用户名: 密码: 验证码:
玉米×大刍草选系主要性状的配合力及遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将野生近缘属种质的有利基因导入栽培玉米,创制具有特殊及优良性状的新种质,对拓宽现有玉米种质的遗传基础具有十分重要的意义。探明玉米自交系主要性状的配合力效应及其遗传规律,以确定其育种利用潜力。本研究用目前生产上使用的7个骨干自交系为母本,以19个玉米远缘杂交选系为父本,按7×19不完全双列杂交模式配制133个杂交组合,分析了主要性状的配合力效应和遗传参数,同时对各主要性状之间及其配合力表现之间进行了相关分析,并对26个自交系进行了遗传聚类分析。研究结果如下:
     1.配合力效应分析表明,不同材料及其不同性状的一般配合力效应表现较复杂。在19个选系中,1147分蘖性和多穗性GCA效应正向最大,多穗性GCA效应正向值较大的还有1193和1169;1183单株产量、穗粗和穗行数GCA效应表现突出,均为正向值最大,其次为1164、1157和1193;而1153和1154株高、生育期和主要农艺性状GCA负向效应值较大。不同组合及其不同性状的SCA效应差异也较大,其中组合K389×1162、156×1193和R08×1168单株产量SCA效应较大;组合156×1147和K389×1164分蘖数和果穗数SCA分别为正向效应最大;组合R08×1156和R08×1167株高等主要农艺性状SCA分别表现明显的负向和正向效应:而组合郑58×1147和郑58×1160生育期SCA效应则分别为正向和负向最大值。
     2.遗传参数研究表明,玉米分蘖性和多穗性的加性效应远大于非加性效应,但其狭义遗传力分别仅为48.66%和36.12%,育种上宜在晚代进行选择。株高、叶片数、雄穗和生育期等性状也主要受加性效应影响,且广义遗传力和狭义遗传力都较高,可在早代选择;而叶面积则受加性和非加性效应共同影响,遗传力相对较低,不宜在早代选择。产量及产量组成性状加性效应远比非加性效应重要,在实践中应注意选用一般配合力效应较高的亲本来配制组合:此类性状中穗粗和穗行数的狭义遗传力最高,达70%以上,而穗长和秃尖长相对较低,低于40%,其余性状居中,界于50%-70%之间,因此在实践中对穗粗和穗行数进行早代选择较为有效。
     3.相关性研究表明,分蘖数与单株产量呈显著遗传负相关,对提高籽粒产量不利,而分蘖与株高呈显著遗传正相关,表明选育分蘖玉米可能伴随着植株增高和生物产量增加:果穗数与单株产量相关不显著,说明通过增加果穗数并不一定能显著提高产量:分蘖数与果穗数之间呈极显著正相关,而这2个性状与主要农艺和经济性状之间的相关性比较复杂,因此在玉米育种实践中,应灵活制定和应用相关选择方案。从一般配合力效应相关性来看,单株产量与穗粗、粒深、穗行数和行粒数等经济性状GCA效应之间呈极显著正相关,同时与穗位高、叶面积和叶片数等主要农艺性状GCA效应之间也呈显著正相关,可通过对这些性状一般配合力效应的选择来间接提高单株产量的配合力效应;其余多数农艺经济性状GCA效应与单株产量GCA效应之间相关性不显著,说明这些性状GCA效应与单株产量GCA效应较难同时聚合。
     4.遗传聚类分析结果,将19个选系和7个骨干系划分为9个类群。其中,第一类包括骨干系P178、156和选系1160等9个系;第二类包括骨干系698-3、K389和选系1156等5个系,第三类包括选系1169、1191和1195,第四类包括骨干系48-2和R08,第五类包括选系1154、1183及1189;骨干系郑58,选系1153、1193、1147分别单独聚为第六至第九类。各类群自交系各具特点,对玉米育种实践具有一定指导意义。其中,选系1147分蘖和多穗性突出,植株高大,同时其GCA效应值最大,在饲草玉米育种中可能具有较大的应用潜力;1183具有果穗粗大、穗行数多,自身产量高及其GCA高等优点,是一个很好的高产育种潜力亲本;1153生育期较短、植株矮小,株型较好,结实率高,加之其性状GCA表现优良,可在选育早熟、矮杆和紧凑型玉米组合上重点应用。其余选系各具特色,可结合不同育种目标有针对性地加以改良和利用。
New germplasm with specific and excellent characteristics created by introducing favorable genes of exotic germplasm exert great significance on expansion of genetic basis of maize germplasm.For the purpose of identifying breeding potential value of the inbred lines with exotic genes,the combining ability effect of the main characteristics and their genetic regulation should be investigated.133 combinations were obtained according to incomplete diallel cross mode by using 7 wide-used maize inbred lines as female parents,and19 inbred lines derived from distance hybridization as male parents. The combining ability and hereditary parameters for main characteristics were analyzed.Meanwhile, the genetic correlations among the main characteristics as well as their combining abilities were studied. Genetic cluster analysis was performed on the 26 inbred lines at the same time.The results are as following:
     1.The combining ability effect analysis indicated that the performance of combining ability was complicated among different inbred lines and their characteristics.Among 19 inbred lines,1147 showed the highest positive GCA effect of tillering and prolificacy,1193 and 1169 showed comparatively higher GCA effect of prolificacy,and 1183 performed outstanding the highest positive GCA effect of yield per plant,ear diameter,Kernels per row,and 1164、1157、1193 higher.1153 showed comparatively high negative GCA effect of plant height,growth period and main gronomic characteristcs.Secondly, different combinations and their characteristcis showed different SCA effects.For example:K389×1162、156×1193 and R08×1168 performed high SCA effect of yield per plant,156×1147 and K389×1164 had the positive maximum SCA of tiller number and ear number,while R08×1156 and R08×1167 performed negative and positive SCA effect of main gronomic characters including plant height respectively,however,ZHENG 58×1147 and ZHENG 58×1160 showed the highest positive and negative SCA effect of growth period respectively.
     2.The analytical results of genetic parameters indicated that the additive gene effect of tillering and prolificacy was much higher than non-additive gene effect.But narrow heritability of the above characteristics was 48.66%and 36.12%respectively;they should be selected at the late generation. However,characteristics including plant height,leaf number,tassel and growth period were controled by the additive gene effects,and both broad and narrow heritability of which were higher.As a result, they could be selected at the early generation.Comparatively,both additive gene effects and non-additive gene effects dominated the leave area,and its heritability was low.Hence,it was not appropriate to select at the early generation.For the addictive gene effect of yield and its components was far more important than their non-additive gene effect,parents with higher GCA effct should be selected for conducting combination in breeding practice.Among those characters,the heritability for the ear diameter and ear rows were the highest(above 70%),while the ear lengh and barren ear tip length were low comparatively(below 40%),the other characteristics medimum between 50%-70%. Therefore,it is more effective to select ear diameter and ear rows at the early generation.
     3.Correlation analysis indicated that there was a significantly negative correlation between tiller number and yield per plant,which was harmfull for yield increase.However,it was found that tiller number was significantly negative correlation with plant height,which illustrated obtaining the tillering will coupled with increasing of plant height and biomass on maize breeding.Reversely,ear number was not significantly correlated with yield per plant at all,showed that it might not be effective to increase yield by increasing effective ear numbers.Although,tiller number showed a significant correlation with ear number.Both the characteristics showed complicated correlation with major agronomic as well as economic characteristics.As a result,the selection scheme should be planned and performed accordingly.Concerning corralation of general combining ability,yield per plant showed extremely significantly positive GCA correlation with ear diameter,kernel depth,ear rows,kernels per row,and other economic characters,as well as,significantly positive GCA correlation with ear height,leaf area, leaf number,and other agronomic characters.Combining ability effect of yield per plant was able to be elevated indireactly by selecting GCA effects of those charaters.Most GCA effects of other agronomic and economic characters showed insignificant correlation with GCA effect of yield per pant.It was illustrated that GCA effects of those charateristics and yield per plant were not easy to be polymerized.
     4.The 19 inbred lines and 7 wide-used elite lines were clusted into 9 groups by genetic cluster analysis.Among them,the firsr group had 9 lines including elite lines P178,156 and inbred lines 1160;The second group had 5 lines including elite line 698-3,K389 and inbred lines 1156;The third group included 3 inbred lines 1169,1191 and 1195;The fourth group included elite lines 48-2 and R08; The fifth group included 3 inbred lines 1154,1183 and 1189;While elite line Zheng58 and inbred lines1153,1193 and 1147 was clusted to the sixth to the ninth groups respectively.Different inred lines of different groups had different advantages,which had directive significance for maize breeding. Among them,inbred line 1147 performed tillering and prolificacy extremely,as well as higher plant height,and the GCA effct of those characters were more higher,so it had more potential value probably for forage maize breeding.1183 had large ear,more ear rows,high yield and high GCA etc,and it was a potential lines for high yield breeding.1153 had a short growth period and plant height,optimal plant-type and high kernel rate.Furthermore,its characters performed much higher GCA effect. Therefor it could be applied on breeding of early,drawf,and compact hybrids.As the other new inbred lines,each with a distinct identity could be improved and utilized appropriately based on the different breeding objective.
引文
[1]王林生.玉米近缘植物的遗传研究及其在玉米改良中的利用[J].生物学通报,2007,42(5):1-3
    [2]赵晓俊,李德森,张玉玲.野生类玉米种质导入栽培玉米的研究进展[J].作物杂志,1996,(6):1-3
    [3]刘纪麟.玉米育种学[M].中国农业出版社,1991,2-4
    [4]赖仲铭,牛应泽.利用大刍草与玉米杂交创造新种质的研究初报[J].四川农业大学学报,1993,11(4):651-652
    [5]周洪生,邓迎海,李竞雄.玉米(Zea mays L.)×大刍草(Zea diploperennis L.)远缘杂交选育玉米自交系的研究[J].作物学报,1997,23(3):333-337
    [6]王启柏,宋建成,李常保,等.玉米与二倍体多年生大刍草远缘杂交选育玉米杂交种的研究[J].华北农学报,2002,17(增刊):144
    [7]芦立婷,陈景堂,黄亚群,祝丽英,宋占权,刘志增.玉米自交系×大刍草远缘杂交后代性状变异研究初探[J].西北植物学报,2005,25(9):1751-1755
    [8]曹墨菊,荣廷昭,唐祈林.栽培玉米与近缘野生材料杂交后代的性状表现[J].西南农业学报,2002,15(2):9-12
    [9]Xu Y B,Shen Z T.Diallel analysis of tiller number at different growth stages in rice(Oryza sativa L.).Theoretical and Applied Genetics,1991,83(2):243-249
    [10]Murai M,Kinoshita T,Diallel Analysis of Traits concerning yield in Rice.JpnJBreed,1986,36:7-15
    [11]Ahmad L,Zaki A H,Jalani B S,et al.Detection of Additive and non-Additive Variation in rice[A],Rice Genetics[c],Manica:IRRI,1986,555-564
    [12]Xueyong Li,Qian Qian,Zhiming Fu.Control of tillering in rice[J].Nature,2003,422:618-621
    [13]Doebley J,Stec AO,Hubbard L.The evolution of apical dominace in maize.Nature,1997,386:485-488
    [14]S.B.Rood,D.J.Major.Inheriance of tillering and flowering in early maturing maize[J].Euphytica,1981(30):327-334
    [15]Lormquist,J.H.Mass selection for prolificacy in maize[J].Der Zucter,1967,37:185-188
    [16]W.A.Russell.Testcrosses of one-and two-ear types of corn belt maize inbreds.I.Performance at four plant stand densities[J].Crop Sci,1968,8:244-247
    [17]M.E.Sorrells,J.H.Lonnquist,R.E.Harris.Inheritance of Prolificacy in Maize.Crop Sci,1979,19:301-306
    [18]杨允奎,杜世灿,邓孝贞.玉米果穗遗传的初步研究[J].遗传,1979,2:21-22
    [19]Duvick.D.N.Continuous backcrossing to transfer prolificacy to a single-eared line of maize[J].Crop Sci,1974,14:69-71
    [20]荣廷昭,刘礼超,倪昔玉.玉米果穗数变异的研究[J].四川农学院学报,1983,1(1):93-98
    [21]Hallauer,A.R.Heritability of prolificacy in maize[J].The Journal of Heredity,1974,65:163-168
    [22]Laile.C.A.etal.Genetic variance and selection value of ear number in corn[J].Crop Sci,1968,8:540-543
    [23]Harris,R.E.Control and Inheritance of prolificacy in maize[J].Crop Sci,1976,16:843-850
    [24]赖麟,冯鸿.大刍草×玉米G综合种分离自交系的遗传效应和配合力分析[J].种子,2007,26(5):30-32
    [25]王振华,张前进,张新.含有玉米远缘种质的自交系配合力分析及应用评价[J].中国农学通报,2007,23(12):169-172
    [26]T.A.LAFARGE,I.J.BROAD,G.L.HAMMER.Tillering in Grain Sorghum over a Wide Range of Population Densities:Identification of a Common Hierarchy for Tiller Emergence,Leaf Area Development and Fertility[J].Annals of Botany,2002,90:87-98
    [27]JOELLE FUSTEC,JOELLE GUILLEUX,JOSIANE LE CORFF and JEAN-PAUL MAITRE Comparison of Early Development of Three Grasses:Lolium perenne,Agrostis stolonifera and Poa pratensis[J].Annals of Botany 2005,96:269-278
    [28]LIU Gui-fu,XU Hai-ming,YANG Jian,ZHU Jun.Genetic analysis on tiller number and plant height per plant in rice(Oryza sativa L.)[J].Journal of Zhejiang University(Agric.&Life Sci.),2006,32(5):527-534
    [29]詹勤,赵玉莲.多穗玉米几个性状的研究[J].山西农业科学,1981,(7):16
    [30]史振声.早熟甜玉米留蘖增产技术研究[J].玉米科学,1993,1(1):20-22
    [31]程新奇,邹烁,赵丽君,等.甜玉米分蘖与籽粒产量关系的初步研究[J].湖南文理学院学报(自然科学版),2005,17(1):71-73
    [32]Russell,W.A.Testcross of one-ear and two-ear types of Corn Belt maize inbreds.I.Performance of four plant stand densities[J].Crop Sci.1968,8:244-247
    [33]Durieux,R.R,Kamprath,E.J.and Moll.R.H.Yield contribution of apical and subapical ears in prolific and nonprolific corn[J].Agronomy Journal,1977,85:606-610
    [34]J.G.Coors,M.C.Mardones.Twelve cycles of mass selection for prolificacy in maize.Direct and correlated responses[J].Crop Sci,1989,29:262-266
    [35]Subandi.Ten cycles of selection for prolificacy in a composite variety of maize.[J].Crop Sci,1990,5:1-11
    [36]孙志超,荆绍凌,张志军,等.玉米杂交种主要农艺性状的遗传变异和相关分析[J].安徽农学通报,2008,14(20):54-55
    [37]李泉木,王振华,金益,等.玉米穗部性状与产量的相关分析[J].杂粮作物,1999,19(3);26-27
    [38]任海样,吕帮民,盖德安,等.玉米穗部性状遗传相关及选择效果的初步研究[J].黑龙江农业科学,1991,6:9-12
    [39]周远和,吴永升,覃兰秋,等.玉米主要农艺性状与产量的相关及通径分析[J].广西农业科学,2007,38(4):356-358
    [40]赵延明,王华山,庄艳,等.玉米穗部性状的遗传相关分析[J].杂粮作物,1999,19(6):8-11
    [41]丁山,郭去,宋军,等.玉米主要性状与产量的回归模型及相关分析[J].西南农业学报,2008,21(5):1226-1230
    [42]王永安.玉米杂交种主要农艺性状的相关性分析[J].新疆农垦科学,2008,5:15-16
    [43]阮培均,余永芬,王国良,等.黔西北山区玉米主要数量性状一般配合力间相关研究[J].玉米科学,2001,9(增刊):17-18
    [44]顾丽香,刘志增,祝丽英,等.玉米DH系产量及其构成因素一般配合力相关性分析[J].玉米科学,2008,16(2):36-38,43
    [45]吴景峰.我国玉米主要杂交种种质基础评述[J].中国农业科学,1983,16(2):1-7
    [46]王懿波,王振华,陆利行,等.中国玉米种质基础、杂种优势群划分与杂优模式研究[J].玉米科学,1998,6(1):9-13
    [47]王懿波,王振华,王永普,等.中国玉米主要种质杂交优势利用模式的研究[J].中国农业科学,1997,30(4):16-24
    [48]吴高岭,徐尚忠,玉米品种的因子分析和聚类分析[J].华中农业大学学报,1997,16(3):244-248
    [49]彭云承,艾合买提江,艾尔局马等.10个玉米自交系的聚类分析[J].杂粮作物,2004,24(3):127-129
    [50]曾学礼,张祖新.对湖北省20个玉米地方品种的数量性状分析和聚类分析[J].湖北农业科学,2001(5):35-38
    [51]兰发盛,藤耀聪,李德宾,等.玉米自交系优势群体划分及其利用的初步研究[J].四川农业大学学报,1993,11(1):64-695
    [52]陈彦慧,刘新芝,彰泽斌,等.玉米杂种优势类群和模式研究[J].河南农业大学学报,1995,29(4):341-347
    [53]彭云承,张正.系统聚类分析在玉米自交系分类中的应用[J].西北农业学报,1999,8(1):34-36
    [54]印志同,薛林,邓德祥,等.玉米自交系性状的聚类分析[J].西南农业学报,2004,17(5):562-566
    [55]刘新芝,彭泽斌,思扬,等.50个常用玉米自交系配合力的聚类分析[J].玉米科学,1994,2(1):1-9
    [56]陈彦惠,王利明,戴景瑞.中国温带玉米种质与热带、亚热带种质杂优组合模式研究[J].作物学报,2000,26(5):557-564
    [57]李明顺,张世煌,李新海,等.根据产量特殊配合力分析玉米自交系杂种优势群[J].中国农业科学,2002,35(6):600-605
    [58]刘纪麟,郑用琏,张祖新,等.三峡地区玉米地方品种杂种优势群的初探[J].作物杂志,1998,S1:6-11
    [59]佟屏亚.玉米种质创新与自交系培育[J].中国种业,2001,4:9-10
    [60]荣廷昭,唐祈林.优质高产新型饲草玉米SAUMZ 1号的选育与利用[J].贵州农业科学,2007,35(1):7-8
    [61]李长江.新型饲草玉米--玉草1号[J].四川农业科技,2008,5:25
    [62]杨立国,王金艳,石太渊,等.利用外源DNA导入新技术选育玉米新品系及杂交种[J].杂粮作 物,2005,25(5):283-285
    [63]郑殿升,盛锦山.主要作物远缘杂交概况[J].植物遗传资源科学,2002,3(1):55-60
    [64]张世煌,田清震,李新海,等.玉米种质改良与相关理论研究进展[J].玉米科学,2006,14(1):1-16
    [65]吴绍骙.玉米栽培生理[M].上海科学技术出版社,1980,313
    [66]荣廷昭.田间实验与统计分析[M].成都,四川大学出版社,1986.
    [67]荣廷昭,潘光堂,黄玉碧.数量遗传学[M].北京,中国科学技术出版社,2003
    [68]朱学鹏.水稻分蘖性状遗传和应用的研究[J].黑龙江农业科学,1984,(6):90-116
    [69]谢元璋,夏仲炎.粳稻品种分蘖性状的遗传研究[J].安徽农业科学,1994,22(4):319-322
    [70]梁康迳,林文雄,王雪仁,等.籼型三系杂交水稻茎蘖数的发育遗传研究[J].中国农业科学2002,35(9):1033-1039
    [71]张建设.籼型水旱杂交组合的杂种优势及抗旱性研究[D].华中农业大学,2005
    [72]杜鹃,曾亚文,杨树明等.云南粳稻耐低磷特性的主基因加多基因遗传分析[J].生态环境,2007.16(3):920-925
    [73]H.Ketata,E.L.Smith,L.H.Edwards and R.W.McNew.Detection of Epistatic,Additive,and Dominance Variation in Winter Wheat(Triticum aestivum L.em Thell.)[J].Crop Sci,1976,16:1-4
    [74]VAN SANFORD D.A.,UTOMO H.Inheritance of tillering in a winter wheat population[J].Crop sci,1995,35(6):1566-1569
    [75]庞红喜,亢福仁.大穗型小麦主要农艺性状配合力分析[J].西北农业学报,2000,9(2):78-81
    [76]SHARMAS.N.,SAINR.S.Inheritance of tillers-per-plant in durum wheat(Triticum durum Desf.)[J].Indian J.Genet.Plant Breed,2002,62(2):101-103
    [77]龙增栋,何庆才.小麦产量性状遗传力与配合力的分析应用[J].贵州农业科学,1994,(4):19-23
    [78]郭平仲,C.O.Gardner,M.Obaidi.玉米单株穗数及其它数量性状的基因效应与遗传变异分析[J].遗传学报,1986,13(1):35-42
    [79]张彪,陈宛秋,康继伟,等.玉米种质资源遗传评价及利用研究Ⅱ、玉米自交系株型性状配合力分析及其应用[J].四川农业大学学报,1994,12(3):438-442
    [80]白琪林,陈绍江,苏书文,等.玉米雄穗性状的配合力及遗传参数研究[J].华北农学报,2004,19(1):13-16
    [81]张前进,王振华,张新.6个玉米自交系配合力分析及应用评价[J].玉米科学2008,16(5):33-36
    [82]左淑珍,许崇香,王红霞,等.8个玉米自交系配合力分析及应用评价[J].玉米科学,2005,13(2):39-41,44
    [83]黄云霄,陈洪梅,谭静,等.糯玉米自交系主要农艺性状配合力分析[J].玉米科学,2007,15(5):17-21
    [84]杨引福,郭强,钱劲华.8个玉米自交系主要穗部性状配合力的遗传分析[J].玉米科学,2008,16(3):30-3
    [85]夏远峰,于明彦,柳迎春,等.10个玉米自交系产量性状遗传分析[J].玉米科学,2008,16(6):29-32,37
    [86]郭平仲.包括多穗性在内的玉米(Zea maysL.)十个性状间的遗传关系[J].首都师范大学学报(自然科学版),1984,(2):56-60
    [87]吴渝生,许明辉.玉米自交系主要数量性状遗传距离的研究[J].云南农业大学学报,1994,9(2):89-94
    [88]孙海艳,王国强,蔡一林,等.西南地区常用玉米自交系的配合力及聚类分析[J].玉米科学,2008,16(1):29-32
    [89]李帅,高树仁,张大鹏,等.黑龙江省玉米自交系的遗传距离分析及类群鉴定[J].黑龙江八一农垦大学学报,2008,20(6):8-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700