用户名: 密码: 验证码:
内循环二板式精密注塑机关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料注射成型装备是保证成型制品精密程度的关键因素。根据对精密注射成型原理的分析和合模机构对精密注射成型制品质量的影响研究,以及对现有合模技术的总结归纳,以专利“内动直锁双模板式合模机构”为指导思想,本课题创新研发了一种快速响应的开关阀式的内循环锁模油缸结构及其液控系统,成功制得一种新型内循环二板式注塑机。该新型注塑机的特殊之处在于合模机构,主要由两块模板、两个移模油缸、四条拉杆、四个创新设计的内循环锁模油缸、一套调模机构和一套顶出机构组成,核心特点为四缸直锁、二板调模和液压油内循环。拉杆与锁模油缸活塞杆合二为一,移模油缸与锁模油缸的缸筒分别与定模板连接,活塞杆分别与动模板连接;调模机构和顶出机构安装在动模板上。移模油缸驱动动模板移动时,锁模油缸的内循环功能开启,使其左右腔连通,由此实现移模过程锁模油缸内液压油的内部循环和置换,从而达到节能的目的;移模到达设定位置时,锁模油缸的内循环功能关闭,从而可以进行增压锁模动作。新型四缸直锁内循环二板式合模机构在秉承传统二板式合模机构性能优势的同时,解决了它能耗大、结构复杂等问题。以新型注塑机的产业化为目标,本课题研究了内循环二板式合模机构的系列关键技术,并取得了一些阶段性的研究成果:
     (1)内循环二板式合模机构理论模型的研究。分别建立了内循环二板式合模机构的锁模刚度模型和移模阶段的能耗模型,探讨了锁模刚度的影响因素和合模机构的节能机理。结果表明,合模机构的结构尺寸、材料和液压油性能等都是影响系统刚度的主要因素;与外循环二板式合模机构相比,内循环二板式合模机构移模阶段无充液能耗,阻力能耗小,由此成就了内循环二板式合模机构优异的节能特性。
     (2)内循环二板式合模机构液压系统的性能仿真及优化。利用工程分析软件AMESim模拟研究了内循环二板式合模机构液压系统的工作性能,得到了模板运动的位移曲线、锁模油缸压力曲线和泄压阀流量曲线,由此发现了锁模油缸瞬时大流量泄压是造成物理样机CHH200运行不平稳的主要原因。提出了采用节流阀泄压的液压系统改进方案和节流阀通径的确定方法,使液压系统的运行效率和平稳性都得到提高。
     (3)内循环锁模油缸工作机理的研究。借助计算流体力学软件FLUENT模拟研究了移模过程中锁模油缸的工作过程。研究结果表明,在内循环锁模油缸活塞运动方向前方液压油压力较大,这对移模过程表现为阻力,与能耗模型中的阻力能耗对应,其随活塞运动速度的增加而增大,但即使在最高移模速度时,阻力能耗也很小;在后方压力较低,甚至形成负压;在内循环锁模油缸活塞附近液压油速度场明显,最高速度出现在活塞孔内,活塞后方湍流运动明显,有利于内循环锁模油缸内部液压油与外界的热交换,维持油温恒定。
     (4)内循环二板式合模机构锁模特性的研究。分别采用模拟与实验的方法研究了内循环二板式合模机构的锁模均匀性和锁模重复性。在研究锁模均匀性时,创新性地提出以模具型腔应变为锁模性能评价指标,区别于现有文献中以模板挠度变形为评价指标,与制品成型密切相关,更能反映精密注射成型的要求。研究结果表明,内循环二板式合模机构的锁模特性优于与三板肘杆式合模机构。
     (5)精密塑料注射成型标准的研究。根据以上对精密注射成型技术的研究,分析了现行塑料注射成型机标准的现状与局限性,制定了《精密塑料注射成型机》企业标准。该标准对注塑机的性能要求主要分为单项性能要求和综合性能要求,其中综合性能要求为制品重量重复精度,为评价注塑机是否精密的必要条件,本标准规定为1‰。
     通过以上研究,研制了内循环二板式注塑机的物理样机CHH200和CHH90,根据《精密塑料注射成型机》企业标准和《塑料注射成型机能耗检测和等级评定的规范》对其进行了性能测试。测试结果表明,配备内循环二板式合模机构的注塑机为一级节能精密注塑机。在此基础上,总结得到四缸直锁内循环二板式合模机构的性能特点—节能、节材、高精密、高效率和高性价比,并对性能特点作了分析。
     通过以上研究工作的开展,内循环二板式合模机构系列技术已相对完善和成熟,目前正被宁波海天集团、宁波海达塑料机械有限公司和浙江申达机器制造股份有限公司实现工业化生产。
Plastic injection molding machine (IMM) is the key factor that ensuresthe precision of the molded part. According to the analysis of precisioninjection molding principle, the influences of clamping unit’s performance onproduct quality, and the summaries of the existing clamping technologies, anew kind of internal circulation mold-clamping cylinder and its hydrauliccontrol system were developed based on the patent “internal circulationtwo-platen clamping unit”. A novel internal circulation two-platen IMM,especially a clamping unit with the new cylinder was manufactured. Theclamping unit is mainly composed of a stationary platen, a moving platen, twomold-moving cylinders, four tie bars, four patented mold-clamping cylinders,a mold-adjustment device and an ejector. The rod of the mold-clampingcylinder was integrated with the tie bar of the clamping unit, simplifying thestructure of the clamping unit. The cylinder tubes of the mold-movingcylinders and the mold-clamping cylinders are fixed in the stationary platen,and the rods of them are connected with the moving platen. Themold-adjustment device and the ejector are mounted on the moving platen.When mold-moving, the internal circulation function of the mold-clampingcylinders becomes effective and thus the two cavities are connected, achievingthe internal flow of the oil. The internal circulation of the hydraulic oil in themold-clamping makes machine energy-saving during the mold-moving phase.At the moment of mold-clamping, the internal circulation function is switchedoff and the inlet of the mold-clamping is pressed, building up the clampingforce. On the basis of the advantages of the conventional clamping units, thenovel clamping unit further overcomes the shortcomings of the conventionalclamping units, such as high energy consumption and complex structure. Thecharacteristics of the internal circulation two-platen clamping unit can besummarized as “direct clamping by four cylinders”,“two-platen withmold-adjustment function” and “internal circulation”. Five aspects of workwere conducted around the novel internal circulation two-platen clamping unit,and some research conclusions were obtained as follows:
     (1) Research of the theoretical model for the internal circulationtwo-platen unit. The clamping stiffness model and energy-consumption modelduring the mold-moving phase were established repectly, and the main factors affecting the stiffness model and the energy-saving principles of the clampingunit were investigated. Results show that the structure size, material of theclamping unit, and oil property are all the main factors of influencing systemstiffness. Comparing with the external circulation clamping unit, the novelclamping unit is energy-saving by eliminating the oil-filling energyconsumption and lowering the resistance energy consumption because of theuse of the internal circulation cylinder.
     (2) Simulation and optimization on the hydraulic system of the internalcirculation two-platen clamping unit. The working performance of thehydraulic system was investigated through the software AMESim.Displacement curve of the moving platen, pressure curve in themold-clamping cylinder and flow curve in the cartridge valve for releasingpressure were gained. It was found that the large flow in the cartridge forreleasing pressure was the main cause of the prototype CHH200’s poorstability. An optimization scheme was proposed. The determining principle ofkey parameters in the optimization scheme was demonstrated. Theoptimization scheme can improve the operating efficiency and the stability ofthe hydraulic system.
     (3) Research on the working principles of the internal circulationclamping cylinder. The working conditions of the internal circulation clampingcylinder during the mold-moving phase was investigated by the softwareFLUENT. Results show that the pressure is relatively high at the front of thepiston of the mold-clamping cylinder and it is negative at the back of thepiston. The high pressure displayed as the resistance of the mold-moving,corresponding with the resistance energy consumption in the energyconsumption model. The resistance increases with the increasing of themold-moving speed. The velocity field nearby the piston in the mold-clampingcylinder is intensive. The maximum velocity occurred in the holes of thepiston and the flow behind the piston is turbulent. The turbulent flow is goodfor the heat exchange of the mold-clamping cylinder.
     (4) Research on the clamping property of the internal circulationtwo-platen clamping unit. The clamping property was investigated from twoaspects: clamping uniformity and clamping repeatability. The former wasinvestigated by simulation method and the latter by experiment method. Whenclamping uniformity was investigated, the mold cavity strain of as theevaluation index of clamping uniformity was proposed innovatively, differentfrom platen strain mentioned in the existing literature. The research resultsshow that the clamping property of the internal circulation two-platenclamping unit is higher than that of the toggled three-platen.
     (5) Research of the precision IMM standard. Based on the aboveresearches of precision injection molding and the status of existed plasticsIMM standards, the corporate standard “Precision Plastic Injection MoldingMachine” was developed. The standard not only proposes higher technical requirements for IMM, but also provides performance requirements. Theperformance requirement includes individual indicators and comprehensiveindicator. The comprehensive indicator is the weight repeatability and it is1‰according to this standard. The comprehensive indicator is the key index thatdetermines whether an IMM is precise or not.
     Based on the above researches, the prototype of the internal circulationtwo-platen IMM CHH200was developed and CHH90was manufactured inseries. The performances of the internal circulation two-platen IMMs weretested according to the standard “Precision Plastic Injection MoldingMachine” and “Plastic IMM Energy Consumption Testing and RatingStandard of China”. The test results show that the IMM with the internalcirculation two-platen clamping unit is precise and is of the highest rank interms of energy-saving. The characteristics of the internal circulationtwo-platen clamping unit could be summarized in the following: materialsaving, energy saving, high molding precision, high production efficiency andhigh performance-cost ratio.
     The above researches make the internal circulation two-platen clampingtechnology relatively perfect and mature. The new technology is beingindustrialized by Ningbo Haitian Group, Ningbo Haida Plastic Machinery Co.,Ltd. and Zhejiang Sound Machinery Manufacture Co., Ltd.
引文
[1]樊先荣.汽车塑料件大有可为[J].时代汽车,2005,(7):42-44
    [2]杨卫民.高分子材料先进制造的“微积分”思想[A].全国高分子材料工程技术高级学术研讨会[C].杭州:中国高科技产业化研究会2010:139-146
    [3] Pun K-F, Hui I-K, Lewis W G, et al. A multiple-criteria environmental impact assessment forthe plastic injection molding process: a methodology[J]. Journal of Cleaner Production,2003,11(1):41-49
    [4] Rosato D V, Rosato M G. Injection Molding Handbook[M]. Norwell: Kluwer AcademicPublishers,2000
    [5] Bozdana A T,Eyercio lu. Development of an expert system for the determination of injectionmoulding parameters of thermoplastic materials: EX-PIMM[J]. Journal of Materials ProcessingTechnology,2002,128(1-3):113-122
    [6]金艳.注塑机精密塑化机理的研究[D].北京:北京化工大学,2011
    [7] Seaman C M, Desrochers A A, List G F. Multiobjective optimization of a plastic injectionmolding process[J]. Control Systems Technology, IEEE Transactions on,1994,2(3):157-168
    [8]王建.基于注塑装备的聚合物PVT关系测控技术的研究[D].北京:北京化工大学,2010
    [9] Dimla D E, Camilotto M, Miani F. Design and optimisation of conformal cooling channels ininjection moulding tools[J]. Journal of Materials Processing Technology,2005,164-165(15):1294-1300
    [10] Jiang S, Wang Z, Zhou G, et al. An implicit control-volume finite element method and its timestep strategies for injection molding simulation[J]. Computers&Chemical Engineering,2007,31(11):1407-1418
    [11]黄志杰.塑料在汽车上的应用现状及发展趋势[J].汽车工艺与材料,2008,(1):61-64
    [12] Kamal M R, Varela A E, Patterson W I. Control of part weight in injection molding ofamorphous thermoplastics[J]. Polymer Engineering&Science,1999,39(5):940-952
    [13]黄步明.精密注射成型的关键技术[A].《中国塑料》论坛暨塑料注塑新技术国际研讨会[C].北京:轻工业塑料加工应用研究所《中国塑料》杂志社,2005:33-40
    [14] Yang Y, Gao F. Injection molding product weight: Online prediction and control based on anonlinear principal component regression model[J]. Polymer Engineering&Science,2006,46(4):540-548
    [15]陈占春,李志平,严正.精密注射成型技术的研究进展[J].工程塑料应用,2005,33(7):67-70
    [16]谢鹏程.精密注射成型若干关键问题的研究[D].北京:北京化工大学,2007
    [17]张志莲.先进先出式注射成型机的研制和数值模拟及质量控制[D].北京:北京化工大学,2007
    [18]石宪章.注塑冷却数值分析方法的研究与应用[D].郑州:郑州大学,2005
    [19]庄俭.微注塑成型充模流动理论与工艺试验研究[D].大连:大连理工大学,2007
    [20]胡广洪.微细发泡注塑成型工艺的关键技术研究[D].上海:上海交通大学,2009
    [21]郑国强.气体辅助注射成型制品形态结构及性能[D].成都:四川大学,2007
    [22]黄步明.四缸直锁二板式注塑机及精密注射成型关键技术[J].模具工程,2008,(10):82-85
    [23]蒋炳炎,谢磊,杜雪.微注射成型机发展现状与展望[J].中国塑料,2004,18(9):6-11
    [24] H. Eberle. Micro-Injection Moulding Technology[J]. Kunststoffe Plastic Eourope,1998,(2):1344-1346
    [25] R.Ruprcht, T.Gietzelt, K.Muller, et al. Injection molding of microstructured components fromplastics[J]. Melts and Ceramics,2002,8(4-5):351-358
    [26] R.Ruprcht, T.Benzler, T.I-IanelTlann, et al. Various replication techniques for manufacturingthree-dimendional metal microstructures[J]. Microsystem Technologies,1997,4(1):28-31
    [27]杨卫民.塑料注射成型与绿色制造技术[J].中国塑料橡胶,2010,(8/9):18-20
    [28]庄俭,张建国,高世权等.微注塑成型机的研究现状与进展[J].塑料科技,2009,37(5):92-95
    [29] Tsai C-C, Hsieh S-M, Kao H-E. Mechatronic design and injection speed control of an ultrahigh-speed plastic injection molding machine[J]. Mechatronics,2009,19(2):147-155
    [30]李红林.超高速注射成型及模具技术[J].新技术新工艺,2005,(3):44-45
    [31]张友根.注塑机节能技术的现状与展望(一)[J].包装工程,2008,29(3):207-209
    [32]张友根.注塑机节能技术的现状和展望(二)[J].包装工程,2008,29(4):172-174
    [33]刘武.注塑机节能改造技术[J].国外塑料,2010,28(9):54-56
    [34]张涛,李斌礼,李子玉.基于液压泵伺服驱动的注塑机节能技术研究[J].机电工程技术,2010,39(8):73-75
    [35]吴大鸣.国内外节能塑料机械的研发与应用进展[J].塑料,2007,36(2):30-36
    [36]王光才.电磁感应加热技术在塑料加工工业的应用[J].电力需求侧管理,2007,9(6):44-45
    [37]彭响方,瞿金平,李礼夫等.动态注射成型过程中的振动技术研究[J].工程塑料应用,1999,27(7):38-40
    [38]瞿金平.聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005
    [39]中国注塑机行业市场调查深度分析与前景预测报告2010-2015[R].北京:中华商务网,2009
    [40]杨卫民.从Chinaplas2009看注射成型技术新进展[J].中国塑料橡胶,2009,(6/7):20-22
    [41]陈俊,谢鹏程,杨卫民等.基于磁致伸缩位移传感器的精密注射成型研究[J].中国塑料,2007,21(12):88-91
    [42]梁志刚,金志明,朱复华.影响注射成型制品质量的重要部件——止逆环[J].塑料工业,2005,33(4):37-39
    [43] Lau K H, Tse T T M. Enhancement of plastic injection moulding quality through the use of theABLPC nozzle[J]. Journal of Materials Processing Technology,1996,69(1-3):55-57
    [44] Huang S N, Tan K K, Lee T H. Adaptive GPC control of melt temperature in injectionmoulding[J]. ISA Transactions,1999,38(4):361-373
    [45]孙锡红,苏兴.注塑机料筒温度的模糊神经网络控制研究[J].工程塑料应用,2009,37(10):67-70
    [46] Lin J, Lian R-J. Self-organizing fuzzy controller for injection molding machines[J]. Journal ofProcess Control,2010,20(5):585-595
    [47]周伟安.精密注塑机闭环电液比例伺服系统设计与控制研究[D].杭州:浙江大学,2010
    [48] Yao K, Gao F, Allg wer F. Barrel temperature control during operation transition in injectionmolding[J]. Control Engineering Practice,2008,16(11):1259-1264
    [49]王兴天.注塑工艺与设备[M].北京:化学工业出版社,2010
    [50]焦志伟,谢鹏程,严志云等.全液压内循环二板式注塑机性能特点及锁模精度研究[J].塑料,2009,38(6):112-115
    [51]王国宝,程珩,李福等.注塑机双曲肘合模机构的优化设计研究[J].工程塑料应用,2011,39(5):87-90
    [52]任工昌,苗新强,郭志刚.注塑机双肘杆锁模机构的优化设计[J].机械设计与制造,2009,(1):18-19
    [53]于彦江,尤文林,蔡建平.双曲肘合模机构的优化设计与运动学仿真[J].机床与液压,2008,36(4):293-295
    [54] Huang M-S, Lin T-Y, Fung R-F. Key design parameters and optimal design of a five-pointdouble-toggle clamping mechanism[J]. Applied Mathematical Modelling,2011,35(9):4304-4320
    [55]张春伟,刘海江.肘杆式注塑机合模机构合模点配置方法研究[J].塑料工业,2008,36(6):34-37
    [56]钟世培.基于ADAMS的注塑机合模机构动力学仿真研究[J].装备制造技术,2010,(4):9-11
    [57]曾翠华,郑荣霞,杨军等.液压-机械合模机构三维动态仿真优化设计[J].机床与液压,2008,36(8):139-142
    [58]周书华,叶晓平.注塑机负后角型肘杆机构的优化及特性分析[J].制造技术与机床,2010,(9):78-82
    [59]邵珠娜,安瑛,谢鹏程.基于ADAMS软件的全电动混合驱动式合模机构设计及优化分析[J].塑料工业,2010,38(8):47-49,53
    [60]张有根.液压驱动双曲肘斜排列七支点合模机构的分析研究[J].流体传动与控制,2011,(4):14-20
    [61]周宏伟.双曲肘五铰链内卷式合模机构的节能研究与优化设计[J].中国电子商务,2010,(6):1110-1111
    [62] Sun S H. Optimum topology design for the stationary platen of a plastic injection machine [J].Computers in Industry,2004,55(2):147-158
    [63]徐柯,金志明.基于SIMP理论的注塑机固定模板的拓扑优化[J].现代塑料加工应用,2011,23(1):57-59
    [64]李竞,耿葵花.用变密度法注塑机定模板拓扑优化研究[J].机械设计与研究,2008,24(4):107-110
    [65]苏嘉朗.注塑机动定模板有限元分析及其结构优化[J].模具工程,2011,(7):77-80
    [66]刘旭红,尹辉峻.注塑机模板的有限元-拓扑优化设计研究[J].塑料工业,2008,36(1):32-35
    [67]应济,李长勇.注塑机后模板顺序优化设计研究[J].浙江大学学报(工学版),2006,40(6):937-911
    [68]丁东升,汤文成.注塑机头板的拓扑优化设计[J].轻工机械,2007,25(3):32-35
    [69]刘少玉,曹衍龙,梁学裕等.注塑机前模板的拓扑与参数化优化设计[J].机械设计与制造,2010,(10):229-231
    [70]刘文耀,应济.注塑机模板集成设计软件开发[J].塑料工业,2010,38(6):35-39
    [71] Sasikumar C, S. Srikanth,Das S K. Analysis of premature failure of a tie bar in an injectionmolding machine[J]. Engineering Failure Analysis,2006,13(8):1246-1259
    [72]朱立志,夏域.注塑机拉杆断裂分析与质量控制探讨[J].石油和化工装备,2006,9(6):16-18
    [73] Yi Lin W, Mo Hsiao K. Investigation of the friction effect at pin joints for the five-pointdouble-toggle clamping mechanisms of injection molding machines[J]. International Journal ofMechanical Sciences,2003,45(11):1913-1927
    [74] Fung R F, Wu J W, Chen D S. A varible structure control toggle mechanism driven by a linearsynchronous motor with joint coulomb friction [J]. Journal of Sound and Vibration,2001,247(4):741-753
    [75] Fung R-F, Hwang C-C. Kinematic and sensiivity analyses of a new type toggle mechanism[J].JSME International Journal,1997,40(2):360-365
    [76] Lin W Y, Hsiao K M. Study on improvements of the five-point double-toggle mould clampingmechanism [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2004,218(7):761-774
    [77] Lin W Y, Shen C L, Hsiao K M. A case study of the five-point double-toggle mould clampingmechanism[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2006,220(4):527-535
    [78]杨雁,王云宽,宋英华.基于迭代学习的注塑机开合模机构定位控制研究[J].中国机械工程,2008,19(18):2152-2155,2165
    [79]王兴天.内动直锁双模板式合模机构[P].中国,00238617.8.
    [80] Jiao Z W, Xie P C, An Y, et al. Development of internal circulation two-platen IMM forthermoplastic polymer[J]. Journal of Materials Processing Technology,2011,211(6):1076-1084
    [81]恩格尔推出新型ENGEL duo500pico注塑机[EB/OL]. http://www.newmaker.com/news_61573.html,2008
    [82]海天天虹系列注塑机[EB/OL]. http://www.haitian.com/index.php?article_id=448&clang=2,2010
    [83] Scheuerer S. Hydraulics manual for injection molding machines of the C-range[Z]. München:Krauss Maffei Kunststofftechnik,1998
    [84]王兴天.内动直锁双模板式合模机构[P].中国,00238617.8.
    [85]王兴天.直压式锁模油缸合模机构[P].中国,200520145200.2.
    [86]韩云武,杨仁勇,丁耀飞. WY1.5型液压挖掘机液压阀板的改进设计[J].机械管理开发,2008,23(5):85-86
    [87]李瑞涛,方湄,张文明.虚拟样机技术的概念及应用[J].矿山机械,2000,6(5):11-12
    [88]谭建荣.虚拟样机与企业信息化技术及其在注塑机行业中的应用[A].中国塑料加工工业协会. PPTS2005塑料加工技术高峰论坛论文集[C].2005:24
    [89]席俊杰.虚拟样机技术的发展与应用[J].制造业自动化,2006,28(11):19-22
    [90]陈伟文.注塑机可视化虚拟设计平台的开发[J].轻工机械,2006,24(4):1-3
    [91]熊光楞,李伯虎,柴旭东.虚拟样机技术[J].系统仿真学报,2001,13(1):114-117
    [92]胡斌.虚拟样机技术及其在注塑机设计中的应用[J].轻工机械,2007,25(5):4-7
    [93]李兴华,朱瑞林.基于AMESIM的WL3200T压机的液压仿真[J].化工装备技术,2009,30(2):60-63
    [94] Marquis-Favre W, Bideaux E, Scavarda S. A planar mechanical library in the AMESimsimulation software. Part I: Formulation of dynamics equations[J]. Simulation ModellingPractice and Theory,2006,14(1):25-46
    [95] Marquis-Favre W, Bideaux E, Scavarda S. A planar mechanical library in the AMESimsimulation software. Part II: Library composition and illustrative example[J]. SimulationModelling Practice and Theory,2006,14(2):95-111
    [96]董敏,赵静一,吴晓明.二通插装阀系统动态特性的仿真与研究[J].液压气动与密封,2001,(1):34-37
    [97]成大先.机械设计手册[M].北京:机械工业出版社,2002
    [98]江帆,黄鹏. FLUENT高级应用与实例分析[M].北京:清华大学出版社,2009
    [99]周俊波,刘洋. FLUENT6.3流场分析从入门到精通[M].北京:机械工业出版社,2011
    [100]朱红钧. FLUENT流体分析及仿真实用教程[M].北京:人民油电出版社,2010
    [101]周雄新,欧笛声.注塑机拉杆与模板的有限元分析[J].广西工学院学报,2007,18(4):60-63
    [102]郭峰,陆国栋,凌征琦等.二板注塑机合模机构整体结构有限元分析[J].机械工程师,2010,(7):49-51
    [103]徐光菊,朱胜鹃,赵翼翔.基于ANSYS的注塑机结构分析及动模板优化设计[J].机电工程技术,2010,39(3):48-50
    [104]刘展. ABAQUS6.6基础教程与实例详解[M].北京:中国水利水电出版社,2008
    [105]庒茁,由小川,廖剑辉等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009
    [106]朱森第,方向威,吴民达等.机械工程材料性能数据手册[M].北京:机械工业出版社,1995
    [107] GB/T25157-2010.橡胶塑料注射成型机检测方法[S].2010
    [108]刘梦华.塑料注射成型机标准的现状及实施情况[J].中国塑料,2005,19(09):89-92
    [109]20091020.塑料注射成型机能耗检测和等级评定规范[S].2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700