用户名: 密码: 验证码:
设施番茄根围土壤的微生物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设施菜田土壤往往存在化肥施用量过大、氮磷钾施用不平衡、作物品种单一、连作严重等问题,导致菜田土壤肥料利用率降低、生态环境质量下降、病虫害严重,蔬菜产量和品质受到严重影响。土壤微生物学特性是土壤质量的重要表征,可以在一定程度上反映土壤的肥力状况。本文以设施番茄栽培土壤为对象,研究了番茄不同生育时期、不同肥料处理、不同连作年限等条件下的土壤理化性状及微生物学特性,主要研究结果如下:
     1.采用稀释平板法与PCR-DGGE技术相结合的方式,研究设施番茄不同生育时期及根域不同位置的土壤微生物特性,结果表明,番茄对土壤微生物的根际效应明显,可培养微生物数量与距番茄根系表面距离呈反比。在番茄整个生育期内,根域土壤可培养微生物数量表现为,细菌、真菌数量上升,放线菌数量下降;DGGE结果显示,番茄初花期和初果期的根际土壤细菌群落结构相似,多样性最高。
     2.种植番茄显著提高了土壤微生物生物量和土壤酶活性。番茄根际土壤微生物生物量碳和氮分别在定植后60d和40d时显著降低,之后逐渐升高,定植80d达到最高值后下降;根际土壤转化酶、脲酶和中性磷酸酶活性在番茄整个生育期内呈现先升高后降低的变化趋势,过氧化氢酶活性呈上升—下降—上升的变化趋势。番茄生长末期,根际土壤微生物量和土壤酶活性均有所下降。土壤微生物生物量与转化酶、脲酶和中性磷酸酶活性显著相关,与过氧化氢酶无相关性。
     3.长期施用有机肥或有机肥、化肥配合施用可以显著提高设施番茄栽培土壤有机质和养分含量,改善土壤理化性状,减缓土壤酸化进程;除全氮外,土壤养分含量随无机氮肥施用量的增加而下降,长期偏施无机氮肥加速了土壤pH的下降;磷肥在提高土壤有机质含量方面所发挥的作用优于钾肥。
     4.长期施用有机肥显著提高了土壤酶活性和微生物生物量。有机肥对土壤转化酶和酸性磷酸酶活性的促进作用较为明显,有机肥和磷肥配施可以显著提高土壤转化酶和酸性磷酸酶活性,与转化酶和酸性磷酸酶相比,施肥对土壤脲酶活性的影响不大。单施化肥的土壤微生物生物量碳高于对照,而生物量氮低于对照,适量氮肥和磷肥显著提高土壤转化酶和微生物生物量碳,平衡施肥有利于土壤微生物生物量的提高。土壤酶活性和微生物生物量都随尿素施用量的增多而降低。
     5.不同施肥处理的土壤微生物PCR-DGGE分析表明,施用有机肥可以起到提高土壤微生物总量,增加优势种群个数,丰富群落多样性,稳定群落结构的作用;过量施用无机氮肥会改变土壤细菌的优势种群种类;施用不同种类的化学肥料或肥料组合不会影响土壤微生物的群落结构。
     6.通过对实际生产中不同连作年限设施番茄栽培土壤的研究发现,土壤养分含量随连作年限的增加而逐渐升高,连作7年、10年、15年和20年的土壤养分含量差异不大,可见,在实际生产中,土壤养分不是影响土壤肥力的主要因素;番茄连作一定年限内(15年),土壤转化酶、脲酶活性,微生物生物量和微生物量碳氮比都呈上升趋势变化,中性磷酸酶和过氧化氢酶活性呈下降趋势,各连作年限间土壤酶活性和微生物生物量的差异不大,番茄长期连作(20)土壤酶活性和微生物生物量都显著下降,。
     7.通过PCR-DGGE技术研究番茄连作对根际土壤微生物多样性的影响发现,设施条件下种植番茄明显改变了土壤土著细菌的群落结构,但连作年限对土壤细菌多样性影响较小,细菌群落结构变化不大;土著真菌的群落结构稳定性优于土著细菌,但土壤真菌的优势种群在不同连作年限的土样中变化较大,连作显著降低了某些真菌的数量,同时显著增加了另一些真菌的数量,其中,连作20年番茄的土壤真菌新出现的优势种群最多,且与非优势种群的真菌数量差异较大,这种番茄连作后改变土壤真菌种群平衡的现象可能是导致番茄产生连作障碍的重要原因之一。通过电泳条带的回收、测序,可知所取土样中的细菌优势种群属于Clostridium butyricum、Uncultured bacterium、Bacillus和Arthrobacter,真菌优势种群属于Saccobolus dilutellus、Uncultured fungus、Lasiobolus ciliatus、Spooneromyces laeticolor和Lasiobolidium orbiculoides。
Obviously, the excessive use of chemical fertilizer, unbalanced application of nitrogen, phosphorus and potassium, single crop variety and seriously continuous cropping were common in protected vegetable cultivation, which leading to some serious problems, such as lower utilization of soil fertilizer, decline in the quality of the ecological environment, serious pests and diseases, decrease yield and quality of vegetables. Soil microbiological characteristics is an important characterization of soil quality, and to some extent can reflect the soil fertility condition. This paper studied the effects of different tomato growth period, different fertilizer treatment, different continuous cropping years on protected tomato field physical and chemical properties, and microbiological characteristics. The main results were as follows:
     1. The microbiological characteristics of rhizosphere and surrounding soil was investigated at different growing period of tomato plants by combination of traditional plate-counting method and PCR-DGGE technology. Results showed that the rhizosphere effect of tomato plant for soil microorganisms was obvious, the number of culturable microorganisms was inversely proportional with the distance from the tomato root surface. During the whole developmental periods of tomato, rhizosphere and surrounding soil culturable microorganisms performanced that, bacteria and fungi number increased, actinomycete decline; DGGE profile indicated that the highest diversity of rhizosphere soil bacterial at the early flowering and blossoming stage, and the soil bacterial community structure was similar between them.
     2. Planting tomato significantly increased soil microbial biomass and soil enzyme activity. Tomato rhizosphere soil microbial biomass carbon and nitrogen significantly decreased respectively in the60days and40days after planting, increased gradually, after planting80days, reached the highest value and then decreased; during the whole growing period, tomato rhizosphere soil invertase, urease and neutral phosphatase activity first increased and then decreased, hydrogen peroxidase activity changing trend was increased-decrease-rising. Tomato growth later stage, rhizosphere soil microbial biomass and soil enzyme activity decreased. Significant correlations between soil microbial biomass and invertase, urease and neutral phosphatase activity, but less correlation was found between microbial biomass and hydrogen peroxidase.
     3. The long-term application of organic manure combined with or without chemical fertilizer can significantly improved the greenhouse tomato field soil organic matter and nutrient contents, improved soil physical and chemical properties, reduced soil acidification process. Except total nitrogen, the content of soil nutrient was more decreased with the increased inorganic nitrogen fertilizer application.Long-term partial application of inorganic nitrogen fertilizer has accelerated the decline in soil pH. Phosphate played an more important role in improving soil organic matter content than potassium.
     4. The Long-term application of organic manure significantly increased the soil enzyme activities and microbial biomass. Organic amnure and organic amnure combined with phosphate fertilizer could distinctly improved the activities of soil invertase and acid phosphatase. Compared with invertase and acid phosphatase, little effect of fertilization on soil urease activity. The treatments which used chemical fertilizer only microbial biomass carbon was higher than that of the control, but microbial biomass nitrogen was lower. The amount of nitrogen fertilizer and phosphate fertilizer significantly increased soil invertase and soil microbial biomass carbon. Balanced fertilization was more useful for soil microbial biomass increase. Soil enzyme activities and microbial biomass were decreased with the increasing input of urea.
     5. PCR-DGGE profiles of different fertilizer treatment showed that, application of organic fertilizer can improve the soil microbial quantity, increase the number of dominant species, increase the dominant population number, stable community structure; excessive application of nitrogen fertilizer could change the species of soil bacteria dominant populations; different kinds of chemical fertilizer or fertilizer combinations had no effects on soil microorganism community structure.
     6. Through research on the actual production facilities of continuous cropping protected tomato field found, the soil nutrient content increased with continuous cropping years increasing, differences in soil nutrient content of continuous cropping for7years,10years,15years and20years was not visible, in the actual production, the main factors which affecting soil fertility was not soil nutrient. Tomato continuous cropping for a certain number of years (15years), soil invertase, urease activity, microbial biomass, microbial carbon and nitrogen ratio was upward trend, neutral phosphatase and catalase activity decreased, but various years of continuous cropping soil enzyme activity and microbial biomass difference was not big. Tomato long-term continuous cropping (20years), soil enzyme activities and microbial biomass decreased significantly.
     7. The effects of protected tomato continuous cropping on rhizosphere soil microbial community diversity was studies with PCR-DGGE technology. Results showed that soil indigenous bacterial community structure was significantly influenced by planting tomato under protected field, but soil bacterial community structure and diversity were not sensitive to continuous cropping years. Compared with soil indigenous bacteria, indigenous fungal community structure was more steady, but the dominant fungi were more different in the fields with different continuous cropping years, continuous cropping significantly decreased the number of some fungi, meanwhile, the number of some other fungi was significantly increased, most dominant fungi populations were enriched in soil with tomato continuous cropping years of20, and which number was quite different with the non-dominant fungi populations. The change of soil fungi population balance that caused by tomato continuous cropping maybe one of the important reasons for the tomato continuous cropping obstacle. Recycling and sequence analysis of prominent electrophoretic bands showed that the dominant bacteria of soil sample belong to Clostridium butyricum、Uncultured bacterium、 Bacillus and Arthrobacter, while the dominant fungus belong to Saccobolus dilutellus、 Uncultured fungus、Lasiobolus ciliatus、Spooneromyces laeticolor and Lasiobolidium orbiculoides.
引文
1. 白震,张明,闫颖,李维福,张旭东.2009.长期施肥对农田黑土微生物活力与群落结构的影响.土壤学报,46(1):107-116.
    2.蔡燕飞,廖宗文,董春,石木标.2002.番茄青枯病的土壤微生态防治研究.农业环境保护,21(5):417-420.
    3.曹志平,胡诚,叶钟年.2006.不同土壤培肥措施对华北高产农田土壤微生物生物量碳的影响.生态学报,26(5):1486-1493.
    4.陈恩凤.1988.土壤酶的生物学意义(代序).中国科学院林业研究所,中国科学院土壤肥料研究,吉林农业大学,全国土壤酶学研究文集.沈阳:辽宁科学技术出版社.
    5.陈竑竣,李传涵.1993.杉木幼林地土壤酶活性与土壤肥力.林业科学研究,6(3):321-325.
    6.陈慧,郝慧荣,熊君,齐晓辉,张重义,林文雄.2007.地黄连作对根际微生物区系及土壤酶活性的影响.应用生态学报,18(12):2755-2759.
    7.陈吉,赵炳梓,张佳宝,沈林林,王梅农,钦绳武.2010.长期施肥处理对玉米生长期潮土微生物生物量和活度的影响.土壤学报,47(1):122-130.
    8.陈文新.1996.土壤和环境微生物学.北京:北京农业大学出版社.
    9.陈肠,李忠佩,周立祥,车玉萍,王兴祥.2008.不同施肥处理对红壤水稻土微生物生物量及呼吸强度的影响.土壤,40(3):437-442.
    10.陈子明.1990.民主德国土壤肥料研究工作进展.土壤肥料,4:42-44.
    11.单英杰,章明奎.2011.长期种植大棚蔬菜对涂地土壤生物学性质的影响.水土保持学报,25(4):170-174.
    12.董志新,孙波,殷士学,隋跃宇.2012.气候条件和作物对黑土和潮土固氮微生物群落多样性的影响.土壤学报,49(1):130-138.
    13.樊军,郝明德.2003.长期轮作施肥对土壤微生物碳氮的影响.水土保持研究,10(1):85-87.
    14.封海胜,张思苏,万书波,隋清卫,左学青.1993.花生连作对土壤及根际微生物区系的影响.山东农业科学,1:13-15.
    15.封海胜,张思苏,万书波,隋清卫,左学青.1994.花生不同连作年限土壤酶活性的变化.花生科技,3:5-9.
    16.冯红贤,杨暹,李欣允,王明祖.2004.蔬菜连作对土壤生物化学性质的影响.长江蔬菜,11:40-43.
    17.高崇洋,赵阳国,王爱杰,任南琪,白洁,田伟君,张健,李海艳.2010.耕作和施肥对不同深度黑土中细菌群落结构的影响.微生物学报,50(1):67-75.
    18.高云超,朱文珊,陈文新.1994.秸秆覆盖免耕土壤微生物生物量与养分转化的研究.中国农业科学,27(6):41-49.
    19.葛晓光,王晓雪,张听,张恩平,刘秀茹.2000.长期偏施氮肥对露地土壤—蔬菜生态系统变化的 影响.园艺学报,27(4):263-268.
    20.葛晓光,张恩平,高慧,张昕,王晓雪.2004.长期施肥条件下菜田—蔬菜生态系统变化的研究(Ⅱ)土壤理化性质的变化.园艺学报,31(2):178-182.
    21.葛晓光,张恩平,张昕,王晓雪,高慧.2004.长期施肥条件下菜田—蔬菜生态系统变化的研究(Ⅰ)土壤有机质的变化.园艺学报,31(1):34-38.
    22.辜运富,张小平,涂仕华,孙锡发,Kristina Lindstran.2008长期定位施肥对紫色水稻土硝化作用及硝化细菌群落结构的影响.生态学报,28(5):2123-2130.
    23.古巧珍,杨学云,孙本华,马路军,同延安,赵秉强,张夫道.2004.长期定位施肥对土娄土耕层土壤养分和土地生产力的影响.西北农业学报,13(3):121-125.
    24.谷岩,邱强,王振民,陈喜凤,吴春胜.2012.连作大豆根际微生物群落结构及土壤酶活性.中国农业科学,45(19):3955-3964.
    25.关松荫.1986.土壤酶及其研究法.北京:北京农业出版社.
    26.韩丽梅,邹永久,鞠会艳,王树起,杨振明,刘金萍.1998.大豆连作微量元素营养研究Ⅰ连作对锌营养的影响.大豆科学,17(1):65-71.
    27.郝永娟,刘春艳,王勇,王万立,魏军.2007.设施蔬菜连作障碍的研究现状及综合调控.植物保护科学,23(8):396-398.
    28.何文寿,高艳明,王菊兰,何进勤,王丽,何进智.2011.宁夏设施栽培土壤质量现状、存在问题与对策研究.农业科学研究,1:1-8.
    29.和文祥,来航线,武志军.2001.培肥对土壤酶活性影响的研究.浙江大学学报(农业与生命科学版),27(3):265-268.
    30.侯晓杰,汪景宽,李世朋.2007.不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响.生态学报,27(2):655-661.
    31.黄昌勇.2000.土壤学.北京:中国农业出版社.
    32.黄辉,陈光水,谢锦升,黄朝法.2008.土壤微生物生物量碳及其影响因子研究进展.湖北林业科技,4:34-41.
    33.焦海华.2003.根的溢泌物与根际微生物关系的研究.洛阳师范学院学报,2:88-90.
    34.焦晓丹,吴凤芝.2004.上壤微生物多样性研究方法的进展.土壤通报,35(6):789-792.
    35.荆延德,何振立,杨肖娥.2009.汞污染对水稻士微生物和酶活性的影响.应用生态学报,20(1):218-222.
    36.来璐,郝明德,王永功.2004.黄土高原旱地长期轮作与施肥土壤微生物量磷的变化.植物营养与肥料学报,10(5):546-549.
    37.雷娟利,周艳虹,丁桔,王礼,喻景权.2005.不同蔬菜连作对土壤细菌DNA分子水平多态性影响的研究.中国农业科学,38(10):2076-2083.
    38.雷娟利.2006.蔬菜土壤生态系统微生物分子生态学研究.浙江大学博士学位论文.
    39.李东坡,陈利军,武志杰,朱平,任军,梁成华,彭畅,高红军.2004.不同施肥黑土微生物量氮变化特征及相关因素.应用生态学报,15(10):1891-1896.
    40.李东坡,武志杰,陈利军,朱平,任军,彭畅,梁成华.2004.长期培肥黑土微生物量碳动态变化及影响因素.应用生态学报,15(8):1334-1338.
    41.李娟.2008.长期不同施肥制度土壤微生物学特性及其季节变化.中国农业科学院博士学位论文.
    42.梁威,邱东茹,熊丽,吴振斌.2002.荧光原位杂交技术(FISH)及其在环境微生物学中的应用.生命科学,14(3):186-188.
    43.廖莎,王宏燕,赵伟.2010.利用DGGE-cloning技术分析农肥和化肥施用对黑土细菌多样性的影响.农业现代化研究,31(3):364-367.
    44.林葆,林继雄,李家康.1994.长期施肥的作物产量和土壤肥力变化.植物营养与肥料学报,1:6-18.
    45.刘恩科,赵秉强,李秀英,姜瑞波,Hwat Bing So.2007.不同施肥制度土壤微生物量碳氮变化及细菌群落16S rDNA V3片段PCR产物的DGGE分析.生态学报,27(3):1079-1085.
    46.刘恩科,赵秉强,李秀英,姜瑞波,李燕婷,Hwat Bing So.2008长期施肥对土壤微生物量及土壤酶活性的影响.植物生态学报,32(1):176-182.
    47.刘建国,张伟,李彦斌,孙艳艳,卞新民.2009.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响.中国农业科学,2:725-733.
    48.刘军,温学森,郎爱东.2007.植物根系分泌物成分及其作用的研究进展.食品与药品,9(3):63-65.
    49.刘素慧,刘世琦,张自坤,尉辉,齐建建,段吉锋.2010.大蒜连作对其根际土壤微生物和酶活性的影响.中国农业科学,43(5):1000-1006.
    50.刘瑜,梁永超,诸贵新,冶军,刘涛,郑旭荣.2010.长期棉花连作对北疆棉区土壤生物活性与酶学性状的影响.生态环境学报,19(7):1586-1592.
    51.刘芷宇,施卫明.1996.根际研究方法.南京:江苏科学技术出版社.
    52.泷岛.1983.防止连作障碍的措施.口本土壤肥料学杂志,2:170-178.
    53.路磊,李忠佩,车玉萍.2006.不同施肥处理对黄泥土微生物生物量碳氮和酶活性的影响.土壤,38(3):309-314.
    54.吕卫光,于廷园,诸海涛,沈其荣,张春兰.2006.黄瓜连作对土壤理化性状及生物活性的影响研究.中国生态农业学报,14(2):119-121.
    55.马冬云,郭天财,宋晓,王晨阳,朱云集,王永华,岳艳军,查菲娜.2007.尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响.生态学报,27(12):5222-5228.
    56.马云华,魏珉,王秀峰.2004.日光温室连作黄瓜根区土壤微生物区系及酶活性的变化.应用生态学报,15(6):1005-1008.
    57.米国全,袁丽萍,龚元石,张福墁,任华中.2005.不同水氮供应对日光温室番茄土壤酶活性及生物环境影响的研究.农业工程学报,21(7):124-127.
    58.庞欣,张福锁,王敬国.2000.不同供氮水平对根际微生物量氮及微生物活度的影响.植物营养学报,6(4):476-480.
    59.彭佩钦,吴金水,黄道友,汪汉林,唐国勇,黄伟生,朱奇宏.2006.洞庭湖区不同利用方式对土壤微生物生物量碳氮磷的影响.生态学报,26(7):2261-2267.
    60.彭有才,刘挺,赵俊杰,孙曙光,高峻,吴福如,刘国顺,叶协锋.2009.连作对土壤性状影响的研究进展.江西农业学报,21(9):100-103.
    61.秦红灵,袁红朝,张慧,朱亦君,吴敏娜,魏文学.2011.红壤坡地利用方式对土壤细菌群落结构的影响.土壤学报,48(3):594-602.
    62.邱莉萍,刘军,王益权,孙慧敏,和文祥.2004.土壤酶活性与土壤肥力的关系研究.植物营养与肥料学报,10(3):277-280.
    63.任天志.2000.持续农业中的土壤生物指标研究.中国农业科学,33(1):68-75.
    64.任铁.1986.玉米根际细菌和根表细菌对固氮螺菌生长的影响.微生物学报,26(1):94-96.
    65.申卫收,林先贵,张华勇,尹睿,段增强,施卫明.2008.不同施肥处理下蔬菜塑料大棚土壤微生物活性及功能多样性.生态学报,28(6):2862-2869.
    66.沈宏,曹志洪,徐本生.1999.玉米生长期间土壤微生物量与士壤酶变化及其相关性研究.应用生态学报,10(4):471-474.
    67.沈雪梅.2009.土壤微生物多样性的主要影响因子.安徽农学通报,83-85.
    68.施卫明.1993.根系分泌物与养分有效性.土壤,25(5):263-265.
    69.石春红,郑有飞,吴芳芳,刘宏举,赵泽,胡程达.2009.大气中臭氧浓度增加对根际和非根际土壤微生物的影响.土壤学报,46(5):894-898.
    70.宋亚娜,林智敏.2010.红壤稻田不同生育期土壤氨氧化微生物群落结构和硝化势的变化.土壤学报,47(5):987-994.
    71.孙光闻,陈日远,刘厚诚.2005.设施蔬菜连作障碍原因及防治措施.农业工程学报,S2:72-76.
    72.孙军德,赵春燕,黄小星,王辉,张敏,张玉龙.2005.保护地番茄根际微生物区系分析.土壤通报,36(6):943-945.
    73.孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.2003.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报,9(4):406-410.
    74.孙艳艳,蒋桂英,刘建国,张伟,唐志敏.2010.加工番茄连作对农田土壤酶活性及微生物区系的影响.生态学报,30(13):3599-3607.
    75.滕应,黄昌勇,骆永明,龙健,姚槐应,李振高.2004.重金属复合污染下土壤微生物群落功能多样性动力学特征.土壤学报,5:735-741.
    76.童有为.1991.温室土壤次生盐的形成和治理途径.园艺学报,1(2):159-162.
    77.汪炳良.1999.南方大棚蔬菜生产技术大全.北京:中国农业出版社.78.王光华,齐晓宁,金剑,刘俊杰,王洋.2007施肥对黑土农田土壤全碳、微生物量碳及土壤酶活性 的影响.土壤通报,38(4):661-666.
    79.王继红,刘景双,于君宝,王金达.2004.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响.水土保持学报,1:35-38.
    80.王娟,刘淑英,王平,吴银明.2008.不同施肥处理对西北半干旱区土壤酶活性的影响及其动态变化.土壤通报,39(2):299-303.
    81.王俊华,胡君利,林先贵,戴珏,王军涛,崔向超,钦绳武.2011.长期平衡施肥对潮土微生物活性和玉米养分吸收的影响.土壤学报,4:766-772.
    82.王俊华,尹睿,张华勇,林先贵,陈瑞蕊,钦绳武.2007.长期定位施肥对农田土壤酶活性及其相关因素的影响.生态环境,16(1):191-196.
    83.王茂胜,姜超英,潘文杰,薛小平,陈懿,梁永江.2008.不同连作年限的植烟土壤理化性质与微生物群落动态研究.安徽农业科学,36(12):5033-5034,5052.
    84.王明道,吴宗伟,原增艳,陈红歌,吴坤,贾新成.2008.怀地黄连作对土壤微生物区系的影响.河南农业大学学报,42(5):532-538.
    85.王珊,李廷轩,张锡洲,周建新.2006.设施土壤微生物学特性变化研究.水土保持学报,20(5):82-86.
    86.王树起,韩晓增,乔云发,王守宇.2008.长期施肥对东北黑土酶活性的影响.应用生态学报,19(3):551-556.
    87.王卫霞,罗明,潘存德.2010.塔里木河下游几种荒漠植物根际土壤微生物及其活性.中国沙漠,30(3):571-576.
    88.王秀丽,徐建民,姚槐应,谢正苗.2003.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科学学报,23(1):22-27.
    89.王旭熙,吴福忠,杨万勤,王奥.2012.栽植生姜对不同种植模式下紫色土微生物生物量及水解酶活性的影响.应用生态学报,2:433-438.
    90.魏珉,李天来,马云华,王秀峰.2005.设施蔬菜连作土壤生物学特性研究.现代农业工程与自然资源高效利用—中国科协学术年会(第10分会场)论文集,126-129.
    91.吴凤芝,刘德,王东凯,栾非时,王伟,孔鲜鸣.1997.大棚番茄不同连作年限对根系活力及其品质的影响.东北农业大学学报,28(1):33-38.
    92.吴凤芝,刘德,王东凯,栾非时,王伟,刘元英.1998.大棚蔬菜连作年限对士壤主要理化性状的影响.中国蔬菜,4:5-7.
    93.吴凤芝,孟立君,王学征.2006.设施蔬菜轮作和连作土壤酶活性的研究.植物营养与肥料学报,12(4):554-558.
    94.吴凤芝,王伟.1999.大棚番茄土壤微生物区系研究.北方园艺,3:88-90.
    95.吴凤芝,王学征.2007.设施黄瓜连作和轮作中土壤微生物群落多样性的变化及其与产量品质的关系.中国农业科学,40(10):2274-2280.
    96.吴凤芝,赵凤艳,谷思玉.2002.保护地黄瓜连作对土壤生物化学性质的影响.农业系统科学与综合研究,18(1):20-22.
    97.夏北成.1998.植被对土壤微生物群落结构的影响.应用生态学报,9(3):296-300.
    98.徐华勤,肖润林,邹冬生,宋同清,罗文,李盛华.2007.长期施肥对茶园土壤微生物群落功能多样性的影响.生态学报,27(8):3355-3361.
    99.徐雁,向成华,李贤伟.2010.土壤酶的研究概况.四川林业科技,31(2):14-20.
    100.徐阳春,沈其荣,冉炜.2002.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,39(1):89-96.
    101.徐永刚,宇万太,马强,周桦.2010.长期不同施肥制度对潮棕壤微生物生物量碳、氮及细菌群落结构的影响.应用生态学报,21(8):2078-2085.
    102.薛立,邝立刚,陈红跃,谭绍满.2003.不同林分土壤养分、微生物与酶活性的研究.土壤学报,40(2):280-285.
    103.颜慧,蔡祖聪,钟文辉.2006.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用.土壤学报,43(5):851-859.
    104.杨邦俊,向世群.1990.有机肥对紫色水稻土磷酸酶活性及磷素转化作用的影响.土壤通报,21(3):8-11.
    105.杨东,魁永红,张东勇.2003.甘肃省临夏太子山林区土壤化学性质与生化活性的相关性研究.西北师范大学学报(自然科学版),39(3):68-72.
    106.杨合同,任欣正,王少杰,工建平,高强.1994.番茄根土区系中拮抗性细菌的分布与青枯病发生的关系.生物防治通报,10(4):162-165.
    107.杨靖春,张春丽,辛华,唐树尧,张元成,王玉良.1985.老参地轮作不同年限的紫穗槐对人参土壤微生物区系的影响研究.东北师大学报(自然科学版),2:101-109.
    108.杨凯,朱教君,张金鑫,闫巧玲.2009.不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化.生态学报,29(10):5500-5507.
    109.杨林章,刘元昌,徐琪.1989.施肥对水稻产量和稻田土壤理化性质的影响.生态学杂质,8(3):39-43.
    110.杨宇虹,陈冬梅,晋艳,王海斌,段玉琪,徐照丽,尤垂淮,郭徐魁,林文雄.2012.连作烟草对土壤微生物区系影响的T-RFLP分析.中国烟草学报,18(1):40-45.
    111.姚槐应,何振立,黄昌勇.2003.不同土地利用方式对红壤微生物多样性的影响.水土保持学报,17(2):51-54.
    112.姚槐应,黄昌勇.2007.土壤微生物生态学及其实验技术.科学出版社.
    113.姚圣梅,杨晓红,郑雪虹,刘雄德.1997.蔬菜大棚土壤微生物种类及数量的初步研究.华中农业人学学报,16(4):347-350.
    114.姚政,赵京音,蒋小华.1997.施用不同有机物后土壤微生物量的动态变化.上海农业学报,1:47-48.
    115.殷勤燕,陈宗泽,杨振明,戴秉利,邹永久.1996.大豆重迎茬土壤微生物生物量碳的研究.大豆科学,15(4):357-361.
    116.喻景权.2011.“十一五”我国设施蔬菜生产和科技进展及其展望.中国蔬菜,(2):11-23.
    117.袁玲,杨邦俊,郑兰君,刘学成.1997.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学报,3(4):300-306.
    118.曾路生,廖敏,黄昌勇,罗运阔,薛冬.2005.水稻不同生育期的土壤微生物量和酶活性的变化.中国水稻科学,19(5):441-446.
    119.张福锁.1998.环境胁迫与植物根际营养.北京:中国农业出版社.
    120.张海燕,肖延华,张旭东,李军,席联敏.2006.土壤微生物量作为土壤肥力指标的探讨.土壤通报,37(3):422-425.
    121.张亮,程智慧,周艳丽,董小艳,魏玲.百合生育期根际土壤微生物和酶活性的变化.园艺学报,35(7):1031-1038.
    122.张明,白震,张威,丁雪丽,宋斗妍,朱俊丰,朱平.2007.长期施肥农田黑土微生物量碳、氮季节性变化.生态环境,16(5):1498-1503.
    123.张平究,李恋卿,潘根兴,张俊伟.2004.长期不同施肥下太湖地区黄泥土表土微生物碳氮量及基因多样性变化.生态学报,24(12):2818-2824.
    124.张绍林,朱兆良,徐银华,陈荣业,李阿荣.1988.关于太湖地区稻麦上氮肥的适宜用量.土壤,42(1):5-9.
    125.张淑香,吕庭宏,杨建林,张爱军,吕珊兰.1999.旱塬农区秸秆还田对土壤理化性质的影响.土壤肥料,4:15-17.
    126.张桃林,王兴祥.2000.土壤退化研究的进展与趋向.自然资源学报,3:280-284.
    127.张小磊,安春华,马建华,符燕.2007.长期施肥对城市边缘区不同作物土壤酶活性的影响.土壤通报,38(4):667-671.
    128.张晓玲,潘振刚,周晓峰,倪吾钟.2007.自毒作用与连作障碍.土壤通报,38(4):781-784.
    129.章家恩,蔡燕飞,高爱霞,朱丽霞.2004.土壤微生物多样性实验研究方法概述.土壤,36(4):346-350.
    130.章家恩,廖宗文.2000.论土壤的生态肥力及其培育.土壤与环境,9(3):253-256.
    131.章家恩,刘文高,王伟胜.2002.南亚热带不同植被根际微生物数量与根际土壤养分状况.土壤与环境,11(3):279-282.
    132.章家恩,刘文高.2002.广东省不同地区土壤微生物数量状况初步研究.生态科学,21(3):223-225.
    133.赵奎军,马凤鸣,姜福臣,肖玉珍,宋捷.1995.不同施氮水平对甜菜地和休闲地土壤微生物数量的影响.中国糖料,3:21-25.
    134.赵先丽,程海涛,吕国红,贾庆宇.2006.土壤微生物生物量研究进展.气象与环境学报,22(4):68-72.
    135.赵勇,李武,周志华,潘迎捷,赵立平.2005.应用PCR-RFLP及PCR-TGGE技术监测农田土壤微生物短期动态变化.南京农业大学学报,28(3):53-57.
    136.郑洪元,张德生,郑莲娣.1982.人参连栽对土壤生物化学活性影响的研究.土壤通报,1:12-14.
    137.郑昭佩,刘作新.2003.土壤质量及其评价.应用生态学报,14(1):131-134.
    138.钟文辉,蔡祖聪.2004.土壤管理措施及环境因素对土壤微生物多样性影响研究进展.生物多样性,12(4):456-465.
    139.钟文辉,蔡祖聪.2004.土壤微生物多样性研究方法.应用生态学报,15(5):899-904.
    140.钟文辉,王薇,林先贵,尹睿,申卫收.2009.核酸分析方法在土壤微生物多样性研究中的应用.土壤学报,46(2):334-341.
    141.周德庆.2002.微生物学教程.北京:高等教育出版社.
    142.周国英,陈小艳,李倩茹,兰贵洪.2001.油茶林土壤微生物生态分布及土壤酶活性的研究.经济林研究,19(1):9-12.
    143.周桔,雷霆.2007.土壤微生物多样性影响因素及研究方法的现状与展望.生物多样性,15(3):306-311.
    144.周礼恺,张志明,曹承绵.1983.土壤酶活性的总体在评价土壤肥力水平中的作用.土壤学报,4:413-418.
    145.周礼恺.1988.土壤酶学.北京:科学出版社.
    146.周艺敏,小仓宽典,吉田彻志.2000.天津半干旱地区不同种植年限菜田土壤微生物变化特征的研究.植物营养与肥料学报,6(4):424-429.
    147.周志宏,陈小明,丁扣琪,殷丽萍.2007.大棚番茄的需肥特性及平衡施肥技术.现代农业科技,21:22.
    148.邹永久,韩丽梅,傅慧兰,杨振明,陈宗泽,刘金萍.1996.大豆连作土壤障碍因素研究Ⅰ—连作对土壤腐殖质组分性质的影响.大豆科学,15(3):235-242.
    149.左智天,田昆,向仕敏,陆梅,李吉玉.2009.澜沧江上游不同土地利用类型土壤氮含量与土壤酶活性研究.水土保持研究,16(4):280-285.
    150. Abbott L K, Murphy D V.2003. Soil Biological Fertility. Netherlands:Kluwer Academic Publisher.
    151. Albiach R, Canent R, Pomanes F, et al.2000. Microbial biomass content and enzymatic activities after application of organic amendments to a horticultural soil. Bioresource Technology,75:43-48.
    152.Amann R I, Ludwig W, Schleifer K H.1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews,59:143-169.
    153.Amann RI, Ludwig W, Schleifer KH.1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev,59:143-169.
    154. Anderson J E, Domsch K H.1978. A physiological method for measurement of microbial biomass in soils. Soil Biol Biochem,10:215-221.
    155. Angers D A, Bissonnette N, Legere A, et al.1993. Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Can. J. Soil Sci.,73:39-50.
    156. Anthony G O'Donnell, Melanie Seasman, Andrew Macrae, et al.2001. Plants and fertilizers as drivers of change in microbial community structure and function in soils. Plant and Soil,232:135-145.
    157. Badiane N N Y, Chotte J L, Patea E, et al.2001. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Applied Soil Ecology,18:229-238.
    158. Baudoin E, Benizri E, Guckert A.2002. Impact of growth stage on the bacterial community structure along maize roots as determined by metabolic and genetic fingerprinting. Appl Soil Eco,19:135-145.
    159.Borneman J, Triplett E W.1997. Molecular microbial diversity in soils from eastern Amazonian: Evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol,63:2647-2653.
    160. Bossio D A, Girvan M S, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow K M, Ball A S, Pretty J N, Osborn A M.2005. Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microbial Ecology,49:50-62.
    161. Bossio D A, Scow K M, Gunapala N, et al.1998. Determinants of soil microbial communities:effects of agricultural management, season and soil type on phospholipids fatty acid profiles. Microbial Ecology,36:1-12.
    162.Boyd S.A., Mortland M.M.1985. Manipulating the activity of immobilized enzymes with different organo-smectite complexes. Experientia,41:1564-1566.
    163. Brookes P C.1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils,19:269-279.
    164. Bruns M A, Stephen J R, Kowalchuk G A, et al.1999. Comparative of ammonia-oxidizer 16S rRNA gene sequences in native tilled and successional soils. Appl Environ Microbiol,65:2994-3000.
    165. Buchan A, Newell S Y, Butler M, et al.2003. Dynamics of bacterial and fungal communities on decaying salt marsh grass. Appl Environ Microbiol,69(1):6676-6687.
    166. Burket J Z, Dick R P.1998. Microbial and soil parameters in relation to N mineralization in soils of diverse genesis under different management systems. Biol Fertil Soils,27:430-438.
    167. Burns R G.1982. Enzyme activity in soil location and a possible role in microbial activity. Soil and Biochem,14:423-427.
    168. Caldwell B A, Griffiths R P, Sollins P.1999. Soil enzyme response to vegetation disturbance in two lowland Costa Rican. Soil Biol & Biochem,31:1603-1608.
    169. Cambardella C A, Elliott E T.1994. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Sci Soc Am,58:123-130.
    170. Carpenter-Boggs L, Kennedy A C, Reganold J P.2000. Organic and biodynamic management:Effects on soil biology. Soil Science Society of America Journal,64:1651-1659.
    171. Carter M R.1986. Microbial biomass as an index for tillage induced changes in soil biological properties. Soil and Tillage Research,7:29-40.
    172. Chander K, Goyal S, Nandal D P, Kapoor K K.1998. Soil organic matter、microbial biomass and enzyme activities in a tropical agroforestry system. Biology and Fertility of Soils,27:168-172.
    173. Ciantar M, Newman H N, Wilson M, et al.2005. Molecular Identification of Capnocytophaga spp. via 16S rRNA PCR-restriction fragment length polymorphism analysis. Journal of Clinical Microbiology, 43(4):1894-1901.
    174. Clegg C D, Ritz K, Griffiths BS.2000.%G+C profiling and cross hybridization of microbial DNA reveals great variation in belowground community structure in UK upland grasslands. Appl Soil Ecol, 14:125-134.
    175. Decaire G Z, Decano M S.2000. Changes in soil enzyme activities following additions of cyanobacteria biomass and exopolysaccharide. Soil Biology and Biochemistry,32:1985-1987.
    176. Deng S P, Tabatabai M A.1996. A tillage and residue management on enzyme activities in soils III: phosphatases and arysulphatases. Biology and Fertility of Soils,22:208-213.
    177. Dick R P, Breakwill D, Turco R.1996. Soil enzyme activities and biodiversity measurements as integrating biological indicators. In:Doran J W, et al. eds. Hand book of Methods for Assessment of Soil Quality. Madison:SSSA Special Pub.
    178. Dick R P.1988. Influence of long-term residue management on soil enzyme activity in relation to soil chemical properties of a wheat-fallow system. Soil Biology & Biochemistry,6:159-164.
    179. Dick R P.1992. Areview:long-term effects of agricultural systems on soil biochemical and microbial parameters. Ecosystems and Environment,40:25-36.
    180. Dick W A, Juma N G, Tabatabai M A.1983. Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots. Soil Sci,136:19-25.
    181. Dilly O, Munch J C.1996. Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa (L.)Gaertn.) forest. Soil Biology and Biochemistry,28(8):1073-1081.
    182. Dilly O, Munch J C.1998. Ratios between estimates of microbial biomass content and microbial activity in soils. Biology and Fertility of Soils,27:374-379.
    183. Dong D X, Yan A, Liu H M, et al.2006. Removal of humic substances from soil DNA using aluminium sulfate. Journal of Microbiological Methods,66:217-222.
    184. Doran J W, Coleman D C, Bezdicek D F, et al.1994. Defining soil quality for a sustainable environment, Madison:SSSA,3-21.
    185. Doran J W, et al.1994. Defining soil quality for a sustainable environment. Soil Society of America Special Publication. No.35, Madison, Wisconsin,3-234.
    186. Doran J W.1996. Soil health and sustainability. Advances in Agronomy,56:1-54.
    187. Eivazi F, Bayan M R.2001. Effect of long-term fertilization and cropping systems on selected soil enzyme activities:Developments in Plant and Soil Science. Plant Nutrition,92:686-687.
    188. Ekenler M., Tabatabai M.A.2003. Effects of liming and tillage systems on microbial biomass and glycosidases in soils. Biol Fertil Soils,39:51-61.
    189. Elfstrand S, Hedlund K, Martensson A.2006. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Applied Soil Ecology,1-12.
    190. F-gri A, Torsvik V L, Goksiyr J.1977. Bacterial and fungal activities in soil:separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem,9:105-112.
    191. Fisher S G, Lerman L S.1979. Lengthin dependent separation of DNA restriction fragments in two-ditmentional gel electrophoresis. Cell,16:191-200.
    192. Fisher S G, Lerman L S.1983. DNA fragment differing by single base-pair substitution are separated in denaturing gradient gels:correspondence with melting theory. Proc Natl Acad Sci USA,80:1579-1583.
    193. Fortin N, Beaumier D, LeeK, et al.2004. Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. Journal of Microbiological Methods,56:181-191.
    194. Garland J L., Mills A L.1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Appl. Environ. Microbiol,57:2351-2359.
    195. Glenn J K, Gold M H.1985. Purification and characterization of an extracellular Mn(Ⅱ)-dependent peroxidase from the lignin-degrading basidiomycetes, Phancerochaete chrysosporium. Arch Biochem Biophys,242:329-341.
    196. Graham M H, Haynes R J.2005. Catabolic diversity of soil microbial communities under sugarcane and other land uses estimated by biolog and substrate-induced respiration methods. Applied Soil Ecology,29:155-164.
    197. Gramss G, Voigt K D, Kirsche B.1999. Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere,38:1482-1494.
    198. Grayston S J, Wang S, Campbell C D, Edwards A C.1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry,30:369-378.
    199. Hermansson A, Lindgren P.2001. Quantification of Ammonia-oxidizing bacteria in arable soil by real-time PCR. Applied and Environmental Microbiology,67:972-976.
    200. Hoshino Y T., Matsumoto N.2007. DNA-versus RNA-based denaturing gradient gel electrophoresis profiles of a bacterial community during replenishment after soil fumigation. Soil Biol Biochem.,39: 434-444.
    201. Insam H, Mitchell C C, Dormaar J F.1991. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three Ultisols. Soil Biol Biochem,23:459-464.
    202. JackW F, Gloria S, Laurie C, et al.2006. Biodiversity of micro-eu-karyotes in Antarctic Dry Valley soils with<5% soilmoisture. Soil Biology and Biochemistry,38:3107-3119.
    203. Jaeger C H, Lindow S E, Miller W, et al.1999. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol,65(6): 2685-2690.
    204. Jaimes C P, Aristizиba F A G, Bernal M M.2006. AFLP fingerprinting of Colombian Clostridium spp strains, multivariate data analysis and its taxonomical implications. Journal of Microbiological Methods,67:64-69.
    205. Jensen S, Holmes A J, Olsen R A, et al.2000. Detection of methane oxidizing bacteria in forest soil by monooxygenase PCR amplification. Microbial Ecology,39:282-289.
    206. John J B, Moorman T B, Kaarlen D L, et al.2000. Identification of regional soil quality factors and indicators:I Central and southern high plains. Soil Sci Soc Am,64:2115-2124.
    207. Johnsen K, Nielsen P.1999. Diversity of pseudomonas strains isolated with King's B and Gould' S1 agar determined by repetitive extragenic palindrome Polymerase chain reaction,16S rDNA sequencing and fourier transform infrared spectroscopy characterization. FEMS Microbiol Lett,173:155-162.
    208. Jones M J, Singh M.2000. Long-term yield patterns in barley-based cropping systems in northern Syria:The role of feed legumes. Agric. Sci.,135:237-249.
    209. Kandeler E, Luxhcφi J, Tscherko M, et al.1999. Xylanase, invertase and protease at the soil-litter interface of a loamy sand. Soil Biol & Biochem,31:1171-1179.
    210. Kirk J L, Beaudette L A, Hart M.2004. Methods of studying soil microbial diversity. Journal of Microbiological Methods,58:169-188.
    211. Kiss I.1957. The invertase activity of earthworm casts and soils from anthills. Agrokem Talajtan,6: 65-85.
    212. Kornelia S, Miruna O S, Annett M, et al.2007. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments:Do the different methods provide similar results? Journal of Microbiological Methods,69:470-479.
    213. Kraffczyk I, Trolldenier G, Beringer H.1984. Soluble root exudates of maize:Influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem,16:315-322.
    214. Laheurte F, Berthelin J.1988. Effect of aphosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant and Soil,105:11-17.
    215. Lal R, Reddy M V.1999. Soil management and soil biotic processes. Management of tropical roecosystems and the beneficial soil biota,67-81.
    216. Lattaud C, Locati S, Mora P, et al.1998. The diversity of digestive systems in tropical geophagous earthworms. Applied Soil Ecology,9:189-195.
    217. Lee K H, Jose S B.2003. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 185:263-273.
    218. Lerman LS, Fischer SG, Hurley I, et al.1984. Sequence-determined DNA separations. Annu Rev Biophys Bioeng,13:399-432.
    219.Lovell R D, Jarvis S C, Bardgett R D.1995. Soil microbial biomass and activity in long-term grassland:effects of management changes. Soil Biology and Biochemistry,27(7):969-975.
    220. Makoto Kinura, Taketo Shi Shibagaki, Yasunori Nakajina, et al.2002. Community structure of the microbiota in the floodwater of a Japanese paddy field estimated by restriction fragment length polymorphism and denaturing gradient gel electrophoresis pattern analyses. Biol Fertil Soils,36(4): 306-312.
    221. Marcial Gomes N C, Fagbola O, Costa R, Rumjanek N G, Buchner A, Mendona-hagler L, Smalla K. 2003. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Applied and Environmental Microbiology,69(7):3758-3766.
    222. Marschner P, Yang CH, Lieberei R, Crowley DE.2001. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry,33:1437-1445.
    223. Marschner Petra, Qinglin Fu, Zed Rengel.2003. Manganese availability and microbial populations in the rhizospher of wheat genotypes doffering in tolerance to Mn deficiency. Plant Nutr Soil Sci.,166:1-7.
    224. Marsehner P, Kandeler E, Marsehner B.2003. Structure and function of the soilmicrobial comunity in a long-term fertilizer experiment. Soil Biology & Biochemistry,35:453-467
    225. Moeseneder M M, Arrieta J M, Muyzer G, et al.1999. Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacteria plankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol,65:3518-3525.
    226. Muyzer G, Ellen C D W, Andre G U.1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied Environmental Microbiology,59:695 - 700.
    227. Muyzer G, Smalla K.1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoeck, 73:127-141.
    228. Muyzer G, Smalla K.1998. Application of deturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek,73: 127-141.
    229. Muyzer RM, Fischer SG, Lerman LS, et al.1985. Nearly all single base substituation in DNA fragments jointed to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res,13:3131-3145.
    230. Nannipieri P, Ascher J, Ceccherini M T.2003. Microbial diversity and soil functions. European Journal of Soil Science,54:655-670.
    231. Naseby D C, Pascual J A, Lynch J M.2000. Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities. Appl Microbilol,88:161-169.
    232. Neumann G.1999. Physiological adaptations to phosphorusde-ficiency during proteoid root development on white lupin. Planta,208:373-382.
    233. Nilsson M C, Wardle D A, Dahlberg A.1999. Effects of plant litter species composition and diversity on the breal forest plant soil system. Oikos,86(1):16-26.
    234. Normander B, Prosser J I.2000. Bacterial origin and community composition in the barley phytosphere as a faction of habitat and presowing conditions. Applied and Environmental Microbiology,66(10):4372-4377.
    235. OkanoY, Hristova K R, Leutenegger CM, et al.2004. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Applied and Environmental Microbiology,70:1008-1016.
    236. Olsen R A, Bakken L R.1987. Viability of soil bactera:Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microbiol Ecol,13:59-74.
    237. Pankhurst C.E, et al.1997. Defining and assessing soil health and sustainable productivity. Biological indicators of soil health. CAB International,1-324.
    238. Parlade J, Hortal S, Pera J, et al.2007. Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persistence and interspecific competition. Journal of Biotechnology,12:14-23.
    239. Pascual J.A., Garcia C, Hernandez T.1999. Lasting microbiological and biochemical effects of the addition of municipal soil waste to an arid soil. Biol Fertil Soils,30:1-6.
    240. Paul E A, Voroney R P.1980. Nutrient and energy flow through soil microbial biomass. Contemporary Microbial Ecology. London:Academic Press,215-237.
    241. Paul E A.1984. Dynamic of organic matter in soils. Plant and Soil,76:275-285.
    242. Pfender W F, Fieland V P, Ganio L M, et al.1996. Microbial community structure and activity in wheat straw after inoculation with biological control organism. Appl Soil Ecol,3:69-78.
    243. Phillips D A, Fox T C, King M D, et al.2004. Microbial products trigger amino acid exudation from plant roots. Plant Physiol,136:2887-2894.
    244. Richard P D.1994. Defining soil quality for a sustainable enviroment. Soil Science Society of America Inc, Madison Wisonsin USA,107-124.
    245. Ringelberg D B, Davis J D, Smith G A., et al.1989. Validation of signature polarlipid fatty acid biomarkers for alkane-utilizing bacteria in soils and subsurface aquifer materials. FEMS Microbiology Ecology,62:39-50.
    246. Sabine P, Stefanie K, Frank S, et al.2000. Succession of microbial communities during hot composting as detected by PCR single strand conformation polymorphism based genetic profiles of small-subunit rRNA genes. Applied Environmental Microbiology,66(3):930-936.
    247. Sannino F, Gianfreda L.2001. Pesticide influence on soil enzyme activities. Chemosphere,45:417-425.
    248. Sarathchandra S U, Ghani A, Yeates G W, et al.2001. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biology and Biochemistry,33(8):953-964.
    249. Sarathchandra S U, Perrott K W, Boase W R, Waller L E.1988. Seasonal changes and the effects of fertilizer on some chemical, biochemical and microbiological characteristics of high-producing pastoral soil. Biology and Fertility of Soils,6:328-335.
    250. Sarathchandra S U, Perrott K W, Littler R A.1989. Soil microbial biomass:influence of simulated temperature changes on size, activity and nutrient content. Soil Biology and Biochemistry,21: 987-993.
    251. Sarathchandra S U, Perrott K W, Littler R A.1989. Soil microbial biomass:influence of simulated temperature changes on size, activity and nutrient content. Soil Biology and Biochemistry,21:987-993.
    252. Sariaslani F S.1989. Microbial enzymes for oxidation of organic molecules. Crit Rev Biotechnol,9: 171-257.
    253. Saubusse M, Millet L, Delb-S C, et al.2007. Application of single strand conformation polymorphism-PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes. International Journal of Food Microbiology,116:126-135.
    254. Schutter M E, Sandeno J M, Dick R P.2001. Seasonal, soil type, alternative management influences on microbial communities of vegetable cropping systems. Biology Fertility Soils,34:397-410.
    255. Sderberg K H, Probanza A, Jumpponen A, et al.2004. The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil and cfu, PLFA techniques. Applied Soil Ecology,25:135-145.
    256. Sen R.2003. The root-microbe-soil interface:New tool for sustainable plant productivity. New Phytologist,157:391-394.
    257. Sessitsch A, Gyamfi S, Stralis-Pavese N, et al.2002. RNA isolation from soil forbacterial community and functionalanalysis:Evaluation of different extraction and soil conservation protocols. Journal of Microbiological Methods,51:171-179.
    258. Sheridan P P, Miteva V I, Brenchley J E.2003. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a greenland glacier ice core. Applied and Environmental Microbiology,69:2153-2160.
    259. Smith J L, Paul E A.1991. The significance of soil microbial biomass estimations. Bollag J M, Stotzky G. Soil Biochemistry.V.6.New York:Marcel Dekker, INC.:359-396.
    260. Staddon W J, Trevors J T, Duchesne L C, et al.1998. Soil microbial diversity and community structure across a climatic gradient in western Canada. Biodiversity and Conservation,7:1081-1092,
    261. Tien M, Kirk T K.1984. Lignin-degrading enzyme from Phancerochaete chrysosporium:Purification, characterization and catalytic properties of a unique H2O2 requiring oxygenase. Acad Sci USA,81: 2280-2284.
    262. Torsvik V, Daae F L, Goksφyr J.1995. Extraction, purification and analysis of DNA from soil bacteria. In:Trevors JT, van Elsas JDeds. Nucleic Acids in the Environment:Methods and Applications. New York, Berlin, Heidelberg:Springer,9-48.
    263. Torsvik V, Daae F L, Sandaa RA, et al.1998. Novel techniques for analyzing microbial diversity in natural and perturbed environments. JBiotech,64:53-62.
    264. Torsvik V, Fvres L.2002. Microbial diversity and function in soil:From genes to ecosystems. Current Opinion Microbiol,5:240-245.
    265. Uckan H S, Okur N.2006. Seasonal changes in soil microbial biomass and enzyme activity in arable and grass land soil. http://www. toprak. org. tr/isd/isd 77.htm..
    266. Wei Dan, Yang Qian, Zhang Jun Zheng, et al..2008. Bacterial community structure and diversity in a black soil as affected by long-term fertilization. Soil Science Society of China,18(5):582-592.
    267. Werker A C, Hall E R.,2001. Quantifying population dynamics based on community structure fingerprints extracted from biosolids samples. Microbial Ecology,41:195-209.
    268. White D.C., Davis W.M., Nickels J.S., King J.D., Bobbie R.J.1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia.,1:51-62.
    269. Whitehouse C A, Hottel H E.2007. Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples. Molecular and Cellular Probes,21: 92-96.
    270. Witter E., Martnsson A M, Garica F V.1993. Size of the soil microbial biomass in a long-term experiment as affected by different N-fertilizers and organic manures. Soil Biology and Biochemisty, 25:659-669.
    271. Wu L, Thompson D K, Li G, et al.2001. Developmentand evalution of functional gene arrays for detection of selected genes in the environmental studies in microbiology. Applied and Environmental Microbiology,67(12):5780-5790.
    272. Yoshitaka S, Masaya N, Tomoko O, et al.1999. Comparison of bacterial community structures in the rhizoplane of tomato plants grown in soils suppressive and conducive towards bacterial wilt. Appl Environ Microbiol,65(9):3996-4001.
    273. Zhong W H, Cai Z C.2007. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Applied Soil Ecology, 36:84-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700