用户名: 密码: 验证码:
坝库相互作用及抗震技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从流固耦合理论出发,以有限元分析为主要研究手段,并辅之以半解析法,系统深入研究了水可压缩性、库底库底边界和水体的粘滞性对拱坝地震动水压力及坝体地震反应的影响及其规律性。在国内外首次提出了在平面波作用下液体-气体-固体动力系统的理论解,分析了大坝隔震气幕的力学性态,首次提出了基于理想气体状态方程的气幕隔震的压力有限元模型,研究了气幕隔震的减震机理和隔震效果,并深入论证了将隔震气幕运用于溪洛渡双曲拱坝的技术可行性和隔震效果,得到了具有重要科学意义和实际价值的成果。
     基于库水体各类边界条件的有限元模型,系统分析了可压缩性对坝体动力响应的影响,表明水可压缩性对高坝动水压力强度和分布具有显著影响,而库底边界条件对大坝的地震反应有抑制作用。用半解析法分析了动水压力与与地震输入频率的关系以及库水表面重力波对动水压力的影响,表明动水压力的大小和地震输入频率有密切联系,而重力波的影响在工程计算中则可以忽略。
     水体的粘滞性对库水中压力波的传播有吸收作用,它使得压力波能量沿传播方向呈指数方式衰减。本文用半解析法分析了对坝面动水压力的影响,并将该结果和库底吸收性做了对比,表明一定程度的库水粘滞性对动水压力的影响和库底吸收性的影响相同。
     流固耦合理论中的基本问题之一就是对耦合方程的求解。本文首次将非齐次精细积分方法从线性荷载的特殊情况,推广到普遍情况,并导出了具体实用的分析方法,有力的推动了流固耦合及动力系统瞬态反应的高精度求解方法的新发展。
     将本文首次提出的水体-气体-结构系统的平面波作用理论解和三维有限元模型,应用于溪洛渡双曲拱坝的抗震安全性和气幕隔震可行性研究中,表明气幕对高拱坝具有良好的隔震性能,可降低动水压力90%以上,坝体地震拱应力20%~30%,减震效果显著,并使坝体的抗拉安全系数从0.93提高到3.58。这
    
     四川大学工学博士学位论文
    对发展高坝防震新技术,提高抗震安全性具有重要的科学意义和实际价值。
Based on the theory of interaction of fluid-solid, The FEM and semi-analytic method are used to analyze the reaction of dam-reservoir subjected to seismic motion, the analysis includes the effect of water compressibility, reflectance of reservoir bottom and water viscosity. The mechanical properties, isolation mechanism and effects of hydraulic air cushions are studied theoretically. The plane-wave solution of the system of the fluid-gas-dam and the FEM model of gas isolations based on the state equation of ideal gas are presented for first time. Using this model, the technique feasibility to apply air cushions to Xiluodu high arch dam, located in Jinsajiang River, is explored deeply and demonstrated. The important results of scientific and practical significance are achieved.
    Based on the FEM model of the dam-reservoir system, the influence of water compressibility to the hydrodynamics is systemically analyzed and researched. It is showed thaf the water compressibility has significant effect to the size and distributing of hydrodynamics on the high dam, and the absorbency of reservoir bottom has a role as a damper on the dam-reservoir system. The semi-analysis method is used to analyze the relationship between hydrodynamics and the earthquake's frequency and the influence of surface wave on hydrodynamics. It is concluded that the earthquake's frequency has an important effect on the hydrodynamics, but the surface wave of water can be omitted in engineering design.
    In order to improve the numerical solution of coupled equation to the dam-reservoir interaction system, the high-precise integration is generalized from linear problem to the nonlinear one. This work promoted the development of high-precise integration applied to the coupled system of fluid-solid.
    The plane-wave analytic solution of the coupled fluid-air-solid system and the FEM model of air cushion isolations are applied to study the influence of air cushion
    
    
    
    on earthquake response of dams. The calculations show that air isolation will reduce the hydrodynamic pressure significantly and restrain the dam vibrations during earthquakes. If the dam and reservoir is isolated by air cushions, it will decrease the hydrodynamic pressures by more than 90% and the seismic stresses by 20-30%. The coefficient of anti-seismic safety will be risen from 0.93 to 3.58.
    This research is very valuable to improve the safety of high arch dams against strong earthquakes. It provides useful guidance for seism-resisting design of high arch dams subjected to earthquakes.
引文
1. Westergaard, H. M., Water pressures on dams during earthquakes. Transactions. ASCE, 1933, 98:418-472
    2.邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展,v27,1,1997:19-38
    3.傅作新.水—坝相互作用的若干有效解法.华水科技情报,2(1985):1-10
    4.傅作新,吴斌元,王芳,钱向东.水坝库水与地基动力相互作用分析.华东水利学院学报,1,85:1-10
    5.傅作新,陆瑞明.水库的库底条件和挡水结构的动水压力.水利学报,5,87:28-35
    6.傅作新.结构与水体的动力相互作用问题.水利水运科学研究,2(1982):105-119
    7.傅作新,王立新,章青,拱坝的动水压力和拱坝库水的相互作用分析,第三届全国地震工程会议论文集(Ⅲ),1990,1271-1276。
    8.谢省宗,卓家寿.水弹性力学若干问题的研究和新近进展.现代力学与科技进步.北京,1997年8月:161-168
    9.卓家寿.裂隙岩体渗流场与位移场的耦合作用分析.吕国岩石力学和工程第四次学术大会论文集,中国科学技术出版社.1996:197-203
    10.卓家寿,姜弘道.具有软弱夹层岩体的弹塑性分析.华东水利学院学报.2,1979:1-22
    11.赵成刚,杜修力,崔杰.固体、流体多相孔隙介质中的波动理论及其数值模拟的进展.力学进展.28(1),1998:83-92
    12. M.R. Maheri & M.R. Khodaei-Nassaj. Dynamic solution of 3-D structure-fluid system using a new Lagrangian-based curvilinear fluid element. Dam Engineering, 8, 1997:83-122
    13. T. Hanchen; A.K. Chopra. Dam-foundation rock interaction effects in earthquake response of arch dams. Journal of Structural Engineering, ASCE, 122 (5), 1996:528-538
    14. A. K. Chopra. Hydrodynamic effects in earthquake response of arch dams. Proceedings of China-US Workshop on Earthquake Behavior of Arch Dams. Beijing, China. 187:110-129
    15. P. Chakrabarti & A. K. Chopra. Earthquake Analysis of Gravity dams including hydrodynamic inter action. Earthquake Engineering and Structural Dynamics, v2, 1973: 143-160.
    16. R.W. Clough. Reservoir interaction effects on the dynamic response of arch dams. Proceedings of China-US Bilateral Workshop on Earthquake Engineering. 1982: 58-84
    17. Javier Aviles, Xiangyue Li, Analytical-numerical solution for hydrodynamic pressures on dams with sloping face considering compressibilityand viscosity of water, Computer & Structure, v56(4), 1998:481-488.
    
    
    18. Tsai, C. S., Lee, G. C., Hydrodynamic pressure on gravity dams subjected to ground motion, Journal of Engineering Mechanics, ASCE, 1989, 115:598-617.
    19. Aviles, J., Sanchez-Sesma, F. J., Hydrodynamic pressures on dams with nonvertical upstream face, Journal of Engineering Mechanics, ASCE, 1986, 112:1054-1061.
    20. Tsai, C. S., Semi-analytical solution for hydrodynamic pressures on dams with arbitrary upstream face considering water compressibility. Computer & Structure, 1992, 42:497-502.
    21. Aviles, J., Sanchez-Sesma, F. J., Water pressures on rigid gravity on dams with finite reservoir during earthquakes, Earthquake Engineering and Structural Dynamics, 1989, 18, 527-537.
    22. Chong-Shien Tsal, George C. Lee and Robert L. Ketter, A semi-analytical ethod for time-domain analyses of dam-reservoir interactions, Inter. Jou. Numer. Meth. Engng., 1990, Vol29:913-933.
    23.章青,傅作新,考虑库底吸收性作用时挡水坝的抗震分析,河海大学学报,1988(9)
    24. ZienkiewiCz O. C., The finite element method, McGRAW-HILL, 1977.
    25.杜庆华,吴有生,冯振兴.流固耦合振动问题的某些工程处理方法.固体力学学报,9,1(1988):49-61
    26. K. J. Bathe & W.F. Hahn. On transient analysis of fluid-structure systems. Computers & Structures. 10,1979:383-391
    27. N. Akkas, H.U. Akay & C. Yilmaz. Applicability of general purpose finite element programs in solid-fluid interaction probleus. Computers & Structures. 10,1979:773-783
    28. E.L. Wilson & M. Khalvati. Finite elements for dynamic analysis of fluid-solid systems. International Journal For Numerical Methods In Engineering, 19,1983:1657-1668
    29. W.K. Liu & H.G. Chang. A method for computation for fluid structure interaction. Computers & Structures. 20, 1985:311-320
    30. Harn C. Chen & Robert L. Taylor. Vibration analysis of fluid-solid systems using finite element displacement formulation. International Journal For Numerical Methods In Engineering, 29, 1990:683-698
    31. N. C. Pal, S. K. Bhattacharyya & P. K. Sinha. Coupled Slosh Dynamics of Liquid-Filled, Composite Cylindrical Tanks. Journal of Engineering Mechanics, 125(4), 1999:491-495
    
    
    32. O.C. Zienkiewicz & P. Bettess. Fluid-structure dynamic interacion and wave forces. An introduction to numerical treatment. Internationai Journal For Numerical Methods In Engineering, 13, 1978:1-16
    33. L. Olson & K. Bathe. Analysis of fluid-structure interactions. A direct sysmetric coupled formulation based on the fluid velocity potential. Computers & Structures., 21, 1985:21-32
    34.吴一红,谢省宗.水工结构流固耦合动力特性分析.水利学报,1995(1):27-34
    35.吴一红,李世琴,谢省宗.拱坝—库水—地基耦合系统坝身泄洪动力分析.水利学报,1996(11):6-12
    36.戴大农,王勖成,杜庆华.流固耦合系统动力响应的模态分析理论.固体力学学报,11,4(1990):306-312
    37. L. Olson & K. Bathe. Analysis of fluid-structure interactions. A direct sysmetric coupled formulation based on the fluid velocity potential. Computers & Structures., 21, 1985:21-32
    38. W.J.T. Daniel. Modal method in finite element fluid-structure eigenvalue problems. International Journal For Numerical Methods In Engineering, 15(8), 1980:1161-1176
    39.牟建耀.流固耦合分析的模态综合法.常州工业技术学院学报(自然科学版).9,1996:82-90
    40.邢景堂,郑兆昌.基于弹性动力学变分原理的模态综合法研究.固体力学学报,2,1983:248-257
    41.戴大农,王勖成,杜庆华.流固耦合系统动力响应的模态分析理论.固体力学学报,11,4(1990):306-312
    42.邢景堂.考虑自由面线性波的流固耦合动力分析的两个变分公式.航空学报,9,11,1988:A568-A571
    43.邢景堂.线性流固耦合动力分析程序FSIAP92简介.航空学报,13,9,1992:A548-A551
    44. Saini S. S., Bettess P., Zienkiweicz O. C., Coupled hydrodynamic response of concrete gravity dams using finite and infinite elements, Earthquake Engineering and Structural dynamics, v6, 1978: 363-374.
    45. O.C. Zienkiewicz, K.K. Paul & E. Hinton. Cavitation in fluid-structure response (with pqrticular refference to dams under earthquake loding). Earthquake Engineering and Structural Dynamics, 11, 1983:463-481
    46. R.K. Singh, T. Kant & A. Kakodkar. Coupled shell-fluid interaction problems with degenerate shell and three-dimensional fluid elements. Computers & Structures. 38(5/6), 1991:515-528
    
    
    47. J.P.F.O'Connor & J.C. Boot. Solution procedure for the earthquake analysis of arch dam-reservoir systems with compressible water. Earthquake Engineering and Structural Dynamics 16,1988:757-773
    48.何发祥,拱坝动水压力及气幕隔震技术研究,2000.5,博士学位论文。
    49. Hanna Y G, Humar J L., Boundary element analysis of fluid-domain, J. Eng. Mech. Div. ASCE 108, EM2, 1982
    50. Antes H, Estorff O V. Analysis of absorption effects on the dynamic response of dam reservoir systems by BEM, Earthquake Engineering & Structural Dynamics, 15(8), 1987: 1023-1036.
    51.宋崇民,张楚汗,水坝抗震分析的动力边界元方法,地震工程与工程振动,1988(4)。
    52. Tsai C H, Lee G C. Hydrodynamic pressure on gravity dams subject to ground motions, J Eng. Mech. Div. ASCE, 1989, 115(3):598-617.
    53. O.C. Zienkiewicz & P. Bettess, 1975, Infinite elements in the study of fluid structure interaction problems, Proc. 2nd Int. Symp. On Comp. Methods Allp. Sci., Versailles, also published in lecture Notes in Physics, v58, Eds. J. Ehlers et al., Springer-Verlag, Berlin, 1976.
    54. P. Bettess, O. C. Zienkiewicz, Diffraction and refraction of surface waves using finite and infinite elements, Inter. Jour. Numer. Meth. Engng., 1977, v11:1271-1290.
    55.张楚汗,赵崇斌,用无穷元研究断层对重力坝低级应力的影响,水利学报,1986,9:24-33。
    56. Zhang C H, Jin F, Pekau O A. Time domain procedure of FE-BE-IBE COUPLING FOR SEISMIC INTERACTION OF ARCH DAMS AND CANYONS. Earthquake Engineering & Structural Dynamics, 1995, 24(1): 651-666.
    57.徐艳杰,张楚汗,金峰,非线性拱坝—地基动力互相作用的FE-BE-IBE模型,清华大学学报(自然科学版),1998,38(11)99-103。
    58.寇晓东,无单元法追踪结构开裂及拱坝稳定研究,清华大学博士学位论文,1998。
    59.居荣初,曾心传,弹性结构与液体的耦联振动理论,地震出版社,1983,北京。
    60.烟野正.水弹性地震时动水压共振关吟味.日本土木学会论文集,129,1966
    61. Parambakatoor R. Permumalswami & Lakshimidhar Kar. Earthquake Hydrodynamic Forces on Arch Dams. Journal of the Engineering Mechanics Division, 99 (5), 1973:965-977
    62. Ka-Lun Fork & A. K. Chopra. Earthquake analysis of arch dams including dam-water interaction, reservoir boundary absorption and foundation flexibility. Earthquake Engineering and Structural Dynamics, 14,
    
    1986:155-184.
    63. A.K.Chopra.Earthquake response of gravity dams.Journal of Engineering Mechanics Division, ASCE, 96(EM4) , 1970:443-454
    64. Hall, John F.; Chopra, Anil K.Hydrodynamic effects in the dynamic response of concrete gravity dams.Earthquake Engineering and Structural Dynamics, 10, 1982:333-345
    65. Ka-Lun Fok & A.K.Chopra.Frequency response functions of arch dams: hydrodynamic and foundation flexibility effects.Earthquake Engineering and Structural Dynamics, 14,1986:769-795
    66. Craig S.Porter & A.K.Chopra.Dynamic analysis of simple arch dams including hydrodynamic interaction.Earthquake Engineering and Structural Dynamics, 9, 1981:573-597
    67. Porter, Craig S.; Chopra, Anil K.Hydrodynamic effects in dynamic response of simple arch dams.Earthquake Engineering and Structural Dynamics, 10, 1982:417-431 68. Tan, Hanchen; Chopra, Anil K.Earthquake analysis of arch dams including dam-water-foundation rock interaction.Earthquake Engineering and Structural Dynamics, 24,1995: 1453-1474
    69. Tan, Hanchen; Chopra, Anil K.Dam-foundation rock interaction effects in frequency-response functions of arch dams.Earthquake Engineering and Structural Dynamics, 24,1995:1475-1489
    70. Fok, Ka-lun; Chopra, Anil K.Water compressibility in earthquake response of arch dams.Journal of Structural Engineering, ASCE, 113,1987:958-975
    71. Fok, Ka-lun; Chopra, AnilK.Hydrodynamic and foundation flexibility effects in earthquake response of arch dams.Journal of Structural Engineering, ASCE, 112, 1986: 1810-1828
    72. Hall, John F.; Chopra, Anil K.Dynamic analysis of arch dams including hydrodynamic effects.Journal of Engineering Mechenics, ASCE, 109,1983:149-167
    73. Hall, John F.; Chopra, Anil K.Hydrodynamic effects in the dynamic response of concrete gravity dams.Earthquake Engineering and Structural Dynamics, 10, 1982:333-345
    74. Porter, Craig S.; Chopra, Anil K.Hydrodynamic effects in dynamic response of simple arch dams.Earthquake Engineering and Structural Dynamics, 10, 1982:417-431
    75. Chang-Yu Ling & John L.Tassoulas.hree-Dimensional Dynamic Analysis of Dam-Water-Sediment Systems.Journal of Engineering Mechanics, 113
    
    (12)1987:1945-1958
    76. O.C. Zienkiewicz & R.E. Newton, Coupled vibrations of a structure submerged in a compressible fluid, Proc, Symp. Finite Element Techniques, Institute fur Statik and Dynamic der Luft-und Baum-fahrtkonstruktionen, University of Stuttgart, Germany, 1969.
    77. Nathan, M. Newmark, Emilio Rosenblueth, Fundamentals of Earthquake Engineering, Prentice Hall, Inc. 1971.
    78.陈厚群,当前我国水工抗震中的主要问题和发展动态.振动工程学报,10(3),1997:253-257。
    79.刘浩吾,何发祥.拱坝行波输入的动力分析和抗震设计.水利学报.9,1990:26-35.
    80.林皋,高坝的抗震分析,大连理工大学,1990。
    81. Michael J. Dowling & John F. Hall. Nonlinear seismic analysis of arch dams. Journal of Engineering Mechanics, ASCE, 115(4), 1989:768-789
    82. R. Tinawi & L. Guizani. Formulation of hydrodynamic pressures in cracks due to earthquakes in concrete dams. Earthquake Engineering and Structural Dynamics, 23, 1994:699-715
    83. J.W. Chavez & Gregory L. Fenves. Earthquake Response of Concrete Gravity Dams Including Base Sliding. Journal of Structural Engineering, ASCE, 121, 5, 1995:865-875
    84.陈厚群,高拱坝抗震设计研究进展,《高拱坝设计与计算分析》高级研讨班论文集(二),2000.9,北京。
    85.林皋,混凝土大坝的抗震安全评价与地震作用的控制技术,《高拱坝设计与计算分析》高级研讨班论文集(二),2000.9,北京。
    86. Alexander M. Uzdin, Angelique A. Dolgaya. Base isolated structures resistant control theory and application of base isolation in Russia. Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference, PVP-Vol. 379, Seismic ,shock and Vibration Isolation, ASME, 1998:71-78
    87. Alexander M. Uzdin, Audrey A. Nikitin, Inna O. Kuznetsova. Application of seismic isolation for transport and hydrotechnical structures in Russia. Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference, PVP-Vol. 379, Seismic ,shock and Vibration Isolation, ASME, 1998:193-196
    88.张雪亮.隔振技术及其在工程中的应用.第三届全国地震工程会议论文集.579-584
    89.朱德库,刘晓杰,马平,空气弹簧及其控制系统,山东科学技术出版社,山东济南,1989。
    90. S. J. Mraz Ed. It's all in the springs. Machine Design, 7,1998:80-86
    
    
    91.易作刚.宽频多维减振器的设计.激光与红外,23,4,1994:44-46,43
    92.张文华,强杰.空气弹簧在钻井液振动筛上的使用性能浅析.石油机械,23,1995:39-42
    93.赵洪伦,张广世,高速客车空气弹簧非线性横向刚度特性研究,铁道学报,1999,21(6).
    94.董文才,郭日修.气幕减阻研究进展.船泊力学,2(5),1998:73-78
    95.朱云翔,郭日修.气幕对弹性球壳振动影响的探讨.振动工程学报,9(3),1996:237-243
    96.朱云翔,郭日修.固体-气幕-液体耦合问题的水弹性分析.固体力学学报,17(2),1996:157-162
    97.朱云翔,郭日修.固体-气幕-液体耦合系统广义变分原理.固体力学学报,16(2),1995:163-170
    98.朱云翔,郭日修.气液两相流理论与气幕降噪.力学与进展.16(6),1994:1-7
    99.M.H. 乔德里著,陈家远,孙诗杰,张治滨译.实用水力过渡过程.四川水力发电工程学会出版,1985年9月:259-263
    99.U.C. 舍伊宁.在水工建筑中用气幕抗震.(俄刊)水工建设,10,1992:1-6
    100.B.M. 包亚尔斯基等.契尔克依和米阿特林电站拱坝气幕的设计.(俄刊)水工建设,10,1992:6-9
    101.B.B. 科尼克等.米阿特林水电站拱坝试验性气幕的施工安装.(俄刊)水工建设,10,1992:9-10
    102.B.M. 包亚尔斯基等.克里沃波罗什电站大坝试验性气幕的构造.(俄刊)水工建,10,1992:11-13
    103.B.B. 科尼克等.克里沃波罗什电站大坝试验性气幕的安装.(俄刊)水工建,10,1992:13-15
    104.O.A. 萨维诺夫等.带空气帷幕的水工建筑物抗震性数学模拟和理论研究.(俄刊)水工建,10,1992:16-18
    105.B.N. 阿西科夫等.带气幕的水工建筑物与水介质相互作用现象的物理模拟试验.(俄刊)水工建,10,1992:18-24
    106.B.K. 格勒利斯等.克里沃波罗水电站大坝的试验性气幕的原型试验.(俄刊)水工建,10,1992:25-28
    107. Lee Li. A seismic isolation measure for dams. Proceeding of Earthquake engineering Tenth world conference, Balkema, Rotterdam, 1992:2247-2250
    108.高拱坝抗震应力控制标准和抗震结构工程措施研究,大连理工大学抗震研究室,1999.8。
    109.钟万勰,暂态历程的精细计算方法,计算结构力学及其应用,1995,12(1):1-6。
    110.张森文,曹开彬,计算结构动力响应的状态方程直接积分法,计算力学学报,2000,17(1):93-97。
    
    
    111.林家浩,张亚辉。受均匀调制演变随机激励结构响应快速精确计算[J],计算力学学报,1997,14(11)。
    112.张亚辉,林家浩,飞行物受瞬态荷载作用的精细逐步积分[J],计算力学学报,1998,15(3):288-298。
    113.裘春航,吕和祥,蔡志勤,在哈密顿体系下分析非线性动力学问题[J],计算力学学报,2000,17(2):127-132。
    114. Weiping Shen, Jiahao Lin, F. W. Williams, Parallel computing for the high precision direct integration method[J], Comput. Methods Appl. Engng. 1995, 126:315-331.
    115.董聪,丁李粹,动力学系统精细积分算法的逼近机理与误差上界,计算力学学报,1999,16(3):253-259。
    116.于建华,谢用九,魏泳涛,高等结构动力学,四川大学出版社,1999。
    117.李衍达,常迥,信号重构理论及其应用,:北京清华大学出版社,1991。14-20。
    118.陈奎孚,张森文,精细时程积分法的参数选择,计算力学学报,1998,15(3):301-305。
    119. S. J. Mraz Ed. It's all in the springs. Machine Design, 7, 1998:80-86
    120.易作刚.宽频多维减振器的设计.激光与红外,23,4,1994:44-46,43
    121.张文华,强杰.空气弹簧在钻井液振动筛上的使用性能浅析.石油机械,23,1995:39-42
    122. T. Takagami & Y. Jimbo. Study of an Active Vibration Isolation System. Precis on Engineering, 10,1, 1988:3-7
    123. Alexander M. Uzdin; Andrey A. Nikitin; Inna O. Kuznetsova. Application of seismic isolation for transport and hydrotechnical structures in Russia. Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference, 379, 1998:193-196
    124. K.P. Lee, A Simplistic Model of Cyclic Heat Transfer Phenomena in Close Spaces, Proceedings of the 25th IECEC, Paper No. 910171, 1991.
    125. A.A. Kornhauser. Dynamic modeling of gas springs. Proceedings of 26th IECEC, 5,1991:180-185
    126. Irons B M. Role of part-inversion in fluid-structure problems with mixed variables. AIAA JL., 8(1970):568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700