用户名: 密码: 验证码:
自旋/轨道有序体系电子结构与磁特性的第一原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂物质体系中自旋/电荷/轨道的有序、耦合及其相互作用机制的研究为近年来凝聚态物理学中极其活跃的重要领域,特别是随着自旋电子学的蓬勃发展,更促使人们对自旋/电荷/轨道有序体系的一些基础性物理问题的探索。在这一研究中,电荷、自旋、轨道以及晶格自由度之间强烈的耦合使其表现出丰富多彩的物理性质,从而使其在磁记录、磁传感器等方面有广阔的应用前景。本论文利用第一性原理方法系统研究了自旋/轨道有序典型体系的电子结构和磁特性,其主要内容如下:
     第一章综述了近年来人们所关注的一些典型凝聚态体系中的有序现象,包括过渡金属氧化物中的轨道物理学以及与轨道物理有关的氧化物相变的研究背景,强关联电子系统的基础性前沿问题,以及金属团簇的理论基础,过渡金属团簇中的自旋有序和自旋/轨道相互作用研究等等,提出了本论文工作的出发点和主要研究内容。
     第二章简要介绍了本文工作的相关理论方法,包括能带理论的三个近似以及密度泛函理论,势的构建与波函数的具体处理方法,如平面波方法和赝势法等等。
     第三章给出了立方钙钛矿BaRu_(1-x)Fe_xO_3(x=0,0.25,0.50,0.625,0.75,1)体系电子结构及磁性质的第一原理研究结果。发现在BaFeO3体系中,存在着较大的交换劈裂和相对小的晶场劈裂,而相反的情况出现在BaRuO_3中,其原因主要是因为Ru原子具有比较扩展的4d轨道。对BaRuO_3的计算得到的Ru~(4+)离子的磁矩是0.628μB,远远低于依据t_(2g)3↑t_(2g)1↓的电子结构得到的理想值2μB,产生这种差异的原因应该是BaRuO_3中相对小的交换劈裂以及扩展的4d轨道。进一步的研究表明,如果用Fe替代Ru原子,Ru4d轨道的带宽将被压制,导致BaRu_(1-x)Fe_xO_3在x=0.625和x=0.75的时候,体系出现半金属性。同时,BaRu_(0.375)Fe_(0.625)O_3中不同Ru~(4+)离子的轨道特征也被展示,这些不同的轨道特征可以被看做Fe杂质对Ru4d轨道压制的直接证据。
     第四章我们利用第一原理计算,研究了自旋轨道耦合(SOC)效应对二元合金M@Pb_(12)(这里M代表3d和4d过渡金属元素)体系几何结构和磁性质的影响。结果发现,考虑SOC后,体系几何结构的对称性会增强,SOC引起的离域电子数目的增加应该是对称性增强的主要原因。对磁性的研究表明,SOC对3d杂质原子的局域自旋磁矩有轻微的影响,但对4d系列,考虑SOC后,杂质原子的局域自旋磁矩将会显著降低,M3d-Pb6p和M4d-Pb6p之间不同的杂化强度是产生这种差异的主要原因。进一步研究发现,考虑SOC后,一定的轨道磁矩将会出现,对于掺杂的Ti, V, Co和Ru原子,其轨道磁矩可以超过0.8μB,表明SOC在M@Pb_(12)体系中是不能被忽略的。最后,对3d和4d掺杂M原子轨道磁矩的变化规律,我们用Hund定则给出了较为满意的自洽解释。
     第五章利用第一原理通过对Ih结构的二元过渡金属团簇Ti_nMn_(13-n)(n=1-12)的研究,我们发现对于最稳定的结构,其中心位置被Mn原子所占据。体系的总磁矩随着Ti原子数的增加起初降低,在Ti11Mn2减小到0μB,随后又重新增加至3μB。总磁矩的变化可以通过Mn原子被Ti原子的替代以及电荷从Ti原子向Mn原子上的转移两方面原因做出解释。对于局域磁矩,同一种类的原子之间是铁磁耦合,而Ti原子和Mn原子之间形成的是反铁磁序。结合能随着Ti原子数的增加而增加,表明拥有较多Ti原子的团簇比拥有较多Mn原子的团簇更稳定。最后,对垂直离子势的讨论表明,较小的交换劈裂也会导致较大的垂直离子势。
     第六章是对本文的一个简要总结,以及对未来工作的展望。
One of the important research fields in condensed matter physics is to study thephysical mechanism of spin/charge/orbital ordering, coupling, and its interactionstogether in the systems of complex materials. Especially in recent years, the rapiddevelopment of spintronics can also improve the development of the studies infoundational problems of spin/charge/orbital ordering systems. Among those, charge,spin, orbital and the lattice degree of freedom are coupled to each other, thecomplicated interactions give rise to some interesting phenomena and have thepotential technological applications in such as magnetic memory and magneticsensors, etc. In this dissertation, based on the first-principles calculations, weinvestigated the electronic structure and magnetic characteristics in some typicalspin/orbital ordering systems. There are six chapters in this thesis.
     In the first chapter, some ordering phenomena in condensed matter physics areintroduced. For example, the background of the orbital physics and phase transitionrelated to orbital degree of freedom (ODF) in oxides is reviewed, and the electroncorrelation effects are also introduced. The basic theory of metal clusters and the spinordering as well as spin-orbital interaction of transition-metal clusters are brieflymentioned. At the end of this chapter, the motivation and the main research contentsof this dissertation are given.
     In the second chapter, the theoretical methods used in this thesis are introduced.The three approximations of energy band theory and density-functional theory (DFT)are introduced first. In the following, we introduced the disposal method of potentialand wavefunctions, for example, plane-wave method and pseudopotential approximation, etc.
     In the third chapter, the electronic structures of the Fe-doped perovskiteruthenates BaRu_(1-x)Fe_xO_3with x=0,0.25,0.50,0.625,0.75, and1are investigatedthrough density-functional calculations. Large exchange splitting and small crystalfield splitting are found in BaFeO3, and contrary scenario can take place for BaRuO_3as expected since Ru atom has highly extended4d orbital. The small exchangesplitting and extended4d states are the reasons that the obtained spin magneticmoment (0.628μB) is significantly lower than the spin only value (2μB) for thet_(2g)3↑t_(2g)1↓electronic configuration for Ru~(4+)ion. The further investigations suggest thatFe substitution at the Ru sites can suppress the bandwidths of Ru4d orbital, leading tothe half-metallic behavior in BaRu_(1-x)Fe_xO_3with x=0.625and x=0.75. The differentorbital feature of the Ru~(4+)ions in BaRu_(0.375)Fe_(0.625)O_3is presented, which reflects theinfluence of Fe dopant on Ru4d orbitals.
     In the fourth chapter, the effect of spin-orbit coupling (SOC) on geometricalstructure and magnetism of M@Pb_(12)clusters (M=3d and4d atoms) were studied. Wefound that SOC may enhance the symmetry of geometrical configurations for someclusters, which can be ascribed to the increase of the numbers of delocalized electronsafter SOC is considered. The SOC marginally affects the local spin magneticmoments of3d atoms, whereas it can cause large influence on spin magnetism ofimpurities for most4d series, which can be explained based on the differenthybridization strength between M3d-Pb6p and M4d-Pb6p. The considerable orbitalmagnetic moments are produced by SOC, and the local orbital moments of Ti, V, Co,and Ru even exceed0.8μB. The variation trends of the local orbital magnetism of Matoms encapsulated in the Pb12cages for3d and4d series can well be comprehended from Hund’s rule.
     In the fifth chapter, we studied the properties of icosahedral bimetallic Ti_nMn_(13-n)(n=1-12) clusters. We found that for the most stable structures, the central position isoccupied by a manganese atom. The total magnetic moment (TMM) decreases withthe increase of Ti atoms and it reaches0μBat the cluster of Ti_(11)Mn_2, and thenincreases to3μBagain. The substitution of Mn atoms by Ti atoms and the chargetransfer from Ti to Mn atoms are mainly responsible for the variation of TMM. Forlocal magnetic moment (LMM), all Ti atoms and most Mn atoms presentferromagnetic ordering, while the spins on Ti atoms are anti-parallel to those on Mnatoms except for Ti_(12)Mn_1, forming antiferromagnetic magnetic structure. The bindingenergy increases monotonically with the increase of Ti atoms, indicating the clusterwith more Ti atoms are more stable than those with more Mn atoms. At last, thevertical ionization potential (VIP) of the lowest energy structure is discussed and theresults show that the little exchange splitting will lead to a relatively larger VIP forTi_(11)Mn_2and Ti_(12)Mn_1.
     In the sixth chapter, we give a brief summary and outlook about the followingwork.
引文
[1]胡安,章维益.固体物理学[M].北京:高等教育出版社,2005.
    [2] E. O. Wollan and W. C. Koehler. Neutron Diffraction Study of the MagneticProperties of Series of Perovskite-Type Compounds [(1-x)La, xCa]MnO3[J].Phys. Rev.1955,100:545.
    [3] C. H. Chen and S.-W. Cheong. Commensurate to Incommensurate ChargeOrdering and Its Real-Space Images in La0.5Ca0.5MnO3[J]. Phys. Rev. Lett.1996,76:4042.
    [4] A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura. Current Switching ofResistive States in Magnetoresistive Manganites [J]. Nature1997,388:50.
    [5] Y. Tokura and N. Nagaosa. Orbital Physics in Transition-Metal Oxides [J].Science,2000,288:462.
    [6]江元生.结构化学[M].北京:高等教育出版社,1997.
    [7]王广涛.过渡金属氧化物第一性原理研究[博士学位论文].北京:中国科学院物理研究所,2008.
    [8] H. T. Jeng, S. H. Lin, and C. S. Hsue. Orbital Ordering and Jahn-TellerDistortion in Perovskite Ruthenate SrRuO3[J]. Phys. Rev. Lett.2006,97:067002.
    [9] G. T.Wang, M. P. Zhang, Z. X. Yang, and Z. Fang. Orbital orderings and opticalconductivity of SrRuO3and CaRuO3: first-principles studies [J]. J. Phys.:Condens. Matter2009,21:265602.
    [10] P.-A. Lin, H.-T. Jeng, and C.-S. Hsue. Electronic structure and orbital ordering ofSrRu1xTixO3: GGA+U investigations [J]. Phys. Rev. B2008,77:085118.
    [11] G. T. Wang, Z. Li, L. H. Zheng, and Z. X. Yang. First-principles study on theorbital ordering of KCrF3[J]. Phys. Rev. B2011,84:045111.
    [12] Y. Konishi, Z. Fang, M. Izumi, T. Manako, M. Kasai, H. Kuwahara, M.Kawasaki, K. Terakura, and Y. Tokura. Orbital-State-Mediated Phase-Control ofManganites [J]. J. Phys. Soc. Jpn.1999,68:3790.
    [13] S. H. Lv, H. P. Li, Z. C. Wang, L. Han, Y. Liu, X. J. Liu, and J. Meng. Straincontrol of orbital polarization and correlated metal-insulator transition inLa2CoMnO6from first principles [J]. Appl. Phys. Lett.2011,99:202110.
    [14] K. Maiti. Bandwidth controlled half-metallicity in a ferromagnetic metal: Abinitio calculations [J]. Phys. Rev. B2008,77:212407.
    [15]冯端,金国钧.凝聚态物理学(上卷)[M].北京:高等教育出版社,2003.
    [16] S. K. Pandey, Ashwani Kumar, S. Patil, V. R. R. Medicherla, R. S. Singh, K.Maiti, D. Prabhakaran, A. T. Boothroyd, and A. V. Pimpale. Investigation of thespin state of Co in LaCoO3at room temperature: Ab initio calculations andhigh-resolution photoemission spectroscopy of single crystals [J]. Phys. Rev. B2008,77:045123.
    [17] H. Wu. Electronic structure, spin state, and magnetism of the square-lattice Mottinsulator La2Co2Se2O3from first principles [J]. Phys. Rev. B2010,82:020410(R).
    [18] H. Wu, M. W. Haverkort, Z. Hu, D. I. Khomskii, and L. H. Tjeng. Nature ofMagnetism in Ca3Co2O6[J]. Phys. Rev. Lett.2005,95:186401.
    [19] J. S. Ahn, J. Bak, H. S. Choi, T. W. Noh, J. E. Han, Yunkyu Bang, J. H. Cho, andQ. X. Jia. Spectral Evolution in (Ca,Sr)RuO3near the Mott-Hubbard Transition[J]. Phys. Rev. Lett.1999,82:5321.
    [20] P. B. Allen, H. Berger, O. Chauvet, L. Forro, T. Jarlborg, A. Junod, B. Revaz,and G. Santi. Transport properties, thermodynamic properties, and electronicstructure of SrRuO3[J]. Phys. Rev. B1996,53:4393.
    [21] R. S. Singh, V. R. R. Medicherla, Kalobaran Maiti, and E. V. Sampathkumaran.Evidence for strong5d electron correlations in the pyrochlore Y2Ir2O7studiedusing high-resolution photoemission spectroscopy [J]. Phys. Rev. B2008,77:201102(R).
    [22] K. Maiti. Role of spin-orbit coupling and electron correlation in the electronicstructure of a5d pyrochlore, Y2Ir2O7[J]. Solid State Commun.2009,149:1351.
    [23] G. Q. Liu, V. N. Antonov, O. Jepsen, and O. K. Andersen. Coulomb-EnhancedSpin-Orbit Splitting: The Missing Piece in the Sr2RhO4Puzzle [J]. Phys. Rev.Lett.2008,101:026408.
    [24] O. Echt, K. Sattler, and E. Recknagel. Magic Numbers for Sphere Packings:Experimental Verification in Free Xenon Clusters [J]. Phys. Rev. Lett.1981,47:1121.
    [25] W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M.L. Cohen. Electronic Shell Structure and Abundances of Sodium Clusters [J].Phys. Rev. Lett.1984,52:2141.
    [26] X. Li, H. B. Wu, X. B. Wang, and L. S. Wang. s-p Hybridization and ElectronShell Structures in Aluminum Clusters: A Photoelectron Spectroscopy Study [J].Phys. Rev. Lett.1998,81:1909.
    [27] D. Rayane, P. Melinon, B. Cabaud, A. Hoareau, B. Tribollet, and M. Broyer.Close-packing structure of small barium clusters [J]. Phys. Rev. A1989,39:6056.
    [28] J. L. Wang, J. Bai, J. Jellinek, and X. C. Zeng. Gold-Coated Transition-MetalAnion [Mn13@Au20]-with Ultrahigh Magnetic Moment [J]. J. Am. Chem. Soc.2007,129:4110.
    [29]陈宣,彭霞,邓开明,肖传云,胡凤兰,谭伟石.笼状Au20内掺M13(M=Fe, Ti)团簇磁性的密度泛函计算研究[J].物理学报2009,58:5370.
    [30] S. Y. Wang, J. Z. Yu, H. Mizuseki, Q. Sun, C. Y. Wang, and Y. Kawazoe.Energetics and local spin magnetic moment of single3,4d impuritiesencapsulated in an icosahedral Au12cage [J]. Phys. Rev. B2004,70:165413.
    [31] N. Veldeman, T. H ltzl, S. Neukermans, T. Veszprémi, M. T. Nguyen, and PeterLievens. Experimental observation and computational identification of Sc@Cu16+,a stable dopant-encapsulated copper cage [J]. Phys. Rev. A2007,76:011201(R).
    [32] Q. Sun, X. G. Gong, Q. Q. Zheng, D. Y. Sun, and G. H. Wang. Local magneticproperties and electronic structures of3d and4d impurities in Cu clusters [J].Phys. Rev. B1996,54:10896.
    [33] Q. Sun, Q. Wang, J. Z. Yu, Z. Q. Li, J. T. Wang, and Y. Kawazoe. LocalMagnetism of3d and4d Impurities in Ag and Pd Clusters [J]. J. Phys. I1997,7:1233.
    [34] F. Y. Tian, Q. Jing, and Y. X. Wang. Structure, stability, and magnetism of ScnAl(n=1–8,12) clusters: Density-functional theory investigations [J]. Phys. Rev. A2008,77:013202.
    [35] S. Nigam, C. Majumder, and S. K. Kulshreshtha. Geometry and electronic andmagnetic properties of MPd12clusters (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn,and Pd) from first principles [J]. Phys. Rev. B2007,76:195430.
    [36] G. Rollmann, S. Sahoo, A. Hucht, and P. Entel. Magnetism and chemicalordering in binary transition metal clusters [J]. Phys. Rev. B2008,78:134404.
    [37] S. Ganguly, M. Kabir, S. Datta, B. Sanyal, and A. Mookerjee. Magnetism insmall bimetallic Mn-Co clusters [J]. Phys. Rev. B2008,78:014402.
    [38] A. M. Asaduzzaman and J. A. Blackman. Magnetism in binary and encapsulatedCo-Mn clusters [J]. Phys. Rev. B2010,82:134417.
    [39] Mark B. Knickelbein. Magnetic moments of small bimetallic clusters: ConMnm[J]. Phys. Rev. B2007,75:014401.
    [40] Q. L. Lu, L. Z. Zhu, L. Ma, and G. H. Wang. Structural transition and magneticproperties of ComPtn(m+n=38) clusters [J]. Phys. Lett. A2006,350:258.
    [41] F. Aguilera-Granja, A. Vega, José Rogan, X. Andrade, and G. García.Theoretical investigation of free-standing CoPd nanoclusters as a function ofcluster size and stoichiometry in the Pd-rich phase: Geometry, chemical order,magnetism, and metallic behavior [J]. Phys. Rev. B2006,74:224405.
    [42] J. L. Wang, G. H. Wang, X. S. Chen, W. Lu, and J. J. Zhao. Structure andmagnetic properties of Co-Cu bimetallic clusters [J]. Phys. Rev. B2002,66:014419.
    [43] G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, and R. Ferrando.Magic Polyicosahedral Core-Shell Clusters [J]. Phys. Rev. Lett.2004,93:105503.
    [44] A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, Benjamin C. Curley, Lesley D.Lloyd, Gary M. Tarbuck, and Roy L. Johnston. Global optimization of bimetalliccluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems [J]. J.Chem. Phys.2005,122:194308.
    [45] G. Rossi, R. Ferrando, A. Rapallo, A. Fortunelli, Benjamin C. Curley, Lesley D.Lloyd, and Roy L. Johnston. Global optimization of bimetallic cluster structures.II. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems [J]. J. Chem. Phys.2005,122:194309.
    [46] N. Fujima. Non-collinear magnetic moments of seven-atom Cr, Mn and Feclusters [J]. Rur. Phys. J. D2001,16:185.
    [47] C. Kohl and G. F. Bertsch. Noncollinear magnetic ordering in small chromiumclusters [J]. Phys. Rev. B1999,60:4205.
    [48] T. Oda, A. Pasquarello, and R. Car. Fully Unconstrained Approach toNoncollinear Magnetism: Application to Small Fe Clusters [J]. Phys. Rev. Lett.1998,80:3622.
    [49] Y. Xie and John A. Blackman. Ab initio and tight-binding calculations ofnoncollinear magnetism in manganese clusters [J]. Phys. Rev. B2006,73:214436.
    [50] Mukul Kabir, D. G. Kanhere, and Abhijit Mookerjee. Emergence of noncollinearmagnetic ordering in small magnetic clusters: Mnnand As@Mnn[J]. Phys. Rev.B2007,75:214433.
    [51] J. L. Du, N. F. Shen, L. Y. Zhu, and J. L. Wang. Emergence of noncollinearmagnetic ordering in bimetallic Co6-nMnnclusters [J]. J. Phys. D: Appl. Phys.2010,43:015006.
    [1]谢希德,陆栋.固体能带理论(第二版)[M].上海:复旦大学出版社,2007.
    [2]冯端,金国钧.凝聚态物理学(上卷)[M].北京:高等教育出版社,2003.
    [3] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas [J]. Phys. Rev. B1964,136:864.
    [4] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Phys. Rev. A1965,140:1133.
    [5] R. O. Jones and O. Gunnarsson. The density functional formalism, itsapplications and prospects [J]. Rev. Mod. Phys.1989,61:689.
    [6] J. C. Slater, T. M. Wilson, and J. H. Wood. Comparison of Several ExchangePotentials for Electrons in the Cu+ion [J]. Phys. Rev.1969,179:28.
    [7] D. M. Ceperley and B. J. Alder. Ground State of the Electron Gas by aStochastic Method [J]. Phys. Rev. Lett.1980,45:566.
    [8] J. C. Slater. A Simplification of the Hartree-Fock Method [J]. Phys. Rev.1951,81:385.
    [9] J. P. Perdew and A. Zunger. Self-interaction correction to density-functionalapproximations for many-electron systems [J]. Phys. Rev. B1981,23:5048.
    [10] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of theelectron-gas correlation energy [J]. Phys. Rev. B1992,45:13244.
    [11] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J.Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications ofthe generalized gradient approximation for exchange and correlation [J]. Phys.Rev. B1992,46:6671.
    [12] J. P. Perdew and Y. Wang. Accurate and simple density functional for theelectronic exchange energy: Generalized gradient approximation [J]. Phys. Rev.B1986,33:8800.
    [13] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient ApproximationMade Simple [J]. Phys. Rev. Lett.1996,77:3865.
    [14] Axel D. Becke. Density-functional thermochemistry. III. The role of exactexchange [J]. J. Chem. Phys.1993,98:5648.
    [15] John A. Pople, M. Head-Gordon, Douglas J. Fox, K. Raghavachari, and Larry A.Curtiss. Gaussian-1theory: A general procedure for prediction of molecularenergies [J]. J. Chem. Phys.1989,90:5622.
    [16] Larry A. Curtiss, C. Jones, Gary W. Trucks, K. Raghavachari, and John A. Pople.Gaussian-1theory of molecular energies for second-row compounds [J]. J.Chem. Phys.1990,93:2537.
    [17] C. Adamo and V. Barone. Exchange functionals with improved long-rangebehavior and adiabatic connection methods without adjustable parameters: ThemPW and mPW1PW models [J]. J. Chem. Phys.1998,108:664.
    [18] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient ApproximationMade Simple [J]. Phys. Rev. Lett.1997,78:1396.
    [19] J. Zaanen, G. A. Sawatzky, and J. W. Allen. Band Gaps and Electronic Structureof Transition-Metal Compounds [J]. Phys. Rev. Lett.1985,55:418.
    [20] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. Density-functional theory andstrong interactions: Orbital ordering in Mott-Hubbard insulators [J]. Phys. Rev.B1995,52: R5467.
    [21] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein. First-principlescalculations of the electronic structure and spectra of strongly correlatedsystems: the LDA+U method [J]. J. Phys.: Condens. Matter1997,9:767.
    [22]方俊鑫,陆栋.固体物理学(上册)[M].上海:上海科学技术出版社,1980.
    [23]阎守胜.固体物理基础(第二版)[M].北京:北京大学出版社,2003.
    [24] G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set [J]. Phys. Rev. B1996,54:11169.
    [25] R. M. Maritn. Electronic Structure-Basic Theory and Practical Methods [M].Cambridge University Press,2004.
    [26] K. Laasonen, A, Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-Parrinellomolecular dynamics vrith Vanderbilt ultrasoft pseudopotentials [J]. Phys. Rev. B1993,47:10142.
    [27] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalueformalism [J]. Phys. Rev. B1990,41:7892.
    [28] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos.Iterative minimization techniques for ab inito total-energy calculations:molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys.1992,64:1045.
    [29] O. K. Andersen. Linear methods in band theory [J]. Phys. Rev. B1975,12:3060.
    [30] P. E. Blochl. Projector augmented-wave method [J]. Phys. Rev. B1994,50:17953.
    [31] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projectoraugmented-wave method [J]. Phys. Rev. B1999,59:1758.
    [32] P. H. Dederichs and R. Zeller. Self-consistency iterations in electronic-structurecalculations [J]. Phys. Rev. B1983,28:5462.
    [33] P. Bendt and A. Zunger. New approach for solving the density-functionalself-consistent-field problem [J]. Phys. Rev. B1982,26:3114.
    [34] A. T. Zayak, X. Huang, J. B. Neaton, and Karin M. Rabe. Manipulatingmagnetic properties of SrRuO3and CaRuO3with epitaxial and uniaxial strains[J]. Phys. Rev. B2008,77:214410.
    [35] J. T. Zhang, X. M. Lu, J. Zhou, J. Su, K. L. Min, F. Z. Huang, and J. S. Zhu.First-principles study of structural, electronic, and magnetic properties ofdouble perovskite Ho2MnFeO6[J]. Phys. Rev. B2010,82:224413.
    [36] Z, X. Yang, Y. X. Zhang, Z. M. Fu, and R. Q. Wu. Unusual Stability andActivity of DI-Pd19Clusters for O2Dissociation [J]. J. Phys. Chem. C2012,116:19586.
    [37] W. Huang, M. Ji, C. D. Dong, X. Gu, L. M. Wang, X. G. Gong, and L. S. Wang.Relativistic Effects and the Unique Low-Symmetry Structures of GoldNanoclusters [J]. ACS NANO2008,2:897.
    [38] D. W. Yuan, X. G. Gong, and R. Q. Wu. Peculiar distribution of Pd on Aunanoclusters: First-principles studies [J]. Phys. Rev. B2008,78:035441.
    [1] H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H.-P. Sch nherr, and K.H. Ploog. Room-Temperature Spin Injection from Fe into GaAs [J]. Phys. Rev.Lett.2001,87:016601.
    [2] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow. Newclass of materials: half-metallic ferromagnets [J]. Phys. Rev. Lett.1983,50:2024.
    [3] S. Picozzi, A. Continenza, and A. J. Freeman. Co2MnX (X=Si, Ge, Sn) Heuslercompounds: An ab initio study of their structural, electronic, and magneticproperties at zero and elevated pressure [J]. Phys. Rev. B2002,66:094421.
    [4] I. Galanakis. Orbital magnetism in the half-metallic Heusler alloys [J]. Phys. Rev.B2005,71:012413.
    [5] S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov, C. Felser, and H.-J.Lin. Investigation of Co2FeSi: The Heusler compound with highest Curietemperature and magnetic moment [J]. Appl. Phys. Lett.2006,88:032503.
    [6] H. van Leuken and R. A. de Groot. Half-Metallic Antiferromagnets [J]. Phys.Rev. Lett.1995,74:1171.
    [7] Steven P. Lewis, Philip B. Allen, and T. Sasaki. Band structure and transportproperties of CrO2[J]. Phys. Rev. B1997,55:10253.
    [8] F. J. Jedema, A. T. Filip, and B. J. van Wees. Electrical spin injection andaccumulation at room temperature in an all-metal mesoscopic spin valve [J].Nature (London)2001,410:345.
    [9] Y. Ji, G. J. Strijkers, F.Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, G.Xiao, and A. Gupta. Determination of the Spin Polarization of Half-MetallicCrO2by Point Contact Andreev Reflection [J]. Phys. Rev. Lett.2001,86:5585.
    [10] Z. Szotek, W. M. Temmerman, A. Svane, L. Petit, and H. Winter. Electronicstructure of half-metallic double perovskites [J]. Phys. Rev. B2003,68:104411.
    [11] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y. Mori, and Y.Maeno. Spin-triplet superconductivity in Sr2RuO4identified by17O Knight shift[J]. Nature1998,396:658.
    [12] Y. Tokura. Critical features of colossal magnetoresistive manganites [J]. Rep.Prog. Phys.2006,69:797.
    [13] K. Yamaura, Y. Shirako, H. Kojitani, M. Arai, D. P. Young, M. Akaogi, M.Nakashima, T. Katsumata, Y. Inaguma, and E. Takayama-Muromachi. Synthesisand Magnetic and Charge-Transport Properties of the Correlated4dPost-Perovskite CaRhO3[J]. J. Am. Chem. Soc.2009,131:2722.
    [14] H. M. Liu, C. Zhu, C. Y. Ma, S. Dong, and J.-M. Liu. Fragile magnetic groundstate and metal-insulator transitions in CaCrO3: The first-principles calculations[J]. J. Appl. Phys.2011,110:073701.
    [15] V. M. Goldschmidt. Die Gesetze der Krystallochemie [J]. Naturwissenschaften1926,14:477.
    [16] C. Li, K. C. K. Soh, and P. Wu. Formability of ABO3perovskites [J]. J. Alloy.Compd.2004,372:40.
    [17] J. T. Rijssenbeek, R. Jin, Y. Zadorozhny, Y. Liu, B. Batlogg, and R. J. Cava.Electrical and magnetic properties of the two crystallographic forms of BaRuO3[J]. Phys. Rev. B1999,59:4561.
    [18] M. Shepard, S. McCall, G. Cao, and J. E. Crow. Thermodynamic properties ofperovskite ARuO3(A=Ca, Sr, and Ba) single crystals [J]. J. Appl. Phys.1997,81:4978.
    [19] J.-G Cheng, J.-S Zhou, J. A. Alonso, J. B. Goodenough, Y. Sui, K. Matsubayashi,and Y. Uwatoko. Transition from a weak ferromagnetic insulator to anexchange-enhanced paramagnetic metal in the BaIrO3polytypes [J]. Phys. Rev. B2009,80:104430.
    [20] C.-Q. Jin, J.-S. Zhou, J. B. Goodenough, Q. Q. Liu, J. G. Zhao, L. X. Yang, Y.Yu, R. C. Yu, T. Katsura, A. Shatskiy, and E. Ito. High-pressure synthesis of thecubic perovskite BaRuO3and evolution of ferromagnetism in ARuO3(A=Ca, Sr,Ba) ruthenates [J]. Proc. Natl. Acad. Sci. U.S.A.2008,105:7115.
    [21] N. Hayashi, T. Yamamoto, H. Kageyama, M. Nishi, Y. Watanabe, T. Kawakami,Y. Mat-sushita, A. Fujimori, and M. Takano. BaFeO3: A Ferromagnetic IronOxide [J]. Angew. Chem. Int. Ed.2011,50:12547.
    [22] S. J. Youn and B. I. Min. Effects of doping and magnetic field on thehalf-metallic electronic structures of La1-xBaxMnO3[J]. Phys. Rev. B1997,56:12046.
    [23] H.-S Jin and K.-W Lee. Half-metallic ferrimagnetism driven byCoulomb-enhanced spin-orbit coupling in PdCrO3[J]. Phys. Rev. B2011,84:172405.
    [24] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura.Room-temperature magnetoresistance in an oxide material with an ordereddouble-perovskite structure [J]. Nature (London)1998,395:677.
    [25] J. T. Zhang, X. M. Lu, J. Zhou, J. Su, K. L. Min, F. Z. Huang, and J. S. Zhu.First-principles study of structural, electronic, and magnetic properties of doubleperovskite Ho2MnFeO6[J]. Phys. Rev. B2010,82:224413.
    [26] Y.-W. Son, M. L. Cohen, and S. G. Louie. Half-metallic graphene nanoribbons[J]. Nature (London)2006,444:347.
    [27] P.-A. Lin, H.-T. Jeng, and C.-S. Hsue. Electronic structure and orbital ordering ofSrRu1xTixO3: GGA+U investigations [J]. Phys. Rev. B2008,77:085118.
    [28] K. Maiti. Bandwidth controlled half-metallicity in a ferromagnetic metal: Abinitio calculations [J]. Phys. Rev. B2008,77:212407.
    [29] J. Kim, J.-Y. Kim, B.-G. Park, and S.-J. Oh. Photoemission and x-ray absorptionstudy of the electronic structure of SrRu1xTixO3[J]. Phys. Rev. B2006,73:235109.
    [30] P. E. Blochl. Projector augmented-wave method [J]. Phys. Rev. B1994,50:17953.
    [31] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projectoraugmented-wave method [J]. Phys. Rev. B1999,59:1758.
    [32] G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set [J]. Phys. Rev. B1996,54:11169.
    [33] J. P. Perdew and A. Zunger. Self-interaction correction to density-functionalapproximations for many-electron systems [J]. Phys. Rev. B1981,23:5048.
    [34] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen. Density-functional theory andstrong interactions: Orbital ordering in Mott-Hubbard insulators [J]. Phys. Rev. B1995,52: R5467.
    [35] Z. Fang and K. Terakura. Structural distortion and magnetism in transition metaloxides: crucial roles of orbital degrees of freedom [J]. J. Phys.:Condens. Matter2002,14:3001.
    [36] K. Maiti and R. S. Singh. Evidence against strong correlation in4dtransition-metal oxides CaRuO3and SrRuO3[J]. Phys. Rev. B2005,71:161102(R).
    [37] D. D. Sarma, N. Shanthi, S. R. Barman, N. Hamada, H. Sawada, and K. Terakura.Band Theory for Ground-State Properties and Excitation Spectra of PerovskiteLaMO3(M=Mn, Fe, Co, Ni)[J]. Phys. Rev. Lett.1995,75:1126.
    [38] S. Ray, D. D. Sarma, and R. Vijayaraghavan. Electron-spectroscopicinvestigation of the metal-insulator transition in Sr2Ru1xTixO4(x=0-0.6)[J].Phys. Rev. B2006,73:165105.
    [1] G. Schmid, M. B umle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitowski.Current and future applications of nanoclusters [J]. Chem. Soc. Rev.1999,28:179.
    [2] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser. Monodisperse FePtNanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J]. Science2000,287:1989.
    [3] P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno,and C. J. Serna. The preparation of magnetic nanoparticles for applications inbiomedicine [J]. J. Phys. D: Appl. Phys.2003,36: R182.
    [4] W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M.L. Cohen. Electronic Shell Structure and Abundances of Sodium Clusters [J].Phys. Rev. Lett.1984,52:2141.
    [5] X. Li, H. B. Wu, X. B. Wang, and L. S. Wang. s-p Hybridization and ElectronShell Structures in Aluminum Clusters: A Photoelectron Spectroscopy Study [J].Phys. Rev. Lett.1998,81:1909.
    [6] W. A. de Heer. The physics of simple metal clusters: experimental aspects andsimple models [J]. Rev. Mod. Phys.1993,65:611.
    [7] F. Aguilera-Granja, R. C. Longo, L. J. Gallego, and A. Vega. Structural andmagnetic properties of X12Y (X, Y=Fe, Co, Ni, Ru, Rh, Pd, and Pt) nanoalloys[J]. J. Chem. Phys.2010,132:184507.
    [8] M. J. Piotrowski, P. Piquini, and J. L. F. Da Silva. Density functional theoryinvestigation of3d,4d, and5d13-atom metal clusters [J]. Phys. Rev. B2010,81:155446.
    [9] X. G. Gong and V. Kumar. Electronic structure and relative stability oficosahedral Al-transition-metal clusters [J]. Phys. Rev. B1994,50:17701.
    [10] V. Shah and D. G. Kanhere. Electronic structure and magnetic properties ofNi3nAlnclusters [J]. Phys. Rev. B2009,80:125419.
    [11] J. L. Wang, J. Bai, J. Jellinek, and X. C. Zeng. Gold-Coated Transition-MetalAnion [Mn13@Au20]-with Ultrahigh Magnetic Moment [J]. J. Am. Chem. Soc.2007,129:4110.
    [12] Q. Sun, X. G. Gong, Q. Q. Zheng, D. Y. Sun, and G. H. Wang. Local magneticproperties and electronic structures of3d and4d impurities in Cu clusters [J].Phys. Rev. B1996,54:10896.
    [13] Q. Sun, Q. Wang, J. Z. Yu, Z. Q. Li, J. T. Wang, and Y. Kawazoe. LocalMagnetism of3d and4d Impurities in Ag and Pd Clusters [J]. J. Phys. I1997,7:1233.
    [14] S. Y. Wang, J. Z. Yu, H. Mizuseki, Q. Sun, C. Y. Wang, and Y. Kawazoe.Energetics and local spin magnetic moment of single3,4d impuritiesencapsulated in an icosahedral Au12cage [J]. Phys. Rev. B2004,70:165413.
    [15] J. U. Reveles and S. N. Khanna. Electronic counting rules for the stability ofmetal-silicon clusters [J]. Phys. Rev. B2006,74:035435.
    [16] Q. Jing, F. Y. Tian, and Y. X. Wang. No quenching of magnetic moment for theGenCo (n=1–13) clusters: First-principles calculations [J]. J. Chem. Phys.2008,128:124319.
    [17] L. J. Guo, G. F. Zhao, Y. Z. Gu, X. Liu, and Z. Zeng. Density-functionalinvestigation of metal-silicon cage clusters MSin(M=Sc, Ti, V, Cr, Mn, Fe, Co,Ni, Cu, Zn; n=8–16)[J]. Phys. Rev. B2008,77:195417.
    [18] M. Ohara, K. Koyasu, A. Nakajima, and K. Kaya. Geometric and electronicstructures of metal (M)-doped silicon clusters (M=Ti, Hf, Mo and W)[J]. Chem.Phys. Lett.2003,371:490.
    [19] J. M. Goicoechea and S. C. Sevov.[(Pd-Pd)@Ge18]4-: A Palladium Dimer Insidethe Largest Single-Cage Deltahedron [J]. J. Am. Chem. Soc.2005,127:7676.
    [20] J. M. Goicoechea and S. C. Sevov.[(Ni-Ni-Ni)@(Ge9)2]4-: A Linear TriatomicNickel Filament Enclosed in a Dimer of Nine-Atom Germanium Clusters [J].Angew. Chem. Int. Ed.2005,44:4026.
    [21] L. F. Cui, X. Huang, L. M. Wang, J. Li, and L. S. Wang. Pb122-: Plumbaspherene[J]. J. Phys. Chem. A2006,110:10169.
    [22] X. Zhang, G. L. Li, X. P. Xing, X. Zhao, Z. C. Tang, and Z. Gao. Formation ofbinary alloy cluster ions from group-14elements and cobalt and comparison withsolid-state alloys [J]. Rapid Commun. Mass Spectrom.2001,15:2399.
    [23] E. N. Esenturk, J. Fettinger, Y. F. Lam, and B. Eichhorn.[Pt@Pb12]2-[J]. Angew.Chem., Int. Ed.2004,43:2132.
    [24] S. Neukermans, E. Janssens, Z. F. Chen, R. E. Silverans, P. v. R. Schleyer, and P.Lievens. Extremely Stable Metal-Encapsulated AlPb10+and AlPb12+Clusters:Mass-Spectrometric Discovery and Density Functional Theory Study [J]. Phys.Rev. Lett.2004,92:163401.
    [25] M. Sargolzaei and N. Lotfizadeh. Spin and orbital magnetism of a single3dtransition-metal atom doped into icosahedral coinage-metal clusters X12(X=Cu,Ag, Au)[J]. Phys. Rev. B2011,83:155404.
    [26] J. C. Tung and G. Y. Guo. Systematic ab initio study of the magnetic andelectronic properties of all3d transition metal linear and zigzag nanowires [J].Phys. Rev. B2007,76:094413.
    [27] J. C. Tung and G. Y. Guo. Magnetic moment and magnetic anisotropy of linearand zigzag4d and5d transition metal nanowires: First-principles calculations [J].Phys. Rev. B2010,81:094422.
    [28] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projectoraugmented-wave method [J]. Phys. Rev. B1999,59:1758.
    [29] P. E. Bl chl. Projector augmented-wave method [J]. Phys. Rev. B1994,50:17953.
    [30] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient ApproximationMade Simple [J]. Phys. Rev. Lett.1996,77:3865.
    [31] G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set [J]. Phys. Rev. B1996,54:11169.
    [32] X. Chen, K. M. Deng, Y. Z. Liu, C. M. Tang, Y. B. Yuan, F. L. Hu, H. P. Wu, D. C.Huang, W. S. Tan, and X. Wang. The geometric and magnetic properties of theendohedral plumbaspherene M@Pb12clusters (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni)[J]. Chem. Phys. Lett.2008,462:275.
    [33] K. Maiti. Role of spin-orbit coupling and electron correlation in the electronicstructure of a5d pyrochlore, Y2Ir2O7[J]. Solid State Commun.2009,149:1351.
    [1] M. Zhang and R. Fournier. Density-functional-theory study of13-atom metalclusters M13, M=Ta–Pt [J]. Phys. Rev. A2009,79:043203.
    [2] M. J. Piotrowski, P. Piquini, and J. L. F. Da Silva. Density functional theoryinvestigation of3d,4d, and5d13-atom metal clusters [J]. Phys. Rev. B2010,81:155446.
    [3] F. Aguilera-Granja, R. C. Longo, L. J. Gallego, and A. Vega. Structural andmagnetic properties of X12Y (X, Y=Fe, Co, Ni, Ru, Rh, Pd, and Pt) nanoalloys[J]. J. Chem. Phys.2010,132:184507.
    [4] P. B onski and J. Hafner. Magneto-structural properties and magnetic anisotropyof small transition-metal clusters: a first-principles study [J]. J. Phys.: Condens.Matter2011,23:136001.
    [5] G. Barcza, O. Legeza, K. H. Marti, and M. Reiher. Quantum-information analysisof electronic states of different molecular structures [J]. Phys. Rev. A2011,83:012508.
    [6] J. P. Chou, H. Y. T. Chen, C. R. Hsing, C. M. Chang, C. Cheng, and C. M. Wei.13-atom metallic clusters studied by density functional theory: Dependence onexchange-correlation approximations and pseudopotentials [J]. Phys. Rev. B2009,80:165412.
    [7] J. L. F. Da Silva, H. G. Kim, M. J. Piotrowski, M. J. Prieto, and G.Tremiliosi-Filho. Reconstruction of core and surface nanoparticles: The exampleof Pt55and Au55[J]. Phys. Rev. B2010,82:205424.
    [8] X. Liu, M. Bauer, H. Bertagnolli, E. Roduner, J. van Slageren, and F. Phillipp.Structure and Magnetization of Small Monodisperse Platinum Clusters [J]. Phys.Rev. Lett.2006,97:253401.
    [9] M. B. Knickelbein. Experimental Observation of Superparamagnetism inManganese Clusters [J]. Phys. Rev. Lett.2001,86:5255.
    [10] D. J. Harding, P. Gruene, M. Haertelt, G. Meijer, A. Fielicke, S. M. Hamilton, W.S. Hopkins, S. R. Mackenzie, S. P. Neville, and T. R. Walsh. Probing thestructures of gas-phase rhodium cluster cations by far-infrared spectroscopy [J]. J.Chem. Phys.2010,133:214304.
    [11] M. B. Knickelbein. Magnetic ordering in manganese clusters [J]. Phys. Rev. B2004,70:014424.
    [12] S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser. Monodisperse FePtNanoparticles and Ferromagnetic FePt Nanocrystal Superlattices [J]. Science2000,287:1989.
    [13] F. Baletto and R. Ferrando. Structural properties of nanoclusters: Energetic,thermodynamic, and kinetic effects [J]. Rev. Mod. Phys.2005,77:371.
    [14] G. Schmid, M. B umle, M. Geerkens, I. Heim, C. Osemann, and T. Sawitowski.Current and future applications of nanoclusters [J]. Chem. Soc. Rev.1999,28:179.
    [15] R. Ferrando, J. Jellinek, and R. L. Johnston. Nanoalloys: From Theory toApplications of Alloy Clusters and Nanoparticles [J]. Chem. Rev.2008,108:845.
    [16] A. Sebetci. Density functional study of small cobalt–platinum nanoalloy clusters[J]. J. Magn. Magn. Mater.2012,324:588.
    [17] M. Sargolzaei and N. Lotfizadeh. Spin and orbital magnetism of a single3dtransition-metal atom doped into icosahedral coinage-metal clusters X12(X=Cu,Ag, Au)[J]. Phys. Rev. B2011,83:155404.
    [18] M. Harb, F. Rabilloud, and D. Simon. Structural, electronic, magnetic and opticalproperties of icosahedral silver–nickel nanoclusters [J]. Phys. Chem. Chem. Phys.2010,12:4246.
    [19] M. Harb, F. Rabilloud, and D. Simon. Structure and optical properties ofcore-shell bimetallic AgnNinclusters: Comparison with pure silver and nickelclusters [J]. J. Chem. Phys.2009,131:174302.
    [20] S. Datta, M. Kabir, A. Mookerjee, and T. Saha-Dasgupta. Engineering themagnetic properties of the Mn13cluster by doping [J]. Phys. Rev. B2011,83:075425.
    [21] A. M. Asaduzzaman and J. A. Blackman. Magnetism in binary and encapsulatedCo-Mn clusters [J]. Phys. Rev. B2010,82:134417.
    [22] E. Janssens, S. Neukemans, H. M. T. Nguyen, M. T. Nguyen, and P. Lievens.Quenching of the Magnetic Moment of a Transition Metal Dopant in SilverClusters [J]. Phys. Rev. Lett.2005,94:113401.
    [23] N. F. Shen, J. L. Wang, and L. Y. Zhu. Ab initio study of magnetic properties ofbimetallic Con-1Mn and Con-1V clusters [J]. Chem. Phys. Lett.2008,467:114.
    [24] D. A. Kilimis and D. G. Papageorgiou. Structural and electronic properties ofsmall bimetallic Ag-Cu clusters [J]. Eur. Phys. J. D2010,56:189.
    [25] J. L. Wang, G. H. Wang, X. S. Chen, W. Lu, and J. J. Zhao. Structure andmagnetic properties of Co-Cu bimetallic clusters [J]. Phys. Rev. B2002,66:014419.
    [26] G. Rollmann, S. Sahoo, A. Hucht, and P. Entel. Magnetism and chemical orderingin binary transition metal clusters [J]. Phys. Rev. B2008,78:134404.
    [27] M. B. Knickelbein. Magnetic moments of small bimetallic clusters: ConMnm[J].Phys. Rev. B2007,75:014401.
    [28] S. Y. Yin, R. Moro, X. S. Xu, and W.A. de Heer. Magnetic Enhancement inCobalt-Manganese Alloy Clusters [J]. Phys. Rev. Lett.2007,98:113401.
    [29] S. Y. Wang, W. H. Duan, D. L. Zhao, and C.Y. Wang. First-principles study of thestability of the icosahedral Ti13, Ti13-1, and Ti13+1clusters [J]. Phys. Rev. B2002,65:165424.
    [30] S. Y. Wang, J. Z. Yu, H. Mizuseki, J. A. Yan, Y. Kawazoe, and C. Y. Wang.First-principles study of the electronic structures of icosahedral TiN(N=13,19,43,55) clusters [J]. J. Chem. Phys.2004,120:8463.
    [31] N. O. Jones, S. N. Khanna, T. Baruah, and M. R. Pederson. ClassicalStern-Gerlach profiles of Mn5and Mn6clusters [J]. Phys. Rev. B2004,70:045416.
    [32] T. Morisato, S. N. Khanna, and Y. Kawazoe. First-principles study of the onset ofnoncollinearity in Mnnclusters: Magnetic arrangements in Mn5and Mn6[J]. Phys.Rev. B2005,72:014435.
    [33] M. Kabir, D. G. Kanhere, and A. Mookerjee. Emergence of noncollinearmagnetic ordering in small magnetic clusters: Mnnand As@Mnn[J]. Phys. Rev.B2007,75:214433.
    [34] G. L. Gutsev, M. D. Mochena, C. W. Bauschlicher, W.-J. Zheng, O. C. Thomas,and K. H. Bowen. Electronic and geometrical structure of Mn13anions, cations,and neutrals [J]. J. Chem. Phys.2008,129:044310.
    [35] R. C. Longo, J. Carrete, and L. J. Gallego. A density-functional study of thevertical ionization potentials of the cluster Mn13[J]. J. Chem. Phys.2009,131:046101.
    [36] Hohenberg and W. Kohn. Inhomogeneous Electron Gas [J]. Phys. Rev. B1964,136:864.
    [37] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Phys. Rev. A1965,140:1133.
    [38] P. E. Bl chl. Projector augmented-wave method [J]. Phys. Rev. B1994,50:17953.
    [39] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projectoraugmented-wave method [J]. Phys. Rev. B1999,59:1758.
    [40] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient ApproximationMade Simple [J]. Phys. Rev. Lett.1996,77:3865.
    [41] G. Kresse and J. Hafner. Ab initio molecular dynamics for open-shell transitionmetals [J]. Phys. Rev. B1993,48:13115.
    [42] G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energycalculations using a plane-wave basis set [J]. Phys. Rev. B1996,54:11169.
    [43] M. Kabir, A. Mookerjee, and D. G. Kanhere. Structure, electronic properties, andmagnetic transition in manganese clusters [J]. Phys. Rev. B2006,73:224439.
    [44] M. Doverstal, L. Karlsson, B. Lindgren, and U. Sassenberg. The3Δu-X3Δgbandsystem of jet-cooled Ti2[J]. Chem. Phys. Lett.1997,270:273.
    [45] M. D. Morse. Clusters of Transition-Metal Atoms [J]. Chem. Rev.1986,86:1049.
    [46] K. D. Bier, T. L. Haslett, A. D. Krikwood, and M. Moskovits. The resonanceRaman and visible absorbance spectra of matrix isolated Mn2and Mn3[J]. J.Chem. Phys.1988,89:6.
    [47] R. J. Van Zee, C. A. Baumann, and W. Weltner. The antiferromagnetic Mn2molecule [J]. J. Chem. Phys.1981,74:6977.
    [48] M. R. Pederson, F. Reuse, and S. N. Khanna. Magnetic transition in Mnn(n=2–8) clusters [J]. Phys. Rev. B1998,58:5632.
    [49] P. Bobadova-Parvanova, K. A. Jackson, S. Srinivas, and M. Horoi. Emergence ofantiferromagnetic ordering in Mn clusters [J]. Phys. Rev. A2003,67:061202.
    [50] Q. Sun, X. G. Gong, Q. Q. Zheng, D. Y. Sun, and G. H. Wang. Local magneticproperties and electronic structures of3d and4d impurities in Cu clusters [J].Phys. Rev. B1996,54:10896.
    [51] N. Zabala, M. J. Puska, and R. M. Nieminen. Spontaneous Magnetization ofSimple Metal Nanowires [J]. Phys. Rev. Lett.1998,80:3336.
    [52] J. F. Janak. Uniform susceptibilities of metallic elements [J]. Phys. Rev. B1977,16:255.
    [53] X. Li, H. B. Wu, X. B. Wang, and L. S. Wang. s-p Hybridization and ElectronShell Structures in Aluminum Clusters: A Photoelectron Spectroscopy Study [J].Phys. Rev. Lett.1998,81:1909.
    [1] R. S. Singh, V. R. R. Medicherla, Kalobaran Maiti, and E. V. Sampathkumaran.Evidence for strong5d electron correlations in the pyrochlore Y2Ir2O7studiedusing high-resolution photoemission spectroscopy [J]. Phys. Rev. B2008,77:201102.
    [2] G. Q. Liu, V. N. Antonov, O. Jepsen, and O. K. Andersen. Coulomb-EnhancedSpin-Orbit Splitting: The Missing Piece in the Sr2RhO4Puzzle [J]. Phys. Rev.Lett.2008,101:026408.
    [3] G. C. Xiong, Q. Li, H. L. Ju, R. L. Greene, and T. Venkatesan. Influence ofpreparation on resistivity behavior of epitaxial Nd0.7Sr0.3MnO3-δandLa0.67Ba0.33MnO3-δthin films [J]. Appl. Phys. Lett.1995,66:1689.
    [4] G. C. Xiong, Q. Li, H. L. Ju, S. N. Mao, L. Senapati, X. X. Xi, R. L. Greene,and T. Venkatesan. Giant magnetoresistance in epitaxial Nd0.7Sr0.3MnO3-δthinfilms [J]. Appl. Phys. Lett.1995,66:1427.
    [5] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura.Room-temperature magnetoresistance in an oxide material with an ordereddouble-perovskite structure [J]. Nature (London)1998,395:677.
    [6] Y. Tokura and N. Nagaosa. Orbital Physics in Transition-Metal Oxides [J].Science,2000,288:462.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700