用户名: 密码: 验证码:
外源腐胺缓解黄瓜幼苗盐胁迫伤害的光合作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化对农业生产的威胁是一个世界性的热点问题,也是影响全球生态环境的重要因素之一。近年来,随着设施园艺面积的不断扩大,我国已成为设施园艺大国。然而,由于不科学的施肥和灌溉,加之保护设施的特殊环境,导致设施土壤次生盐渍化日益严重,制约了我国设施园艺健康和可持续的发展。黄瓜(Cucumis sativus L.)是我国设施栽培面积最广的蔬菜作物之一,其根系对盐渍环境非常敏感,当土壤发生盐害时,黄瓜植株光化学效率明显降低,生长发育会受到显著抑制,严重影响了黄瓜的产量和品质。多胺(Polyamines,PAs)作为一种新型的植物生长调节物质,是生物体代谢过程中产生的一类具有强烈生物活性的低分子量脂肪族含氮碱。多胺在逆境胁迫中不仅作为一种直接的胁迫保护物质,而且作为一种信号分子间接地参与信号转导,有利于植物逆境胁迫抗性机制的构建。目前,国内外关于多胺可提高逆境胁迫下植物光合作用能力的观点已得到了普遍认可。然而,关于多胺缓解盐胁迫下植株光化学效率下降的机制至今仍缺乏深入研究。
     本文以盐敏感的黄瓜品种‘津优4号’为试材,采用营养液栽培,通过叶面喷施腐胺(putrecine,Put),研究了外源Put对盐胁迫下(75mmol·L-1NaCl)黄瓜叶片光合器官结构和功能的影响,从光合作用、叶绿体超微结构、类囊体膜脂肪酸组分、类囊体膜蛋白质组等方面,探讨外源Put调控盐胁迫下黄瓜幼苗光合器官结构和功能适应性变化的作用机制。主要结果如下:
     1.叶面喷施5~15mmol·L-1Put均能缓解盐胁迫对黄瓜植株光化学效率造成的抑制,其中以8mmol·L-1Put缓解效果最好,显著提高幼苗光合色素含量,促进盐胁迫下黄瓜幼苗的生长。
     2.盐胁迫下,叶面喷施8mmol·L-1Put显著提高黄瓜幼苗叶片最大光化学效率(Fv/Fm)、PSⅡ实际光化学效率(ΦPSH)和保护性热耗散(ΦNPQ)能力,降低非调节性热耗散(ΦNO),并且Put显著增强光耐受能力和电子传递能力,降低光损伤程度。说明外源Put通过增强盐胁迫下黄瓜幼苗叶片热耗散能力,减轻不可逆光抑制,进而缓解盐胁迫对黄瓜幼苗光化学效率的抑制。
     3.叶面喷施Put可显著提高盐胁迫下黄瓜幼苗单位反应中心电子传递速率(ETo/RC),增加原初光化学产额(Ψo)和电子传递量子产额(φEo),而降低单位反应中心的能态淬灭(DIo/RC)、单位反应中心吸收的光能(ABS/RC)和单位反应中心用于还原QA的能量(TRo/RC),使更多的能量用于光化学淬灭。表明Put能够调节盐胁迫下黄瓜幼苗原初光化学反应过程中电子传递和能量分配,优化光合器官的结构性能(PIABs),从而维持盐胁迫下具有较高的光合作用质子驱动力(DFABs)。
     4.叶面喷施Put显著降低盐胁迫下黄瓜幼苗类囊体膜十四碳烯酸、棕榈酸以及总饱和脂肪酸(SFA)的含量,提高十六碳三烯酸、亚油酸、亚麻酸以及总不饱和脂肪酸(UFA)的含量,导致UFA/SFA的比率显著增加,并且Put也降低了盐胁迫下黄瓜幼苗类囊体膜脂的氧化程度,类囊体膜上嗜锇颗粒的数量减少。这些结果表明,外源Put通过提高幼苗类囊体膜上不饱和脂肪酸组分的含量,增强膜脂的流动性,降低盐胁迫对类囊体膜的氧化破坏,维持叶绿体内基粒和基质类囊体片层的有序排列,从而提高盐胁迫下黄瓜幼苗的光化学效率。
     5.利用蓝绿温和胶凝胶电泳(BN-PAGE)和SDS-尿素-PAGE电泳技术对类囊体膜复合体蛋白亚基进行分离,总共有60多个膜蛋白点通过肉眼可见。选取差异表达的34个蛋白点进行质谱分析,结果表明,盐胁迫引起幼苗类囊体膜上能量合成和PSⅡ反应中心蛋白表达下调,如ATPase CF1、ATPase、CP47、D1、Qb和PsbA等(其中D1、CP47、Qb和PsbA膜蛋白下降幅度较大),而一些膜蛋白在盐胁迫下表达上调,如CP24蛋白、D2和LHCⅡ等。编码应答膜蛋白的基因转录分析表明,盐胁迫下,除CP47、LHCⅡ、D2和Atp1基因外,其它5个候选转录子与对应的蛋白丰度表现出了一致的变化。盐胁迫下,外源Put能够不同程度地逆转盐胁迫下类囊体膜蛋白合成和转录水平的表达。
     6.外源Put处理可显著提高盐胁迫下叶绿体内超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性,提高参与叶绿体内AsA-GSH循环的过氧化物酶(APX)、谷胱甘肽还原酶(GR)、脱氢抗坏血酸还原酶(DHAR)和单脱氢抗坏血酸还原酶(MDAR)的活性,以及增加抗坏血酸(AsA)、氧化性谷胱甘肽(GSSG)、还原性谷胱甘肽(GSH)、单脱氢抗坏血酸(DAsA)的含量,减少活性氧(ROS)的含量,显著降低盐胁迫下幼苗叶绿体内Na+和C1-含量的积累。这些结果表明,Put能够缓解盐胁迫对黄瓜幼苗光合器官诱导的氧化伤害和离子毒害。
     7.外源Put显著提高盐胁迫下黄瓜幼苗叶片NPQfast组分中高能态淬灭(qE),显著增加盐胁迫下幼苗叶片紫黄质(V)、单环氧玉米黄质(A)、玉米黄质(Z)和总的叶黄素库(V+A+Z)的含量,并提高DEPS的比率。表明Put通过调节盐胁迫下类囊体膜能态化和促进叶黄素循环耗散过剩的激发能。
     8.外源Put处理可显著增加盐胁迫下黄瓜幼苗叶绿体内和类囊体膜上束缚态、结合态多胺(Put、Spd和Spm)的含量,尤其是类囊体膜上结合态Spd和Spm,并且降低类囊体膜上束缚态和结合态Put/Spd的比率。说明Put可通过调节光合器官上不同种类、不同形态多胺含量的变化,缓解盐胁迫对黄瓜光合器官的伤害,从而保护黄瓜幼苗光合器官结构和功能的完整性。
Salinity is an important factor affecting ecological environment in the soil that threatens agricultural production, thus it is a global research focus in recent years. At present, due to the rapid development of protected cultivation and much fertilizer used in process of cultivation, the soil secondary salinization has become one of the most severe problems in the protected cultivation. Cucumber is an economically important horticultural crop and highly sensitive to salinity. The growth and development of cucumber seedlings are inhibited when they are subjected to salinity. The photochemical efficiency of cucumber is significantly declined by salinity, which severely affects yield and quality of cucumber. Polyamines as a new plant growth regulators are low molecular weight ubiquitous nitrogenous compounds with a strong biological activity in all organisms and cells. Under environmental condition, PAs act not only as a direct protective substance, but also a signaling molecule involved in signal transduction, which is conductive to the plant resistance. At present, the view that PAs could increase the photosynthesis under stress has been recognized at home and abroad. However, the mechanism of PAs alleviating the inhibition of photochemical efficiency is still unclear.
     The present study was conducted hydroponics to investigate the effects of exogenous spraying putrescine (8mM Put) on the structure and function of photo synthetic apparatus in salt-sensitive cucumber cultivar (Jinyou No.4) were exposed to NaCl stress. We discussed the interaction mechanism of adaption variation that exogenous Put regulated the changes of the structure and function of photosynthetic apparatus, chloroplast ultrastructure, thylakoid membrane fatty acid and proteome in salt-stressed cucumber plants. The main results are as follows:
     1. Spayed application of5-15mM Put could alleviate the inhibition of photochemist-ry efficiency in cucumber. Among of them,8mM Put showed the best performance, which significantly enhanced photosynthetic pigment content and improved the cucumber seedlings growth.
     2. Exogenous Put significantly enhanced the maximum quantum efficiency (Fv/Fm), the actual efficiency of photosystem Ⅱ (ΦPSⅡ) and protective heat dissipation (ΦNPQ) in the salt-stressed plants. But the destructive heat dissipation (ΦNO) and electron transport rate (ETR) were decreased by salinity. The result showed that exogenous Put could alleviate inhibition of photochemistry efficiency of cucumber through regulating heat dissipation capacity pathway.
     3. Exogenous Put could significantly increase electron transport per active reaction center (ETo/RC), and promote the primary photochemistry (Ψo) and quantum yield for electron transport (ΨEo). However, it effectively reduced non-photochemical dissipation energy (DIo/RC), the functional size of the antenna per active reaction center (ABS/RC) and light-trapping efficiency per reaction center (TRo/RC), thus promoting total photosynthetic driving force (DFABS) and the structure performance index (PIABS).These results suggested that Put could effectively alleviate the damage of salt stress on the structure and function of photosynthetic apparatus in cucumber seedlings.
     4. Foliar application of Put significantly reduced the content of tetradecane acrylic, palmitic acid and saturated fatty acids (SFA). The content of hexadecenoic acid, linoleic, linolenic and unsaturated fatty acids (UFA) and the ratio of UFA/SFA were significantly enhanced by exogenous Put treatment. The analysis of chloroplast ultrastructure showed that Put alleviated the disintegration of thylakoid grana lamellae and reduced the number of plastoglobuli in thylakoid membrane. These results indicated that Put could improve the salt tolerance of photosynthetic apparatus through enhancing the content of unsaturated fatty acid composition, thus increasing the liquidity of membrane and maintaining the ordered arrangement of grana thylakoids.
     5. Blue native polyacrylamide gel electrophoresis (BN-PAGE) and SDS-urea-PAGE were used to separate the membrane proteins, and more than60membrane proteins were visible. Among of them,34protein spots were used to identify by liquid chromatography electro-spray ionization tandem mass spectrometry. Compared with the control, salt stress down-regulated the proteins expression of energy synthesis and PSⅡ reaction center in the thylakoid membrane, such as ATPase CF1, ATPase, CP47, D1, Qb and PsbA. Among of them, proteins spots of D1, CP47, Qb and PsbA had remarkable decrease. However, some membrane proteins were up-regulated by salt stress, such as CP24, D2and LHCⅡ; analysis in transcriptional level showed except the gene of CP47, LHCII, D2and Atpl, the rest of five candidate trancripts exhibited a consistent transcription accumulation changes with the corresponding protein abundance. These results suggested that Put regulated the proteins expression to varying degree in transcription and translation levels.
     6. Exogenous Put significantly enhanced activities of SOD, POD, and CAT in chloroplast, and also was involved in increasing activities and content of APX, GR, DHAR, MDAR, AsA, GSSG, GSH, DAsA and AsA-GSH cycle, thus the levels of O2-and ROS production were decreased in the chloroplast of salt-stressed cucumber seedlings. In addition, Put treatment significantly decreased the accumulation of Na+and Cl-in chloroplast of cucumber seedlings exposed to salt stress. These results suggested that Put alleviated the oxidative damage and ion toxicity on photosynthetic apparatus of the salt-stressed cucumber seedlings.
     7. Exogenous Put significantly improved energy-dependent quenching (qE) in NPQfast component, Put also increased the composition of xanthophyll cycle and promoted the de-epoxidation (DEPS) of the xanthophyll cycle in cucumber leaves under salt stress. The result indicated that Put dissipated the excess excitation energy through regulating the protion gradient in thylakoid membrane and promoting xanthophyll cycle.
     8. Exogenous Put significantly increased free, bound and conjugated polyamines (Put, Spd and Spm) of the chloroplast and thylakoid in salt-stressed cucumber seedlings, especially the conjugated Spd and Spm. Bound and conjugated Put/Spd ratios in the thylakoids were significantly decreased by Put treatment. These results indicated that Put alleviated the salt-induced damage of photosynthetic apparatus structure though regulating levels and forms of endogenous PAs in photosynthetic apparatus.
引文
1.陈丽芳,陆巍,孙锦,郭世荣,张振兴,阳燕娟.外源亚精胺对盐胁迫下黄瓜幼苗光合作用和根叶碳水化合物积累的影响.南京农业大学学报,2011,34(3):31-36
    2.戴丹丽,刘永华,吴晓花,汪宝根,朱祝军.外源硅对锈菌诱导下豇豆叶片不同细胞器中抗氧化特征的影响.浙江大学学报,2010,36(1):96-103
    3.邓培雁,刘威,韩志国.砷胁迫下蜈蚣草光合作用的变化.生态环境,2007,16(3):775-778
    4.段九菊,郭世荣,康云艳,周国贤,刘香娥.外源亚精胺对盐胁迫下黄瓜(Cucumis sativus L.)叶绿体活性氧清除系统和结合态多胺含量的影响.生态学报,2009,29(2):653-661
    5.樊怀福.外源NO缓解黄瓜幼苗盐胁迫伤害的生理基础研究.南京农业大学博士学位论文.2007,21-25
    6.付振书,赵世杰,孟庆伟.类囊体腔的酸化与过剩激发能耗散.植物学通报,2004,21(4):486-494
    7.葛江丽,葛江丽,石雷,谷卫彬,唐宇丹,张金政,姜闯道,任大明.盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节.作物学报,2007,33(8):1272-1278
    8.龚明,丁念诚,贺子义,刘友良.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系.植物学报,1989,31(11):841-846
    9.郭世荣.无土栽培学.北京:中国农业出版社,2003,1-12
    10.黄英金,罗永锋.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系.中国水稻科学,1999,35(3):188-190
    11.黄卓烈,李明启.氯化钠对高等植物光呼吸作用的影响.植物生理学通讯,1993,29(3):214-218
    12.贾永霞,孙锦,王丽萍,束胜,郭世荣.低氧胁迫下黄瓜植株热耗散途径.应用生态学报,2011,22(3):707-712
    13.贾永霞.外源亚精胺提高黄瓜幼苗低氧胁迫耐性的生理调节功能.南京农业大学博士学位论文,2006,111-121
    14.姜超强,李杰,刘兆普,李洪燕.盐胁迫对转AtNHX1基因杨树光合特性与叶绿体超微结构的影响.西北植物学报,2010,30(2):0301-0308
    15.李伟,姜晶,李天来.不同浓度NaCl处理对番茄果实生长、产量和品质的影响.沈阳农业大学学报,2006,37(3):502-504
    16.李阳,施国新,王红霞,赵娟,袁秋红.外源亚精胺可缓解荇菜镉毒害.植物学报,2009,44(5):571-577
    17.李军,高新昊,郭世荣,张润花,王旭.外源亚精胺对盐胁迫下黄瓜幼苗光合作用的影响.生态学杂志,2007,26(10):1595-1599
    18.李东坡,武志杰,梁成华,陈利军.设施土壤生态环境特点与调控.生态学杂志,2004,23(5):192-197
    19.李式军和郭世荣主编.设施园艺学(第二版).北京:中国农业出版社,2011,393-401
    20.梁成华.保护地蔬菜生理病害诊断及防治.北京:中国农业出版社.1999,1-10
    21.林莺.NaCl对海滨锦葵光合作用特性的效应.山东师范大学:硕士学位论文,2006,10-39
    22.刘俊,周一峰,章文华,刘友良.外源多胺对盐胁迫下玉米叶绿体结合态多胺水平和光合作用的影响.西北植物学报,2006,26(2):254-258
    23.罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验.大豆科学,2001,20(3):177-182
    24.孟凡娟,庞洪影,王建中,李淑艳,王彦杰.NaCl和Na2SO4胁迫下两种刺槐叶肉细胞叶绿体超微结构.生态学报,2011,31(3):0734-0741
    25.潘瑞炽.植物生理学(第6版).北京:高等教育出版社,2008:56-69
    26.彭浩,林文芳,朱学艺.叶绿体蛋白质组研究进展.西北植物学报,2008,28(1):194-203
    27.齐欣,崔继哲,朱宏.叶绿体的蛋白质组学研究进展.现代生物医学进展,2007,7(3):440-442
    28.钱琼秋,宰文珊,朱祝军,喻景权.外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响.植物生理与分子生物学学报,2006,32(1):107-112
    29.束胜,孙锦,郭世荣,李娟,刘超杰,王长义,杜长霞.外源腐胺对盐胁迫下黄瓜幼苗叶片PSII光化学特性和体内离子分布的影响.园艺学报,2010,37(7):1065-1072
    30.孙光闻,陈日远,刘厚诚.设施蔬菜连作障碍原因及防治措施.农业工程学报,2005,21(增刊):184-188
    31.喻景权,杜尧舜.蔬菜设施栽培可持续发展中的连作障碍问题.沈阳农业大学学报,2000,31(1):124-126
    32.周国贤,郭世荣,王素平.外源多胺对低氧胁迫下黄瓜幼苗光合特性和膜脂过氧化的影响.植物学通报,2006,23(4):341-347
    33.汪天,王素平,郭世荣.孙艳军.外源亚精胺对根际低氧胁迫下黄瓜幼苗光合作用的影响.应用生态学报,2006,17(9):1609-1612
    34. Abogadallah GM. Differential regulation of photorespiratory gene expression by moderate and severe salt and drought stress in relation to oxidative stress. Plant Science,2011,180:540-547
    35. Alcazar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrian M, Tiburcio AF, Altabella T. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiology and Biochemistry,2010,48: 547-552
    36. Aldesuquy HS, Abdel-Fattah GM, Baka ZA. Changes in chlorophyll, polyamines and chloroplast ultrastructure of Puccinia striiformis induced 'green islands' on detached leaves of Triticum aestivum. Plant Physiology and Biochemistry,2000,38:613-620
    37. Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P. Heat stress:an overview of molecular responses in photosynthesis. Photosynthesis Research,2008,98(1-3): 541-550
    38. Allakhverdiev SI, Murata N. Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem Ⅱ in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2004,1657:23-32
    39. Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N. Salt stress inhibits the repair of photodamaged photosystem Ⅱ by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiology,2002,130(3):1443-1453
    40. Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N. Ionic and osmotic effects of NaCl-induced inactivation of photosystem I and II in Synechococcus sp. Plant Physiology,2000, 123(3):1047-1056
    41. Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A. A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiology,2007,145:258-265
    42. An LZ, Liu GX, Zhang MX, Chen T, Liu YH, Feng HY, Xu SJ, Qiang WY, Wang XL. Effect of enhanced UV-B radiation on polyamine content and membrane permeability in cucumber leaves. Russian Journal of Plant Physiology,2004,51(5):658-662
    43. Anderson JM, Park YI, Chow WS. Unifying model for the photo-inaction of photo-system II in vavo under steady-state photosynthesis. Photosynthesis Research,1998,56:1-13
    44. Andreadakis A, Kotzabasis, K. Changes in the biosynthesis and catabolism of polyamines in isolated plastids during chloroplast photodevelopment. Journal of Photochemistry and Photobiology B:Biology,1996,33:163-170
    45. Anjum MA. Response of Cleopatra mandarin seedlings to a polyamine-biosynthesis inhibitor under salt stress. Acta Physiology Plant,2010,32:951-959
    46. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology,2004,55:373-379
    47. Aravind P, Prasad MNV. Zinc protects chloroplasts and associated potochemical functions in cadmium exposed Ceratophyllum demersum L., a fresh water macrophyte. Plant Science,2004, 166:1321-1327
    48. Armbruster U, Pesaresi P, Pribil M, Hertle A, Leister D. Update on chloroplast research:New Tools, new topics, and new trends. Molecular Plant,2011,4:1-16
    49. Aronova EE, Shevyakova NI, Sretsenko LA, Kuznetsov VIV. Cadaverine-induced induction of superoxide dismutase gene expression in Mesembryanthemum crystallinum L. Doklady Biology Science,2005,403:1-3
    50. Asada K. Ascorbate peroxidase-a hydrogen peroxide-scavening enzyme in plants. Physiologia Plantarum,1992,85:235-241
    51. Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology,2006,141:391-396
    52. Assmann SM. Signal transduction in guard cells. Annual Review of Cell Biology,1993,9:345-375
    53. Bae H, Kim SH, Kim MS, Sicher RC, Lary D, Strem MD, Natarajan S, Bailey BA. The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiology and Biochemistry,2008,46:174-188
    54. Bais HP, Ravishankar GA. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell, Tissue and Organ Culture,2002,69(1):1-34
    55. Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J Galbraith D, Vanier C, Pereira A.
    56. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit cl (SaVHAc1) gene from the halophyte grass Spartina alterniflora Loisel. Plant Biotechnology Journal,2012, 10(4):453-464
    57. Baker NR. A possible role for photosystem Ⅱ in environmental perturbations of photosynthesis. Physiologia Plantarum,1991,81:563-570
    58. Barber J, Anderson B. Too much of a good thing:light can be bad for photosynthesis. Trends Biochemistry Science,1992,17:61-66
    59. Barber J, Nield J, Morris EP, Zheleva D, Hankamer B. The structure, function and dynamics of photosystem two. Physiologia Plantarum,1997,100:817-827
    60. Barhoumi Z, Djebali W, Chaibi W, Abdelly C, Smaoui A. Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. Journal of Plant Research,2007,120(4):529-537
    61. Beauchemin R, Gauthier A, Harnois J, Boisvert S, Govindachary S, Carpentier R. Spermine and spermidine inhibition of photosystem Ⅱ:Disassembly of the oxygen evolving complex and consequent perturbation in electron donation from Tyrz to P680+ and the quinone acceptors QA - to QB. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2007,1767:905-912
    62. Beauchemin R, Harnois J, Rouillon R, Tajmir-Riahi HA, Carpentier R. Interaction of polyamines with proteins of photosystem Ⅱ:Cation binding and photosynthetic oxygen evolution. Journal of Molecular Structure,2007,833:169-174
    63. Beigbeder A, Kotzabasis K. The influence of exogenously supplied spermine on protochlorophyllide and chlorophyll biosynthesis. Journal of Photochemistry and Photobiology B: Biology,1994,23:201-206
    64. Beigbeder A, Vavadakis M, Navakoudis EJ, Kotzabasis K. Influence of polyamine inhibitors on light-independent and light-dependent chlorophyll biosynthesis and on the photosynthetic rate. Journal of Photochemistry and Photobiology B:Biology,1995,28:235-242
    65. Berry JA, Raison JK. Responses of macrophytes to temperature. In:Lange OL, Nobel PS, Osmond CB, Ziegler H. (Eds.), Physiological Plant Ecology Ⅰ. Responses to the Physical Environment. Springer-Verlag, New York,1981, pp:277-337
    66. Besford RT, Richardson CM, Campos JL, Tiburcio AF. Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta,1993, 189(2):201-206
    67. Birecka H, Dinolfo TE, Martin WB, Frohlich MW. Polyamines and leaf senescence in pyrrolizidine alkaloid-bearing Heliotro pium plants. Phytochemistry,1984,23:991-997
    68. Block MA, Douce R, Joyard J, Rolland N. Chloroplast envelope membranes:a dynamic interface between plastids and the cytosol. Photosynthesis Research,2007,92(2):225-244
    69. Bograh A, Gingras Y, Tajmir-Riahi HA, Carpentier R. The effects of spermine and spermidine on the structure of photosystem Ⅱ proteins in relation to inhibition of electron transport. Federation of European Biochemical Societies,1997,402:41-44
    70. Boisvert S, Joly D, Leclerc S, Govindachary S, Harnois J, Carpentier R. Inhibition of the oxygen-evolving complex of photosystem Ⅱ and depletion of extrinsic polypeptides by nickel. Biometals,2007,20(6):879-889
    71. Borrell A, Culianez-Macia FA, Altabella T, Besford RT, Flores D, Tiburcio AF. Arginine decarboxylase is localized in chloroplasts. Plant Physiology,1995,109(3):771-776
    72. Bouchereau A, Azis A, Larher F, Martin-Tanguy J. Polyamines and environmental challenges: recent development. Plant Science,1999,140:103-125
    73. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254
    74. Bray S, Reid DM. The effect of salinity and CO2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris. Canadian Journal of Botany,2002(4),80:349-359
    75. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. The Plant Journal,2006,45:113-122
    76. Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress:influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta,1992,187(3):335-347
    77. Campos A, Carvajal-Vallejos PK, Villalobos E, Franco CF, Almeida AM, Coelho AV, Torne JM, Santos M. Characterization of Zea mays L. plastidial transglutaminase:interactions with thylakoid membrane proteins. Plant Biology,2010,12:708-716
    78. Casazza AP, Szczepaniak M, Miiller MG, Zucchelli G, Holzwarth AR. Energy transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem Ⅱ. Biochimica et Biophysica Acta(BBA)-Bioenergetics,2010,1797:1606-1616
    79. Cavusoglu K, K1l1c S, Kabar K. Effects of pretreatments of some growth regulators on the stomata movements of barley seedlings grown under saline (NaCl) conditions. Plant, Soil and Environment, 2007,53:524-528
    80. Chattopadhayay MK, Tiwari BS, Chattopadhayay G, Bose A, Sengupta DN, Ghosh B. Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiologia Plantarum, 2002,116:192-199
    81. Chen HX, Gao HY, An SZ, Li WJ. Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock. Photosynthetica,2004,42(1):117-122
    82. Chen X, Zhang W, Xie YJ, Lu W, Zhang RX. Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Science,2007,173:397-407
    83. Childs AC, Mehta DJ, Gerner EW. Polyamine-dependent gene expression. Cellular and Molecular Life Sciences,2003,60(7):1394-1406
    84. Christian R. Interactive effects of salinity and irradiance on photoprotection in acclimated seedlings of two sympatric mangroves. Trees-Structure and Function,2005,19(5):596-606
    85. Cochon AC, Della Penna AB, Kristoff G, Piol MN, San Martin de Viale LC, Verrengia Guerrero NR. Differential effects of paraquat on oxidative stress parameters and polyamine levels in two freshwater invertebrates. Ecotoxicology and Environmental Safety,2007,68:286-292
    86. Cramer GR, Quarrie SA. Abscisic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Functional Plant Biology,2002,29(1): 111-115
    87. Cser K, Vass Ⅰ. Radiative and non-radiative charge recombination pathways in Photosystem Ⅱ studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2007,1767:233-243
    88. Curtis PS, Lauchli A. The effect of moderate salt stress on leaf anatomy in Hibiscus cannabinus (Kenaf) and its relation to leaf area. American journal of botany,1987,74(4):538-542
    89. D'Amici GM, Timperio AM, Zolla L. Coupling of native liquid phase isoelectrofocusing and blue native polyacrylamide gel electrophoresis:a potent tool for native membrane multiprotein complex separation. Journal of Proteome Research,2008,7:1326-1340
    90. D'Haese D, Vandermeiren K, Caubergs RJ, Guisez Y, Temmerman LD, Horemans N. Non-photochemical quenching kinetics during the dark to light transition in relation to the formation of antheraxanthin and zeaxanthin. Journal of Theoretical Biology,2004,227:175-186
    91. Das A, Uchimiya H. Oxygen stress and adaptation of semi-aquatic plant:Rice (Oryza sariva). Journal of Plant Research,2002,115(5):315-320
    92. de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F, Walther TC, Mann M. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature,2008,455:1251-1254
    93. Del-Duca S, Tidu V, Bassi R, Esposito C, Serafini-Fracassini D. Identification of chlorophyll-a/b proteins as substrates of transglutaminase activity in isolated chloroplasts of Helianthus tuberosus L. Planta,1994,193(2):283-289
    94. Della-Mea M, Di-Sandro A, Dondini L, Del-Duca S, Vantini F, Bergamini C, Bassi R, Serafini-Fracassini D. A Zea mays 39-kDa thylakoid transglutaminase catalyses the modification by polyamines of light-harvesting complex II in a light-dependent way. Planta,2004,219(5):754-764
    95. Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K. Salt stress impact on the molecular structure and function of the photosynthetic apparatus-The protective role of polyamines. Biochimica et Biophysica Acta(BBA)-Bioenergetics,2007,1767:272-280
    96. Demmig-Adams B, Adams WW. Xanthophyll cycle and light stress in nature:uniform response to excess direct sunlight among higher plant species. Planta,1996,198(3):460-470
    97. Dilek U, Inci T, Atakan S. The role of external polyamines on photosynthetic responses, lipid peroxidation, protein and chlorophyll a content under the UV-A (352 nm) stress in Physcia semipinnata. Journal of Photochemistry and Photobiology B:Biology,2007,90:64-68
    98. Dimartino C, Delfine S, Alvino A, Loreto F. Photorespiration rate in spinach leaves under moderate NaCl stress. Photosynthetica,1999,36(1-2):233-242
    99. Dinakara C, Djilianov D, Bartelsa D. Photosynthesis in desiccation tolerant plants:Energy metabolism and antioxidative stress defense. Plant Science,2012,182:29^1
    100. Dondini L, Bonazzi S, Del-Duca S, Bregoli AM, Serafini-Fracassini D. Acclimation of chloroplast transglutaminase to high NaCl concentration in a polyamine-deficient variant strain of Dunaliella salinaand its wild type. Journal of Plant Physiology,2001,158:185-197
    101. Drew MC. Oxygen deficiency and root metabolism:Injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology,1997,48:223-250
    102. Du CX, Fan HF, Guo SR, Tezuka T. Applying spermidine for differential responses of antioxidant enzymes in cucumber subjected to short-term salinity. Journal of the American Society for Horticultural Science,2010,135(1):18-24
    103. Duan HG, Yuan S, Liu WJ, Xi DH, Qing DH, Liang HG, Lin HH. Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. Journal of Integrative Plant Biology,2006, 48:920-927
    104. Duan JJ, Li J, Guo SR, Kang YY. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology,2008,165:1620-1635
    105. Edreva AM, Velikova VB, Tsonov TD. Phenylamides in plants. Russian Journal of Plant Physiollogy,2007,54(3):287-301
    106. Edreva AM, Yordanov I, Kardijeva R, Gesheva, E. Heat shock responses of bean plants: involvement of free radicals, antioxidants and free radical/active oxygen scavenging systems. BiologiaPlantarum,1998,41(2):185-191
    107. Eichacker LA, Granvogl B, Mirus O, Muller BC, Miess C, Schleiff E. Hiding behind hydrophobicity:Transmembrane segments in mass spectrometry. Journal of Biological Chemistry, 2004,279(49):50915-50922
    108. Endo T, Asada K. Photosystem I and photoprotection:cyclic electron flow and water-water cycle. Photoprotection, Photoinhibition, Gene Regulation, and Enviroment,2006,21:205-221
    109. Endo T, Schreiber U, Asada K. Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii. Plant and Cell Physiology,1995,36:1253-1258
    110. Eskling M, Arvidsson PO, Akerlind HE. The xanthophyll cycle, its regulation and components. Physiologia Plantarum,1997,100:806-816
    111. Fan PX, Feng JJ, Jiang P, Chen XY, Bao H, Nie LL, Jiang D, Lv SL, Kuang TY, Li YX. Coordination of carbon fixation and nitrogen metabolism in Salicornis europaea under salinity: comparative proteomic analysis on chloroplast proteins. Proteomics,2011,11:4346-4367
    112. FAO. Land and plant nutrition management service,2008, http://www.fao.org/ag/agl/agll/spush
    113. Farooq M, Wahid A, Lee DJ. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiologiae Plantarum, 2009,31(5):937-945
    114. Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33:317-345
    115.Ferroni L, Baldisserotto C, Pantaleoni L, Billi P, Fasulo MP, Pancaldi S. High salinity alters chloroplast morphophysiology in a freshwater Kirchneriella species (Selenastraceae) from Ethiopian Lake Awasa. American Journal of Botany,2007,94:1972-1983
    116.Flores HE, Galston AW. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiology,1982,69(3):701-706
    117. Flowers TJ, Colmer TD. Salinity tolerance in halophytes. New Phytologist,2008,179:945-963
    118. Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology,2011,155:93-100
    119. Garcia-Maurino S, Monreal JA, Alvarez R, Vidal J, Echevarria C. Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation. Planta,2003,216(4):648-655
    120. Giacomelli L, Rudella A, van Wijk KJ. High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2:a comparative proteomics study. Plant Physiology,2006,141:685-701
    121. Golding AJ, Joliot P, Johnson GN. Equilibration between cytochrome f and P700 in intact leaves. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2005,1706:105-109
    122. Goldman ME, Cregar L, Nguyen D, Simo O, O'Malley S, Humphreys T. Cationic polyamines inhibit anthrax lethal factor protease. BMC Pharmacology,2006,6:1-8
    123. Gong HM, Tang YL, Wang J, Wen XG, Zhang LX, Lu CM. Characterization of photosystem Ⅱ in salt-stressed cyanobacterial Spirulina platensis cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2008,1777:488-495
    124. Groppa MD, Benavides MP. Polyamines and abiotic stress:recent advances. Amino Acids,2008, 34(1):35-45
    125. Gruszecki WI, Grudzinski W, Gospodarek M, Patyra M, Maksymiec W. Xanthophyll-induced aggregation of LHCII as a switch between light-harvesting and energy dissipation systems. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2006,1757:1504-1511
    126. Hajar AS, Zidan MA, Al-Zahruni, HS. Effect of salinity stress on the germination, growth, and some physiological activities of black cumin (Nigella sativa L.). Arab Gulf Journal of Scientific Research,1996,14:445-454
    127. Haldimann P, Feller U. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell and Environment,2004,27:1169-1183
    128. Haldimann P, Strasser RJ. Effects of anaerobiosis as probed by the polyphasic chlorophyll a fluorescence rise kinetic in pea (Pisum sativum L.). Photosynthesis Research,1999,62:67-83
    129. Hamada AM, El-Enany AE. Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biologia Plantarum,1994,36:75-81
    130. Hamdani S, Carpentier R. Interaction of methylamine with extrinsic and intrinsic subunits of photosystem Ⅱ. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2009,1787:1223-1229
    131. Hamdani S, Yaakoubi H, Carpentier R. Polyamines interaction with thylakoid proteins during stress. Journal of Photochemistry and Photobiology B:Biology,2011,104:314-319
    132. Hassan MY, Gregorio W, John B. Activity and conformational changes in chloroplast coupling factor induced by ion binding:Formation of magnesium-enzyme-phosphate-complex. Biochemistry, 1983,22:2502-2512
    133. Havaux M, Bonfils JP, Lutz C, Niyogi KK. Photodamage of the photosynthetic Apparatus and its dependence on the leaf developmental stage in the npq1Arabidopsis mutant deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiology,2000,124(1):273-284
    134. He LX, Ban Y, Inoue H, Matsuda N, Liu JH, Moriguchi T. Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry,2008,69:2133-2141
    135. He LX, Nada K, Kasukabe Y, Tachibana S. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionice decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant Cell Physiology,2002, 43(2):196-206
    136. Helbig AO, Heck AJR, Slijper M. Exploring the membrane proteome—Challenges and analytical strategies. Journal of Proteomics,2010,73:868-878
    137. Hernhdeza JA, Olmosa E, Corpasb FJ, Sevilla F, del Rio LA. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Science,1995,105(2):151-167
    138. Hetherington AM, Woodward FI. The role of stomata in sensing and driving environmental change. Nature,2003,424:901-908
    139. Hippler M, Klein J, Fink A, Allinger T, Hoerth P. Towards functional proteomics of membrane protein complexes:analysis of thylakoid membranes from chlamydomonas reinhardtii. The Plant Journal:for Cell and Molecular Biology,2001,28(5):595-606
    140. Hirschberg J. Carotenoid biosynthesis in flowering plants. Current Opinion in Plant Biology,2001, 4(3):210-218
    141. Holden M. Chlorophylls. In:Goodwin, T.W. (Ed.), Chemistry and Biochemistry of Plant Pigments, Academic Press, London,1965, pp:461-488
    142. Horner RD, Moudrianakis EN. The effect of permeant buffers on initial ATP synthesis by chloroplasts using rapid mixquench techniques. Journal of Biological Chemistry,1983,258: 11643-11647
    143. Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Takabe T, Takabe T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology,2000,43(1):103-111
    144. Huang XX, Bie ZL. Cinnamic acid-inhibited ribulose-1,5-bisphosphate carboxylase activity is mediated through decreased spermine and changes in the ratio of polyamines in cowpea. Journal of Plant Physiology,2010,167:47-53
    145. Hummel A, Amrani AE, Gouesbet G, Hennion F, Couee I. Involvement of polyamines in the interacting effects of low temperature and mineral supply on pringlea antiscorbutica (kerguelen cabbage) seedlings. Journal of Experimental Botany,2004,55:1125-1134
    146. Ioannidis NE, Kotzabasis K. Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2007,1767: 1372-1382
    147. Ioannidis NE, Ortigosa SM, Veramendi J, Pinto-Marijuan M, Fleck I, Carvajal P, Kotzabasis K, Santos M, Torne JM. Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2009,1787:1215-1222
    148. Ioannidis NE, Sfichi-Duke L, Kotzabasis K. Putrescine stimulates chemiosmotic ATP synthesis. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2006,1757:821-828
    149. Ioannidis NE, Sfichi-Duke L, Kotzabasis K. Polyamines stimulate non-photochemical quenching of chlorophyll a fluorescence in Scenedesmus obliquus. Photosynthesis research,2011,107(2): 169-175
    150. Ioannidis NE, Cruz JA, Kotzabasis K, Kramer DM. Evidence that putrescine modulates the higher plant photosynthetic proton circuit. Plos One,2012,7(1):29864-29869
    151. Iqbal M, Ashraf M. Changes in growth, photosynthetic capacity and ionic relation in spring wheat {Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regulation, 2005,46(1):19-30
    152. Islam MA, Blake TJ, Kocacinar F, Lada R. Ambiol, spermine, and aminoethoxyvinylglycine prevent water stress and protect membranes in Pius strobes L.under droght. Trees-Structure and Function,2003,17(3):278-284
    153. Jansen MAK, Mattoo AK, Edelman M. D1-D2 protein degradation in the chloroplast complex light saturation kinetics. European Journal of Biochemistry,1999,260:527-532
    154. Jeanjean R, Matthijs HCP, Onana B, Havaux M, Joset F. Exposure of the cyanobacterium Synechocystis PCC6803 to salt stress induces concerted changes in respiration and photosynthesis. Plant and Cell Physiology,1993,34:1073-1079
    155. Johnson GN. Reprint of:Physiology of PSI cyclic electron transport in higher plants. Biochimica et BiophysicaActa (BBA)-Bioenergetics,2011,1807:906-911
    156. Joset F, Jeanjean R, Hagemann M. Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiologia Plantarum,1996,96:738-744
    157. Kalituho L, Grasses T, Graf M, Rech J, Jahns P. Characterization of a nonphotochemical quenching-deficient Arabidopsis mutant possessing an intact PsbS protein, xanthophyll cycle and lumen acidification. Planta,2006,223:532-541
    158. Kasinathan V, Wingler A. Effect of reduced arginine decarboxylase activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Physiologia Plantarum,2004,121: 101-107
    159. Kasukabe Y, He LX, Nada K, Misawa S, Ihara I, Tachibana S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant and Cell Physiology,2004, 45:712-722
    160. Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston AW. Polyamines in plants:An overview. Journal of Cell and Molecular Biology,2003,2:1-12
    161. Kenji Takizawa K, Takahashi S, Huner NPA, Minagawa J. Salinity affects the photoacclimation of Chlamydomonas raudensis Ettl UWO241. Photosynthesis Research,2009,99(3):195-203
    162. Khan MA, Ungar IA. Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions. American Journal of Botany,1997,84(2):279-283
    163. Kilic S, Cavusoglu K, Kabar K. Effects of 24-epibrassinolide on salinity stress induced inhibition of seed germination, seedling growth and leaf anatomy of barley. SDU, Faculty of Arts and Science J. Sci,2007,2:41-52
    164. Kirchhoff H, Haase W, Haferkamp S, Schoot T, Borinski M, Kubitscheck U, Rogner M. Structural and functional self-organization of photosystem Ⅱ in grana thylakoids. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2007,1767:1180-1188
    165. Kirchhoff H, Hinz HJ, Rosgen J. Aggregation and fluorescence quenching of chlorophyll a of the light-harvesting complex Ⅱ from spinach in vitro. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2003,1606:105-116
    166. Kolchevskii KG, Koroleva OY, Kocharyan NI. Effect of salinity on photosynthetic characteristics and ion accumulation in C3 and C4 plants of Ararat plain. Photosynthetica,1995,31(2):277-282
    167. Kotzabasis K, Fotinou C, Roubelakis-Angelaki KA, Ghanotakis D. Polyamines in the photosynthetic apparatus. Photosynthesis Research,1993,38(1):83-88
    168. Kotzabasis K, Strasser B, Navakoudis E, Senger H, Dorneman ND. The regulatory role of polyamines in structure and functioning of the photosynthetic apparatus during photoadaptation. Journal of Photochemistry and Photobiology B:Biology,1999,50:45-52
    169. Koyro HW. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus L. Environmental and Experimental Botany, 2006,56:136-146
    170. Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation. Nature,1996,384: 557-560
    171. Kramer DM, Evans JR. The importance of energy balance in improving photosynthetic productivity. Plant Physiology,2011,155(1):70-78
    172. Kramer DM, Johnson G, Kiirats O, Edwards GE. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research,2004,79(2): 209-218
    173. Kramer DM, Sacksteder CA, Cruz JA. How acidic is the lumen? Photosynthesis research,1999, 60(2-3):151-163
    174. Kranner I, Grill D. Determination of glutathione and glutathione disulphide in lichens:a comparison of frequently used methods. Phytochemical Analysis,1996,7:24-28
    175. Krieger A, Moya Ⅰ, Weis E. Energy-dependent quenching of chlorophyll a fluorescence:effect of pH on stationary fluorescence and picosecond-relaxation kinetics in thylakoid membranes and photosystem Ⅱ preparations. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1992,1102: 167-176
    176. Kruk J, Szymanska R. Singlet oxygen and non-photochemical quenching contribute to oxidation of the plastoquinone-pool under high light stress in Arabidopsis. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2012,1817(5):705-710
    177. Kuznetsov VIV, Shevyakova NI. Polyamines and plant adaptation to saline environments. Desert Plants,2010,3:261-298
    178. Kuznetsov VIV, Shorina M, Aronova E, Stetsenko L, Rakitin V, Shevyakova NI. NaCl and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress. Plant Science,2007,172:363-370
    179. Laasch H, Weis E. Differential sensitivity to dibucaine of photosynthetic control of electron transport and photophosphorylation in chloroplasts. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1998,936:99-107
    180. Lakra N, Mishra SN, Singh DB, Tomar PC. Exogenous putrescine effect on cation concentration in leaf of Brassica juncea seedlings subjected to Cd and Pb along with salinity stress. Journal of Experimental Botany,2006,27:263-269
    181.Lakshmi A, Ramanjulu S, Veeranjaneyulu K, Sudhakar C. Effect of NaCl on photosynthesis parameters in two cultivars of mulberry. Photosynthetica,1996,32(2):285-289
    182. Langebartels C, Kerner KJ, Leonardi S, Schraudner M, Trost M, Heiller W, Sanderman H. Biochemical plant response to ozone. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiology,1991,9:882-887
    183. Lao JC. Manual of chemical analysis in soil. Beijing:Agricultural Press,1988,656-657
    184. Lee HS, Milborrow BV. Endogenous biosynthetic precursors of (+)-Abscisic acid.IV. Biosynthesis of ABA from [2Hn] carotenoids by a cell-free system from avocado. Russian Journal of Plant Physiology,1997,24:715-726
    185. Legocka J, Sobieszczuk-Nowicka E. Sorbitol and NaCl stresses affect free, microsome-associated and thylakoid-associated polyamine content in Zea mays and Phaseolus vulgaris. Acta Physiologiae Plantarum,2012, doi:10.1007/s 11738-011-0911-9
    186. Legocka J, Zajchert Ⅰ. Role of spermidine in the stabilization of apoprotein of the light-harvesting chlorophyll a/b-protein complex of photosystem Ⅱ during leaf senescence process. Acta Physiologiae Plantarum,1999,21(2):127-132
    187. Lemeer S, Jopling C, Gouw J, Mohammed S, Heck AJR, Slijper M, den Hertog J. Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Molecular and Cellular Proteomics,2008,7(11):2176-2187
    188. Li NY, Chen SL, Zhou XY, Li CY, Shao J, Wang RG, Fritz E, Huttermann A, Polle A. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza. Aquatic Botany,2008,88:303-310
    189. Li Z, Nada K, Tachibana S. High-temperature-induced alteration of ABA and polyamine contents in leaves and its implication in thermal acclimation of photosynthesis in cucumber (Cucumis sativas L.). Journal of the Japanese Society for Horticultural Science,2003,72(5):393-401
    190. Lichtenthaler HK. Biosynthesis, accumulation and emission of carotenoids, tocopherol, plastoquinone and isoprene in leaves under high photosynthetic irradiance. Photosynthesis Research,2007,92(2):163-179
    191. Lindemose S, Nielson PE, Mollegaard NE. Polyamines preferentially interact with bent adenine tracts in double-stranded DNA. Nucleic Acids Research,2005,33:1790-1803
    192. Liu K, Fu HH, Bei QX, Luan S. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiology,2000,124(3):1315-1326
    193. Logothetis K, Dakanali S, loannidis N, Kotzabasis K. The impact of high CO2 concentration on the structure and function of the photosynthetic apparatus and the regulatory role of polyamines. Journal of Plant Physiology,2004,161:715-724
    194. Lopatin AN, Makhina EN, Nichols CG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature,1994,372:366-369
    195. Lu CM, Qiu NW, Lu QT, Wang BS, Kuang TY. Does salt stress lead to increased susceptibility of photosystem Ⅱ to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Science,2002,163:1063-1068
    196. Lu CM, Vonshak A. Characterization of PSII photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. New Phytologist,1999,141:231-239
    197. Lu CM, Vonshak A. Effects of salinity stress on photosystem Ⅱ function in cyanobacterial Spirulina platensis cells. Physiologia plantarum,2002,114:405-413
    198. Lunde C, Jensen PE, Rosgaard L, Haldrup A, Gilpin MJ, Scheller HV. Plants impaired in state transitions can to a large degree compensate for their defect. Plant and Cell Physiology,2003,44(1): 44-54
    199. Lutz C, Navakoudis E, Seidlitz HK, Kotzabasis K. Simulated solar irradiation with enhanced UV-B adjust plastid-and thylakoid-associated polyamine changes for UV-B protection. Biochimica et BiophysicaActa(BBA)-Bioenergetics,2005,1710:24-33
    200. Ma HY, Song LR, Shu YJ, Wang S, Niu J, Wang ZK, Yu T, Gu WH, Ma H. Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. Journal of Proteomics,2012, 75:1529-1546
    201. Mansfield TA, Hetherington AM, Atkinson CJ. Some current aspects of stomatal physiology. Annual Reviewof Plant Physiology and Plant Molecular Biology,1990,41:55-75
    202. Mapelli S, Brambilla IM, Radyukina NL, Ivanov YV, Kartashov AV, Reggiani R, Kuznetsov VV. Free and bound polyamines changes in different plants as a consequence of UV-B light irradiation. General and Applied Plant physiology,2008,34(1-2):55-66
    203. Mathur S, Allakhverdiev SI, Jajoo A. Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochimica et Biophysica Acta (BBA)-Bioenergetics,2011,1807:22-29
    204. Maxwell K, Johnson G. Chlorophyll fluorescence. A practical guide. Journal of Experimental Botany,2000,51:659-668
    205. Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany,2000,51:659-668
    206. Megdiche W, Hessini K, Gharbi F, Jaleel CA, Ksouri R, Abdelly C. Photosynthesis and photosystem 2 efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes. Photosynthetica,2008,46(3):410-419
    207. Mehta P, Jajoo A, Mathur S, Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem Ⅱ in wheat leaves. Plant Physiology and Biochemistry,2010,48:16-20
    208. Meloni DA, Oliva MA, Martinez CA, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany,2003,49:69-76
    209. Mert HH. Photosynthesis and photorespiration in two cultivars of cotton under salt stress. Biologia Plantarum,1989,31(5):413-414
    210. Meskauskiene R, Nater M, Goslings D, Kessler F, Camp R, Apel K. A negative regulator of chlorophyll biosynthesis in arabidopsis thaliana. Proceedings of the National Academy of Sciences of the Untied States of America,2001,98(22):12826-12831
    211.Mishra SK, Subralimanyam D, Singhal GS. Interactionship between salt and light stress on the primary process of photosynthesis. Journal of Plant Physiology,1991,138:92-96
    212. Misra AJ, Sahu SM, Misra M, Singh P, Meera Ⅰ, Das N, Kar M, Shau P. Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biologia plantarum, 1997,39(2):257-262
    213. Mitsuya S, Takeoka Y, Miyake H. Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas L.) plantlets grown under light and dark conditions in vitro. Journal of Plant Physiology,2000,157:661-667
    214. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7: 405-410
    215. Mrah S, Ouerghi Z, Berthomieu C, Havaux M, Junga C, Hajji M, Grignon C, Lachaa M. Effects of NaCl on the growth, ion accumulation and photosynthetic parameters of Thellungiella halophila. Journal of Plant Physiology,2006,163:1022-1031
    216. Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology,2008,59: 651-81
    217. Munns R. Comparative physiology of salt and water stress. Plant, Cell and Environment,2002,25: 239-250
    218. Munzi S, Pirintsos SA, Loppi S. Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen xanthoria parietina under nitrogen stress. Ecotoxicology and Environmental Safety, 2009,72:281-285
    219. Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2007,1767:414-421
    220. Murchie EH, Niyogi KK. Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology,2011,155(1):86-92
    221.Murkowski A. Heat stress and spermidine:effect on chlorophyll fluorescence in tomato plants. Biologia Plantarum,2001,44(1):53-57
    222. Navakoudis E, Liitz C, Langebartels C, Litz-Meindl U, Kotzabasis K. Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2003,1621:160-169
    223. Navakoudis E, Vrentzou K, Kotzabasis K. A polyamine-and LHCII protease activity-based mechanism regulates the plasticity and adaptation status of the photosynthetic apparatus. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2007,1767:261-271
    224. Ndayiragije A, Lutts S. Exogenous putrescine reduces sodium and chloride accumulation in NaCl treated calli of the salt-sensitive rice cultivar I Kong Pao. Plant Growth Regulation,2006,48: 51-63
    225. Ortigosa SM, Diaz-Vivancos P, Clemente-Moreno MJ, Pint6-Marijuan M, Fleck I, Veramendi J, Santos M, Hernandez JA, Torne JM. Oxidative stress induced in tobacco leaves by chloroplast over-expression of maize plastidial transglutaminase. Planta,2010,232(3):593-605
    226. Panagiotis N, Moschou, Konstantinos A, Paschalidis ID, Delis AH, Andriopoulou GD, Lagiotis DI, Yakoumakis, Kalliopi A, Roubelakis A. Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in Tobacco. The Plant Cell,2008,20:1708-1724
    227. Pandey DM, Yeo UD. Stress-induced degradation of Dl protein and its photoprotection by DCPIP in isolated thylakoid membranes of barley leaf. Biologia Plantarum,2008,52 (2):291-298
    228. Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S. Specifi city of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant and Cell Physiology, 2010,51(3):422-434
    229. Pang XM, Zhang ZY, Wen XP, Ban Y, Moriguchi T. Polyamine, all-purpose players in response to environment stresses in plants. Plant Stress,2007,1(2):173-188
    230. Paramonova NV, Shevyakova NI, Kuznetsov VIV. Intrastructure of chloroplasts and their storage inclusions in the primary leaves of Mesembryanthemum crystallinum affected by putrescine and NaCl. Russian Journal of Plant Physiology,2004,51(1):86-96
    231. Paramonova NV, Shevyakova NI, Shorina MV, Stetsenko LA, Rakitin VY, Kuznetsov VIV. The effect of putrescine on the apoplast ultrastructure in the leaf mesophyll of Mesembryanthemum crystallinum L. under salinity stress. Russian Journal of Plant Physiology,2003,50(5):587-598
    232. Parida AK, Das AB, Mittra B. Effects of NaC1 stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica,2003,41(2):191-200
    233. Parida AK, Das AB, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Structure and Function,2004,18(2): 167-174
    234. Patil SB, Kodliwadmath MV, Kodliwadmath SM. Study of oxidative stress and enzymatic antioxidants in normal pregnancy. Indian Journal of Clinical Biochemistry,2007,22(1):135-137
    235. Paul V, Christian F. The role of polyamines in protein-dependent hypoxic tolerance of drosophila. BMC Physiology,2008,8:1-14
    236. Pei ZM, Kuchitsu K, Ward JM, Schwarz M, Schroeder JI. Differnential abscisic acid regulation of guard cell slow anion channels in arabidopsis wild-type and abil and abi2 mutants. The Plant Cell, 1997,9:409-423
    237. Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ. New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast and versatile fractionation strategy. Journal of Biological Chemistry,2004,279:49367-49383
    238. Perkins RG, Mouget JL, Lefebvre S, Lavaud J. Light response curve methodology and possible implications in the application of chlorophyll fluorescence to benthic diatoms. Marine Biology, 2006,10:222-227
    239. Pjon CJ, Kim SD, Pak JY. Effects of spermidine on chlorophyll content, photosynthetic activity and chloroplast ultrastructure in the dark and under light. Journal of Plant Research,1990,103(1): 43-48
    240. Putnam-Evans C, Bricher TM. Site-directed mutagenesis of the basic residues 321K to 321G in the CP47 protein of photosystem Ⅱ alters the chloride requirement for growth and oxygen-evolving activity in Synechocystis 6803. Plant Molecular Biology,1997,34(3):455-463
    241. Qiu NW, Lu QT, Lu CM. photosynthesis, photosystem Ⅱ efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytologist,2003,159:479-486
    242. Rabhi M, Giuntini D, Castagna A, Remorini D, Baldan B, Smaoui A, Abdelly C, Ranieri A. Sesuvium portulacastrum maintains adequate gas exchange, pigment composition, and thylakoid proteins under moderate and high salinity. Journal of Plant Physiology,2010,167:1336-1341
    243. Ralph PJ, Gademann R. Rapid light curves:A powerful tool to assess photosynthetic activity. Aquatic Botany,2005,82:222-237
    244. Raschke K, Hedrich R, Reckmann U, Schroeder JI. Exploring biophysical and biochemical components of the osmotic motor that drives stomatal movements. Botanica Acta,1998,101(4): 283-294
    245. Rejili M, Vadel AM, Guetet A, Neffatti M. Effect of NaCl on the growth and the ionic balance K+/Na+ of two populations of Lotus creticus (L.) (Papilionaceae). South African Journal of Botany, 2007,73:623-631
    246. Rexroth S, Meyer JMW, Tittingdorf Z, Krause F, Dencher NA, Seelert H. Thylakoid membrane at altered metabolic state:challenging the forgotten realms of the proteome. Electrophoresis,2003, 24:2814-2823
    247. Rouhier N, Lemaire SD, Jacquot JP. The role of glutathione in photosynthetic organisms:emerging functions for glutaredoxins and glutathionylation. Annual Review of Plant Biology,2008,59: 143-166
    248. Santamaria L, Vierssen WV. Photosynthetic temperature responses of fresh-and brackish-water macrophytes:a review. Aquatic Botany,1997,58:135-150
    249. Saroussi S, Beer S. Alpha and quantum yield of aquatic plants derived from PAM fluorometry: Uses and misuses. Aquatic Botany,2007,86:89-92
    250. Schaller S, Latowski D, Jemiola-Rzeminska M, Dawood A, Wilhelm C, Strzaika K, Goss R. Regulation of LHCII aggregation by different thylakoid membrane lipids. Biochimica et Biophysica Acta(BBA)-Bioenergetics,2011,1807:326-335
    251. Schroeder JI, Ward JM, Gassmann W. Perspectives on the physiology and structure of inward-rectifying K+channels in higher:biophysical implications for K+ uptake. Annual Reveiw of Biophysics Biomolecular Structure,1994; 23:441-471
    252. Schubert H, Fulda S, Hagemann M. Effects of adaptation to different salt concentrations on photosynthesis and pigmentation of the cyanobacterium Synechocystis sp. PCC 6083. Journal of Plant Physiology,1993,142:291-295
    253. Schubert H, Hagemann M. Salt effects on 77K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Federation of European Biochemical Societies Microbiol. Letters,1990,71:169-172
    254. Seidler A. The extrinsic polypeptides of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1996,1277:35-60
    255. Serafini-Fracassini D, Di Sandro A, Del-Duca S. Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. Plant Physiology and Biochemistry,2010,48: 602-611
    256. Sfakianaki M, Sfichi L, Kotzabasis K. The involvement of LHCII-associated polyamines in the response of the photosynthetic apparatus to low temperature. Journal of Photochemistry Photobiology B:Biology,2006,84:181-188
    257. Sfichi-Duke L, Ioannidis NE, Kotzabasis K. Fast and reversible response of thylakoid-associated polyamines during and after UV-B stress:a comparative study of the wild type and a mutant lacking chlorophyll b of unicellular green alga Scenedesmus obliquus. Planta,2008,228(2): 341-353
    258. Sfichi-Duke L, Loannidis NE, Kotzabasis K. Thylakoid-associated polyamines adjust the UV-B sensitivity of the photosynthetic apparatus by means of light-harvesting complex II changes. Photochemistry and Photobiology,2004,80:499-506
    259. Shabala S, Cuin TA, Pottosin I. Polyamines prevent NaCl-induced K+efflux from pea mesophyll by blocking non-selective cation channels. Federation of European Biochemical Societies Letters, 2007,581:1993-1999
    260. Shahbaz M, Ashraf M, Akram NA, Hanif A, Hameed S, Joham S, Rehman R. Salt-induced modulation in growth, photosynthetic capacity, proline content and ion accumulation in sunflower (Helianthus annuus L.). Acta Physiologiae Plantarum,2011,33(4):1113-1122
    261. Sharma PK, Vaz J. Effect of NaCl and exogenously supplied ABA on xanthophyll cycle pigments and energy dissipation in rice plants under high light stress. Photosynthesis, Energy from the Sun, 2008,24:1561-1566
    262. Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT. Root growth maintenance during water deficits:physiology to functional genomics. Journal of Experimental Botany,2004,55:2343-2351
    263. Shevyakova NI, Rakitin VY, Stetsenko LA, Aronova EE, Kuznetsov VV. Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCl salinity. Plant Growth Regulation,2006,50(1):69-78
    264. Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiology,2010,30(7):914-922
    265. Shi K, Gu M, Yu HJ, Jiang YP, Zhou YH, Yu JQ. Physiological mechanism of putrescine enhancement of root-zone hypoxia tolerance in cucumber plants. Scientia Agricultura Sinica,2009, 42(5):1854-1858
    266. Shikanai T. Cyclic electron transport around photosystem I:genetic approaches. Annual Review of Plant Biology,2007,58:199-217
    267. Shoal RS, Agarwal A, Agarwal S, Orr WC. Simultaneous overexpression of copper-and zinccontaining superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. The Journal of Biological Chemistry, 1995,270:15671-15674
    268. Shu S, Guo SR, Yuan LY. Polyamines and Photosynthesis. In:Mohammad Mahdi Najafpour (Ed.). Advances in Photosynthesis-Fundamental Aspects. Rijeka, InTech,2012, pp:439-464
    269. Shu S, Yuan LY, Guo SR, Sun J, Liu CJ. Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. African Journal of Biotechnology,2012,11(22):6064-6074
    270. Sibole JV, Montero E, Cabot C, Poschenrieder C, Barcelo J. Role of sodium in the ABA-mediated long-term growth response of bean to salt stress. Physiologia Plantarum,1998,104:299-305
    271. Simon P, Robinson W, John SD, Jenny AM. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed Spinach. Plant Physiology,1983,73(2):238-242
    272. Snehal J, Nimbalkar JD. Salinity effects on photosynthesis and photorespiration in Cajanus cajan. Photosynthetica,1984,18(1):128-133
    273. Sobieszczuk-Nowicka E, Wieczorek P, Legocka J. Kinetin affects the level of chloroplast polyamines and transglutaminase activity during senescence of barley leaves. Acta Biochimica Polonica,2009,56(2):255-259
    274. Sood S, Nagar PK. The effect of polyamines on leaf senescence in two diverse rose species. Plant Growth Regulation,2003,39:155-160
    275. Sopory SK, Greenberg BM, Mehta RA, Edelman M, Mattoo AK. Free radical scavengers inhibit light dependent degradation of the 32-kDa photosystem II reaction center protein. Zeitschrift fur Naturforschung. Section C, Biosciences,1990,45(5):412^17
    276. Srivastava A, Strasser RJ. Greening of peas:parallel measurements of 77K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700. Photosynthetica,1999,37:365-392
    277. Standfuss J, Terwisschavan AC, Lamborghini M, Kuehlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution. The EMBO Journal,2005,24:919-928
    278. Stepien P, Klobus G. Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. Biologia Plantarum,2006,50(4):610-616
    279. Subhan D, Murthy SDS. Effect of polyamines on chlorophyll and protein contents. Photochemical activity and energy transfer in detached wheat leaves during dark incubation. Biologia plantarum, 2001,44(4):529-533
    280. Subrahmanyam D. Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica,2008,46 (3):339-345
    281. Sudhir PR, Murthy SDS. Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 2004,42(4):481-486
    282. Sudhir PR, Pogoryelov D, Kovacs L, Garab G, Murthy SDS. The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. Journal of Biochemistry and Molecular Biology,2005,38 (4):481-485
    283. Suzuki T, Tada O, Makimura M, Tohri A, Ohta H, Yamamoto Y, Enami I. Isolation and characterization of oxygen-evolving photosystem II complexes retaining the PsbO, P and Q proteins from Euglena gracilis. Plant and Cell Physiology,2004,45:1168-1175
    284. Szalai G, Janda T, Bartok T, Paldi E. Role of light in changes in free amino acid and polyamine contents at chilling temperature in maize (Zea mays). Physiologia Plantarum,1997,101:434-438
    285. Taiz L, Zeiger E. Plant Physiology.4th ed. Sunderland (MA):Sinauer Associates, Inc.,2009, pp: 99-117
    286. Takahashi S, Bauwe H, Badger M. Impairment of the Photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant physiology,2007,144(1):487-494
    287. Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends in Plant Science,2008,13(4):178-182
    288. Takizawa K, Takahashi S, Huner NPA, Minagawa J. Salinity affects the photoacclimation of Chlamydomonas raudensis Ettl UWO241. Photosynthesis Research,2009,99(3):195-203
    289. Tang W, Newton RJ. Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regulation, 2005,46:31-43
    290. Tarek Y. Stomatal, biochemical and morphological factors limiting photosynthetic gas exchange in the mangrove associate Hibiscus tiliaceus under saline and arid environment. Aquatic Botany,2007, 87:292-298
    291. Tegelberg R, Julkunen-Tiitto R, Vartiainen M, Paunonen R, Rousi M, Kellomaki S. Exposures to elevated CO2, elevated temperature and enhanced UV-B radiation modify activities of polyphenol oxidase and guaiacol peroxidase and concentrations of chlorophylls, polyamines and soluble proteins in the leaves of Betula pendula seedlings. Environmental and Experimental Botany,2008, 62:308-315
    292. Thouvenot L, Haury J, Thiebaut G. Responses of two invasive macrophyte species to salt. Hydrobiologia,2012,686(1):213-223
    293.Tiburcio AF, Besford RT, Capell T, Borrell A, Testillano PS, Risueno MC. Mechanisms of polyamine action during senescence responses induced by osmotic stress. Journal of Experimental Botony,1994,45:1789-1800
    294. Tiburcio AF, Campos JL, Figueras X, Besford RT. Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regulation,1993,12(3):331-340
    295. Timperio AM, Gevi F, Ceci LR, Zolla L. Acclimation to intense light implies changes at the level of trimeric subunits involved in the structural organization of the main light-harvesting complex of photosystem Ⅱ (LHCII) and their isoforms. Plant Physiology and Biochemistry,2012,50:8-14
    296. Tong YW, Chen DF. Study on the cause and control of secondary saline soils in greenhouse. Acta Horticulturae Sinica,1991,18(2):159-162
    297. Tsiavos T, Ioannidis NE, Kotzabasis K. Polyamines induce aggregation of LHCⅡ and quenching of fluorescence in vitro. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2012,1817:735-745
    298. Unal D, Tuney Ⅰ, Sukatar A. The role of external polyamines on photosynthetic responses, lipid peroxidation, protein and chlorophyll a content under the UV-A (352nm) stress in physcia semipinnata. Journal of Photochemistry and Photobiology B:Biology,2008,90:64-68
    299. Vass Ⅰ, Cser K. Janus-faced charge recombinations in photosystem Ⅱ photoinhibition. Trends Plant Science,2009,14:200-205
    300. Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants-protective role of exogenous polyamines. Plant Science,2000,151:59-66
    301. Vermass WFJ, Styring S, Schroder WP, Andersson B. Photosynthetic water oxidation:the protein framework. Photosynthesis Research,1993,38(3):249-263
    302. Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. Journal of Experimental Botany,2011,62:2899-2914
    303. Wang R, Chen S, Deng L, Fritz E, Huttermann, A, Polle A. Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars. Trees-Structure Function,2007,21:581-591
    304. Wang RJ, Hua C, Zhou F, Zhou QC. Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar. Photosynthetica,2009,47(1):125-127
    305. Wang WX, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta,2003,218(1):1-14
    306. Ward JM, Pei ZM, Schroeder JL Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell,1995,7(7):833-844
    307. Wilhelm C, Selmar D. Energy dissipation is an essential mechanism to sustain the viability of plants:The physiological limits of improved photosynthesis. Journal of Plant Physiology,2011,168: 79-87
    308. Wu CC, Maccoss MJ, Howell KE, Yates JR. A method for the comprehensive proteomic analysis of membrane proteins. Nature Biotechnology,2003,21(5):532-538
    309. Wyman AJ, Yocum CF. Structure and activity of the photosystem Ⅰ manganese stabilizing protein: role of the conserved disulfide bond. Photosynthesis Research,2005,85(3):359-372
    310. Xu YN, Wang ZN, Jiang GZ, Li LB, Kuang TY. Effect of various temperatures on phosphatidylglycerol biosynthesis in thylakoid membranes. Physiologia Plantarum,2003,118: 57-63
    311. Yamaguchi K, Takahashi KY, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T. A protective role for the polyamine spermine against drought stress in arabidopsis. Biochemical and Biophysical Research Communications,2007,352:486-490
    312. Yamamoto H, Akasaka T. Degradation of antenna chlorophy-binging protein CP43 during photoinhibition of photosystem Ⅱ. Biochemistry,1995,34(28):9038-9045
    313. Yamane K, Kawasaki M, Taniguchi M, Miyake H. Differential effect of NaCl and polyethylene glycol on the ultrastructure of chloroplasts in rice seedlings. Journal of Physiology,2003,160: 573-575
    314. Yang JC, Zhang JH, Liu K, Wang ZQ, Liu LJ. Involvement of polyamines in the drought resistance of rice. Journal of Experimental Botany,2007,58:1545-1555
    315. Yang XH, Lu CM. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize palnts. Physiologia Plantarum,2005,124:343-352
    316. Yiu JC, Juang LD, Fang DY, Liu CW, Wu SJ. Exogenous putrescine reduces flooding-induced oxidative damage by increasing the antioxidant properties of welsh onion. Scientia Horticulturae, 2009,120:306-314
    317. Youssef T. Stomatal, biochemical and morphological factors limiting photosynthetic gas exchange in the mangrove associate Hibiscus tiliaceus under saline and arid environment. Aquatic Botany, 2007,87:292-298
    318. Zaghdoudi M, Msilini N, Govindachary S, Lachaal M, Ouerghi Z, Carpentier R. Inhibition of photosystems Ⅰ and Ⅱ activities in salt stress-exposed Fenugreek (Trigonella foenum graecum). Journal of Photochemistry and Photobiology B:Biology,2011,105:14-20
    319. Zapata PJ, Serrano M, Pretel MT, Botella MA. Changes in free polyamine concentration induced by salt stress in seedlings of different species. Plant Growth Regulation,2008,56(2):167-177
    320. Zhang CM, Zou ZR, Huang Z, Zhang ZX. Effects of exogenous spermidine on photosynthesis of tomato seedlings under drought stress. Agricultural Research in the Arid Areas,2010,3:182-187
    321. Zhang LX, Paakkarinen V, van Wijk KJ, Aro EM. Biogenesis of the chloroplast-encoded Dl protein:regulation of translation elongation, insertion, and assembly into photosystem Ⅱ. The Plant Cell,2000,12:1769-1782
    322. Zhang RH, Li J, Guo SR, Tezuka T. Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynthesis Research,2009,100(3):155-162
    323. Zhang WP, Jiang B, Li WG, Song H, Yu YS, Chen JF. Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae, 2009,122:200-208
    324. Zhang YN, Chen M, Church WB, Lau KW, Larkum AWD, Jermiin LS. The molecular structure of the IsiA-photosystem I supercomplex, modelled from high-resolution, crystal structures of photosystem I and the CP43 protein. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2010, 1797:457-465
    325. Zhao FG, Song CP, He JQ, Zhu H. Polyamines improve K+/Na+homeostasis in barley seedling by regulating root ion channel activities. Plant Physiology,2007,145(3):1061-1072
    326. Zhao HZ, Yang HQ. Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Scientia Horticulturae,2008,116:442-^447
    327. Ziska LH, Seemann JR, DeJong TM. Salinity induced limitations on photosynthesis in Prunus salicina, a deciduous tree species. Plant Physiology,1990,93(3):864-870
    328. Zlatev ZS, Yordanov IT. Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg. Journal of Plant Physiology,2004,30(3-4):3-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700