M P. Influence of tree roots on nitrogenmineralization[J]. Forestry Research,2003,18:260-268.
    [190]Turpault M P, Utérano C, Boudot J P, Ranger J. Influence of mature Douglas fir roots on the solid soilphase of the rhizosphere and its solution chemistry[J]. Plant Soil,2005,275:327-336.
    [191]Wang X P, Zabowski D. Nutrient composition of Douglas-fir rhizosphere and bulk soil solutions[J]. PlantSoil,1998,200:13-20.
    [192]Ehrenfeld J G, Parsons W F J, Han X G, Parmelee R W, Zhu W X. Live and dead roots in forest soilhorizons: contrasting effects on nitrogen dynamics[J]. Ecology,1997,78:348-362.
    [193]Tomme P, Warren A L, Gilke N R. Cellulose hydrolysis by bacteria and fungi[J]. Advances in MicrobialPhysiology,1995,37:2-81.
    [194]Emmerling C, Schloter M, Hartmann A, Kandeler E. Functional diversity of soil organisms—a review ofrecent research activities in Germany[J]. Journal of Plant Nutrition and Soil Science,2002,165:408-420.
    [195]Bandick A K, Dick R P. Field management effects on soil enzyme activities[J]. Soil Biology andBiochemistry,1999,31:1471-1479.
    [196]Marschner P, Grierson P F, Rengel Z. Microbial community composition and functioning intherhizosphere of three Banksia species in native woodland in Western Australia[J]. Applied Soil Ecology,2005,28:191-201.
    [197]Pavel R, Doyle J, Steinberger Y. Seasonal patterns of cellulase concentiration in desert soil[J]. SoilBiology and Biochemistry,2004,36:549-554.
    [198]Spedding T A, Hamel C, Mehuys G R. Soil microbial dynamics in maize-growing soil under differenttillage and residue management systems[J]. Soil Biology and Biochemistry,2004,36:499-512.
    [199]Holems W E,Zak D R.Soil microbial biomass dynamics and net nitrogen mineralization in northernhardwood ecosystems[J]. Soil Science Society of American Journal,1994,58:238-243.
    [200]Singh B, Sharma K. Tree growth and nutrient status of soil in a poplar (Populus deltoides Bartr.)-basedagroforestry system in Punjab, India[J]. Agroforestry Systems,2007,70(2):125-134.
    [201]Van Gestel M,Ladd J N,Amato M. Microbial biomass responses to seasonal change and imposed dryingregimes at increasing depths of undisturbed topsoil profiles[J]. Soil Biology and Biochemistry,1992,24:103-111.
    [202]Sarathchandra S U, Perrott K W, Upsdell M P. Microbiological and biochemical characteristics of a rangeof New Zealand soils under established pastures[J]. Soil Biology and Biochemistry,984,16:177–183.
    [203]Chen T H, Chiu C Y, Tian G. Seasonal dynamics of soil microbial biomass in coastal sand dune forest[J].Pedobiologia,2005,49:645-653.
    [204]Parham J A, Deng S P. Detection, quantification and characterization of beta-glucosaminidase activity insoil[J]. Soil Biology and Biochemistry,2000,32,1183-1190.
    [205]Kuzyakov Y. Review: factors affecting rhizosphere priming effects[J]. Plant Nutrient Soil Science,2002,165:382-396.
    [206]张猛,张健,刘远鹏.土壤管理方式对梨园土壤微生物和酶活性的影响[J].中国南方果树,2005,34(1):42-45.
    [207]秦燕.贺兰山西坡不同草地类型土壤酶活性特征[D].兰州,兰州大学,2007.
    [208]刘子雄.退耕还林不同模式对土壤微生物和酶活性影响研究[D].雅安,四川农业大学,2005.
    [209]王素娟,高丽,苏和.内蒙古库布齐沙地土壤蛋白酶初步研究[J].草业科学,2009,26(9):13-17.
    [210]Zantua M L, Bremner J M. Production and persistence of urease activity of soils[J]. Soil Biology andBiochemistry,1976,8:369-374.
    [211]姜海燕.大兴安岭兴安落叶松林土壤微生物与土壤酶活性研究[D].呼和浩特,内蒙古农业大学,2010.
    [212]李娟,江新荣.贵州茂兰喀斯特森林土壤微生物活性的研究[J].土壤学报,2004,41(4):597-602.
    [213]Criquet S, Ferre E, Farnet A M and Lepetit J. Annual dynamics of phosphatase activities in an evergreenoak litter: influence of biotic and abiotic factors[J]. Soil Biology and Biochemistry,2004,36:1111-1118.
    [214]Dick R P. A review: long-term effect of agricultural systems on soil biochemical and microbialparameters[J]. Agricultural Ecosystem of Envrionment,1992,40:25-36.
    [215]Kramer S and Green D M. Acid and alkaline phosphatase dynamics and their relationship to soilmicroclimate in a semiarid woodland[J]. Soil Biology and Biochemistry,2000,32:179-188.
    [216]唐敏.国槐、刺槐幼苗根系固氮酶活性的研究[J].北京林业大学学报,13(3):15-20.
    [217]Griffiths R P, Homann P S, Rile Y R. Denitrification enzyme activity of Douglas-fir and red alder forestsoils of the Pacific Northwest[J]. Soil Biology and Biochemistry,2002,30(8):1147-1157.
    [218]Marschner E R P, Crowley D E, Higashi R M. Root exudation and Physiological status of aroot-colonizing fluorescent Pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuumL)[J]. Plant and soil,1997,189:11-20.
    [219]Turner S M. Microbial population of ryegrass root surface: influence of nitrogen and phosphoroussupply[J]. Soil Biology and Biochemistry,1985,17:711-715.
    [220]姚槐应,黄昌勇.土壤微生物生态学及其实验技术[A].2006.
    [221]Dijkstra A F, Govaert, J M, Scholten G H N, Van E J D. A soil chamber for studying the bacterialdistribution in the vicinity of roots [J]. Soil Biology and Biochemistry,1987,19:351-352.
    [222]Zhang C, Liu G, Xue S, Song Z. Rhizosphere soil microbial activity under different vegetation types onthe Loess Plateau, China[J]. Geoderma,2011,161:115-125.
    [223]Yeates G, Darrah P R. Microbial changes in a model rhizosphere[J]. Soil Biology and Biochemistry,1991,23:963-971.
    [224]Garcia C, Roldan A, Hernandez T. Ability of different plant species to promote microbiological processesin semiarid soil[J]. Geoderma,2005,124,193-202.
    [225]Singh B K, Munro S, Potts J M, Millard P. Influence of grass species and soil type on rhizospheremicrobial community structure in grassland soils[J]. Applied Soil Ecology,2007,36:147-155.
    [226]Sinha S, Masto R E, Ram L C, Selvi V A, Srivastava N K, Tripathi, R C, George J. Rhizosphere soilmicrobial index of tree species in a coal mining ecosystem[J]. Soil Biology and Biochemistry,2009,41:1824-1832.
    [227]Gil-Sotres F, Trasar-Cepeda C, Leiros M C, Seoane S. Different approaches to evaluating soil qualityusing biochemical properties[J]. Soil Biology and Biochemistry,2005,37:877-887.
    [228]Bastida F, Moreno J L, Hernandez T, Garcia C. Microbiological degradation index of soils in a semiaridclimate[J]. Soil Biology and Biochemistry,2006,38:3463-3473.
    [229]Ladygina N, Hedlund K. Plant species influence microbial diversity and carbon allocation in therhizosphere[J]. Soil Biology and Biochemistry,2010,42:162-168.
    [230]Benintende S M, Benintende M C, Sterren M A, De Battista J J. Soil microbiological indicators of soilquality in four rice rotations systems[J]. Ecology Indication,2008,8:704-708.
    [231]Joergensen R G, Anderson T H, Wolters T. Carbon and nitrogen relationship in the microbial biomass ofsoils in beech (Fagus sylvatica) forests[J]. Biology Fertility Soils,1995,19:141-147.
    [232]Jones D L, Hodge A, Kuzyakov Y. Plant and mycorrhizal regulation of rhizodeposition[J]. NewPhytologist,2004,163:459-480.
    [233]Jungk A, Claassen N. Ion diffusion in the soil-root system[J]. Advances in Agronomy,1997,61:53-110.
    [234]Prasad R, Mertia R S. Dehydrogenase activity and VAM fungi in tree rhizosphere of agroforestry systemsin Indian arid zone[J]. Agro-forest Forum,2005,63:219-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700