用户名: 密码: 验证码:
骨髓基质干细胞与微粒皮组织促进创面愈合的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景和目的]
     缺乏供皮区和创面愈合时间长是大面积烧伤创面修复的难题,愈合时间延长将使患者机体长期处于消耗状态,从而抵抗力下降、易于发生感染和多器官功能衰竭。自从发明微粒植皮技术后,利用少量的中厚皮片制成微粒皮颗粒,来消灭大面积的创面成为可能。但微粒皮植皮也有其缺点:1.生成的皮肤缺乏完整的真皮结构,较薄非常容易破溃,再次形成创面;2.在微粒皮愈合后创面易产生大量增生瘢痕,影响机体的外观和功能;3.微粒皮本身在创面成活率不确定,有时难以达到理想的效果。
     干细胞技术的出现为解决创面修复提供了新的手段,干细胞具有强大的增殖能力,在一定的条件下,可以分化成各种功能细胞。根据发育的阶段,干细胞分为胚胎干细胞和成体干细胞。由于胚胎干细胞的研究受到伦理学方面的困扰,细胞来源受限,因而成体干细胞的研究便受到人们的高度重视。骨髓基质干细胞(Bone mesenchymal stem cell,BMSCs)是一种成体干细胞;BMSCs修复创面的机制目前认为:1.干细胞具有自我更新的能力和强大的分化潜能,能对创伤引起的微环境的改变,根据局部修复的需要分化成所需要的修复细胞并整合到局部组织中;2.在创面局部被激活的BMSCs能够扮演“微型生物反应器”的功能,分泌多种生长因子和细胞因子,调节局部的细胞的增殖分化,细胞基质的形成,血管的形成等过程;3.在机体受到损伤启动炎症反应过程的同时,BMSCs能够在早期迁徙到受损组织参与组织修复。
     本课题紧贴临床实际需要,旨在探索应用干细胞技术解决大面积烧伤创面修复这一大难题的途径,依据BMSCs增殖分化的原理,将微粒皮组织与BMSCs一起应用于新鲜创面,运用细胞培养,免疫反应标记、分子生物学、组织病理学微观检测等手段,监测BMSCs增殖分化,以及微粒皮增生爬行的情况。目前国内外尚未开展相关课题的研究。所得数据将为以下方面提供依据:
     1.BMSCs在新鲜创而扮演怎样的“微型生物反应器”的功能,其增殖、分化的方向以及形成细胞基质的情况是怎样。
     2.在新鲜创面上,BMSCs能否与微粒皮组织黏附发生侵入、迁徙、增殖并分化,促进微粒皮组织的成活。
     3.BMSCs与微粒皮组织能否促进创面愈合,提高创面愈合质量。
     [方法]
     第一部分F344雄性大鼠BMSCs的体外分离培养及鉴定
     1.BMSCs分离、培养、传代:断颈处死10~12W F344雄性大鼠,从股骨、胫骨,肱骨中冲洗出骨髓,接种于培养瓶,48h后更换培养液,弃去未贴壁的细胞,每隔48h换液,接近融合的BMSCs按1:2比例传代培养,留取第3代备用。
     2.细胞生长动力学:取3、5代细胞MTT法测细胞增殖活性并绘制细胞增殖曲线。
     3.BMSCs的细胞周期检测:取传代生长良好的的第3代细胞,0.25%胰酶室温消化后制成细胞悬液,碘化丙啶染色,流式细胞仪检测。
     4.流式细胞仪检测细胞表面标记:第3代细胞,0.25%胰酶室温消化后制成细胞悬液,取浓度约1×10~6/ml 1ml分别加入适量FITC标记CD29,CD34,CD44,CD90抗体避光染色,流式细胞仪进行检测。
     5.成脂、成骨诱导分化鉴定:第3代细胞,加入成骨、成脂诱导剂进行诱导油红“0”、茜苏红染色鉴定。
     第二部分骨髓基质干细胞与微粒皮组织移植创面的实验研究
     1.将P5代细胞用5-BrdU 10μmol/L孵育48h标记。
     2.取Wistar大鼠全厚皮,剪成4×4cm~2大小作异体皮用。
     3.48只F344雌性大鼠随机分为四组:A组骨髓间充质细胞+微粒皮移植组;B组微粒皮移植组;C组BMSCs移植组;D组生理盐水注射组。在F344大鼠背部形成一4×4cm~2创面,留取1/4皮片剪成微粒皮,均匀涂抹在异体皮上,缝合固定创面。
     4.于术后14d打开异体皮,观察创面愈合情况,统计创面愈合率,观察并记录创面愈合时间,统计创面收缩率。5.在创面愈合的当日,处死大鼠,留取标本,放入-80℃冰箱保存。
     第三部分骨髓基质干细胞在创面增殖、分化情况的实验研究
     1.原位杂交
     冰冻切片行大鼠Sry基因标记,光学显微镜下检查。
     2.免疫荧光组织化学染色
     冰冻切片进行BrdU、FⅧ、Keratin、Actin、Nestin、S-100免疫荧光组织化学染色,荧光显微镜下观察。
     [结果]
     第一部分BMSCs的分离培养扩增及鉴定
     1.全骨髓细胞悬液接种于培养瓶后,24h体外培养有少量贴壁细胞,大量的悬浮细胞,48h后弃去悬浮细胞后继续培养,在96h换液后见悬浮细胞减少,细胞呈克隆样生长,10d左右达到细胞融合,基本上没有悬浮细胞。
     2.细胞周期:碘化丙啶染色,流式细胞仪检测结果显示:MSCs中的S+G_2+M细胞约占20.19%,而处于G_0/G_1期的细胞为79.81%,大多数为合成期细胞,只有少数的细胞处于活跃的增殖期。
     3.BMSCs表面标记的鉴定:CD29细胞阳性率为79.15%,CD34细胞阳性率为9.10%,CD44细胞阳性率为89.47%,CD90细胞阳性率为72.34%。
     4.BMSCs成脂、成骨分化潜能的鉴定:成脂诱导14d油红“0”染色,细胞内可见细小脂滴形成,21d脂滴融合成片;成骨诱导14d茜苏红染色,可见少量钙盐沉淀,21d细胞间可见致密的、圆形、成片状的棕红团块,面积较大。
     第二部分骨髓基质干细胞与微粒皮组织移植创面的实验研究
     1.创面愈合率:伤后14d打开异体皮,A组创面已基本愈合,创面愈合率为85.77±3.47%;B组创面愈合率为62.16±4.39%;C组、D组创面为肉芽创面,创面愈合率分别为30.41±1.73%,29.96±1.33%,创面的愈合是因为创面的收缩。Welch=1028.700,P<0.001,A、B两组比较有显著性差异P<0.001,C、D两组比较没有显著性差异,P=0.898。
     2.创面愈合时间:A组的创面愈合时间为17.17±1.64;B组为20.33±2.38;C组为23.08±1.31;D组为25.16±1.53。F=46.372,P<0.001,A、B两组比较有显著性差异P<0.001,C、D两组比较有显著性差异,P=0.006。
     3.创面收缩率:A组的创面收缩率为36.89±1.94%;B组为39.56±2.93%;C组为92.15±1.44%;D组为92.40±1.91%;F=2608.977,P<0.001,A、B两组比较有显著性差异P<0.01,C、D两组比较没有显著性差异,P=0.903。
     第三部分骨髓基质干细胞在创面增殖、分化情况的实验研究
     1.原位杂交:A组微粒皮标本切片上,在毛囊的周围可见较多的,细胞核为棕色的细胞,真皮层内可见散在的核为棕色的细胞。C组标本在愈合瘢痕组织内可见散在的核为棕色的细胞。B组、D组标本未见核为棕色的细胞。
     2.免疫组化双荧光染色:
     1) A组标本可见较强的标记BrdU的红色荧光和Keratin的绿色荧光出现在毛囊周围,并且位于同一位置;B组标本可见较强的绿色荧光位于上皮基底层,但未见到相应BrdU标记的红色荧光。D组标本未见两种颜色的荧光。
     2) A组与C组在真皮层内可见血管样结构的标记BrdU的红色荧光和FⅧ的绿色荧光位于同一位置;B组标本在真皮层内可见散在的绿色荧光,D组标本在愈合瘢痕组织可见散在的绿色荧光,但两组均未见相应的标记BrdU的红色荧光出现。
     3) A、C两组在真皮层内可见散在的标记BrdU的红色荧光和Actin的绿色荧光位于同一位置;B组标本在真皮层内可见散在的绿色荧光,D组标本在愈合瘢痕组织可见散在的绿色荧光,但两组均未见相应的标记BrdU的红色荧光出现。
     4) A、C两组在真皮层内可见散在的标记BrdU的红色荧光和Nestin的绿色荧光位于同一位置。B、D组标本未见两种颜色的荧光。
     5) A、C两组在真皮层内可见散在的标记BrdU的红色荧光和Nestin的绿色荧光位于同一位置。B、D组标本未见两种颜色的荧光。
     [结论]
     1.成功地从大鼠骨髓中分离出BMSCs,并证实分离的BMSCs具有多项分化潜能,符合成体干细胞的特性
     2.移植创面的BMSCs能促进微粒皮组织成活,并促进创面愈合
     3.移植于创面的BMSCs在创面及微粒皮组织微环境的作用下,根据创面修复的需要,可能分化成为血管内皮细胞、肌成纤维细胞、表皮细胞,周围神经组织细胞。
[Background and Objective]
     The two difficult problems of severe burns are Lack of skin donor sites and delayed time of skin wound healing,delayed time of skin wound healing can result in a consuming state of body in a long period.This can lead to the descent of resistance abilities of body,easy getting infections and multiple organ failure.Since the invention of microskin transplantation technique,utilizing a small quantity of splitthickness skin graft to make into miroskin tissue particles,the extinction of wound surface be become into reality.This bring a revolutionary breakthrough in repairing severe burns wound surface. There are some shortcomings of microskin transplantation in this technique:1.The skin by microskin extended is lack of integral dermis, very thin and easy to ulcerate,be prone to become wound surface again; 2.After the wound surface healing of applying microskin tissue particles transplantation,a mass of hyperplasia scar come into being, affected the appearance and function of the body.3.The surviving of microskin on wound surface is not insure some time,and will not get a good result.
     The coming forth of stem cell technique bring a new way in repairing the wound surface.The stem cell can be provided with strong hyperplastic ability.In a certain condition,it can be differentiated into kinds of functional cells.Base on the phase of cell development,stem cell be divided into two categories:embryonic stem cell and adult stem cell. The research in embryonic stem cells is restricted by its limited source and ethical controversy,so research on adult stem cells attracts more attentions.Bone marrow mesenchymal stem cell is a kind of adult stem cell,derived from mesoderm.The mechanism of BMSCs repairing wound surface lie in the following ways:1.Stem cells have self-regenerate ability and strong differentiate ability.Adapt to the microenvironment change on wound,it can be differentiated into kinds of cells and integrated into local tissues according to the needs of the body.2.The enabled BMSCs in wound surface can act as a micro-bioreactor,it can secrete kinds of growth factor and cell factor,accommodate the proliferation and differentiation of local tissue,the formation of cell matrix,the formation of vascular et al;3.Once the body has been damaged, at the same time of starting process of inflammation reaction,BMSCs can migrate into damaged tissue and join the repairing of the tissue.
     This project bases on the principle of the proliferation and differentiation of BMSCs.Transplanted the BMSCs and microskin tissue into fresh wound surface,utilize cell culture immunological marking and reaction,molecular biology histopathology microcosmic detection, monitoring the proliferation and differentiation of BMSCs and the hyperplasia and extending of microskin particles,The experimental data will provide the evidences for the following way:
     1.How are the BMSCs acted as micro-bioreactor in fresh wound surface, and how are the orientation of proliferation and differentiation and the way of forming cell matrix.
     2.Whether BMSCs can attach to and invade into and migrate into microskin tissue particles,proliferating and differentiating,and improve the surviving of microskin tissue particles in fresh wound surface.
     3.Whether the BMSCs and microskin tissue particles can accelerate the healing of wound surface,and improve the healing quality of wound surface.
     [Methods]
     Part one Isolation and identification of BMSCs of male F344 rat in vitro
     1.Isolation,culture and passage:break off the neck and execute male F344 rat,douche the bone marrow from femur,tibia and humerus, inoculate these cells into culture flask,replace the culture media after 48 hours,remove the non-adherent cells.Culture media was changed every 48 hours.Cells were passaged with ratio of 1:2 when almost confluent.Passage 3 cells were used for further experiment.
     2.Cell growth kinetics:cell proliferation activity of passage 3 and passage 5 cells were measured,cell proliferation curve were be drawn.
     3.Cell cycle examination of BMSCs:active growing passage 3 cells were detached by 0.25%trypsin and made into single cell suspension,stained for propidium iodide,then passed through flow cytometer.
     4.Cell surface marker examination of BMSCs by flow cytometer:active growing passage 3 cells were detached by 0.25%trypsin and made into single cell suspension,take 1ml cells which concentration is 1×10~6/ml and stain for CD29,CD34,CD44 and CD90 labelled with FITC,then measured by flow cytometer.
     5.Lipogenesis and osteogenesis induction and characterization: passaged 3 cells were induced with lipogenetic reagent and osteogenetic reagent,stained for Oil Red 0 and Alizarin Red S, measured by microscope.
     Part two experimental study on transplantation of bone mesenchymal stem cell and microskin tissue into wound surface
     1.take passage 5 cells labeled with 5-Brdu(10μmol/L) for 48 hours.
     2.Take full thickness skin graft of Wistar rat,cut into size 4×4cm~2
     3.48 F344 female rat take into four groups:group A transplant bone mesenchymal stem cell and microskin tissue particles into wound surface;group B transplant microskin tissue particles into wound surface;group C transplant bone mesenchymal stem cell into wound surface;group D injected with physiological saline solution.Forming a wound surface of size 4×4cm~2,take a quarter of full thickness skin graft cut into microskin tissue particles,lay on surface of xenoma skin,suture and fix on the surface.
     4.Opened up the xenoma skin 14 days post-operation,observed and record healing rate of wound surface;Observed and recorded healing time of wound surface;Record the shrinkage rate of wound surface.
     5.On the day of wound surface healing,execute the rat,took the skin specimen,preserved the specimen on refrigerator of -80℃.
     Part three experimental study on proliferation and differentiation of the bone mesenchymal stem cell on wound surface
     1.hybridization in situ
     Rat sry gene was labelled in freezing section,measured in optical microscope.
     2.Examination of immune fluorescence histochemistry
     Freezing sections were stained for Cy3 conjugated secondary antibody combined with BrdU antibody,FITC conjugated secondary antibody combined with FⅧ,Keratin,actin,nestin and S-100 antibody,analysed with fluorescence microscope.
     [Result]
     Part one Isolation and identification of BMSCs of male F344 rat in vitro
     1.After the full bone marrow cell suspension was inoculated in a culture flask,a small amount of bone marrow mononuclear cells adhere to the flask 24 hours after planting.After 48 hours,suspending cells were discarded.In 96 hours,suspending cells were decreased obviously,the cells were be growing with clone formation,reaching homogeneous confluence in 12 hours.In 10 days,the cells were fusion,cannot see the suspending cells basically.
     2.Flow cytometer analysis showed that about 20.19%of cells are in S+G2+M phase,79.81%are in Go/G phase,and only small numbers are in active proliferation state.
     3.Identification of BMSCs superficial marker:79.15%cells were CD29 positive cells;9.10%cells were CD34 positive cells;89.47%cells were CD44 positive cells;72.34%cells were CD90 positive cells.
     4.lipogenesis and osteogenesis induction and characterization:After 14 days lipogenesis induction,and stained for Oil Red O,many tiny lipid droplet can be seen in cytoplasm,In 21 days,lipid droplet in cytoplasm fused,like vacuole,osteogenesis induction stained for Alizarin Red S,in 14 days,calcium salt deposition can be seen;In 21 days,brown red mass can be seen among the induction cells.
     Part two experimental study on transplantation of bone mesenchymal stem cell and microskin tissue particles into wound surface
     1.Healing rate of wound surface:xenoma skin was opened in 14 days,wound surface of group A had been healed basically,healing rate of wound surface was 85.77±3.47%;healing rate of wound surface was 62.16±4.39%;The wound surface of group C,group D was flesh bud tissue healing rate of wound surface was 30.44±1.73%,29.96±1.33% respectively;The healing of wound surface was own to shrinkage of wound surface.Comparison between group A and group B existed in Significant difference(P<0.001);Welch=1028.700,P<0.001;Comparison between group C and group D has no difference(P=0.898)
     2.Healing time of wound surface:The healing time of wound surface of four groups is 17.17±1.64,20.33±2.38,23.08±1.31,25.16±1.53 respectively,Comparison between group A and group B existed in Significant difference(P<0.001),Comparison between group C and group D existed in Significant difference(P<0.01).
     3.shrinkage rate of wound surface:The shrinkage rate of wound surface of four groups is 36.89±1.94%,39.56±2.93%,92.51±1.44%,92.40±1.91%respectively,Comparison between group A and group B existed in Significant difference(P<0.01);Comparison between group C and group D has no difference(P=0.903)
     Part three experimental study on proliferation and differentiation of the bone mesenchymal stem cell on wound surface
     1.Examination in situ hybridization:
     In the microskin specimen sections of group A,many cells which nucleolus is brown can be seen among hair follicle.A few brown nucleolus cells were scattering in the dermis;A few brown nucleolus cells were scattering in the healing scar tissue specimen sections of group C;Few these cells could be seen among specimen sections of group B and group D.
     2.Examination of immune fluorescence histochemistry:
     1) Red fluorescence of labeled BrdU and green fluorescence of labelled Keratin can be seen among hair follicle and epidermis base layer in group A specimen sections,and existed in the seem position;Green fluorescence of labelled Keratin can be seen among hair follicle and epidermis base layer in group C specimen sections,but no red fluorescence of labelled BrdU can be seen in group C specimen sections; In group D specimen sections red fluorescence of labeled BrdU and green fluorescence of labelled Keratin can not be seen.
     2) Red fluorescence of labelled BrdU and green fluorescence of labelled FⅧcan be seen in the dermis of group A and healed scar of group C specimen sections,and formed a structure like vascular,and existed in the seem position;In the dermis of group B and healed scar group D specimen sections green fluorescence of labelled FⅧcan be seen, red fluorescence of labelled BrdU cannot be seen.
     3) Red fluorescence of labelled BrdU and green fluorescence of labelled Actin can be seen in the dermis of group A and healed scar group C specimen sections,and existed in the seem position;In the dermis of group B and healed scar of group D specimen sections green fluorescence of labelled Actin can be seen,red fluorescence of labelled BrdU cannot be seen.
     4) Red fluorescence of labelled BrdU and green fluorescence of labelled Nestin can be seen scattering in the dermis of group A and healed scar group C specimen sections,and existed in the seem position; Green fluorescence of labelled Nestin can be seen in the dermis in group C specimen sections,but no red fluorescence of labelled BrdU can be seen in group C specimen sections;In group D specimen sections red fluorescence of labeled BrdU and green fluorescence of labelled Nestin can not be seen.
     5) Red fluorescence of labeled BrdU and green fluorescence of labelled S-100 can be seen scattering in the dermis of group A and healed scar group C specimen sections,and existed in the seem position;Green fluorescence of labelled Nestin can be seen in the dermis in group C specimen sections,but no red fluorescence of labelled BrdU can be seen in group C specimen sections;In group D specimen sections red fluorescence of labeled BrdU and green fluorescence of labelled Nestin can not be seen.
     [Conclusion]
     1.Isolated BMSCs from rat bone marrow successfully.
     2.The BMSCs we isolated have multi-potential differentiation ability, accord with characteristic of adult stem cell.
     3.The BMSCs we transplanted into wound surface promoted the survival of microskin tissue particles and accelerated the healing of wound surface.
     4.The BMSCs we transplanted into wound surface affected by the microenvironment coming from wound surface and microskin tissue, maybe differentiated into vascular endothelial cells,epidermal cell, myofibroblast,peripheral nerve tissue cell.
引文
1.黎鳌,杨宗城,黎鳌烧伤学。上海:上海科技出版社,2001,124-129
    2.Wakayama T,Tabar V,Rodriguez I,et al.Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer[J].Science 2001;292(5517):740-3.
    3.Clarke D,Frisen J.Differentiation potential of adult stem cells [J].Current Opinion in Genet&Develop 2001;11:575-80.
    4.Minguell JJ,Erices A,Conget P,et al.Mesenchymal stem cells[J].Exp Biol Med(May wood) 2001;226(6):507-20.
    5.Bruder SP,Jaiswa IN,Haynesworth SE,et al.Growthikinetics,self renewal,and the osteogential of purified human mesenc 坷 mal stem cells during extensive subculativtion and following cryopreservation[J].J Cell Biochem 1997;64(2):278.
    6.Preston SL,Alison MR,Forbes SJ,et al.The new stem cell biology:something for everyone[J].J Clin Pathol:Mol Pathol 2003;56:86-96.
    7.Krause DS,Theise ND,Collector Ml,et al.Multi-organ,multi-lineage engraftment by a single bone marrow-derived stem cell[J].Cell 2001;105:369-77.
    8.Kellie McFarlin,Xiaohua Gao,Yong Bo Liu,et al.Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat.Wound Rep Reg 2006(14) 471-478
    9.R Cecilia,L Stephen.Cutaneous Stem Cells and Wound Healing.Pediatr Res 2006(59):100R-103R
    10.Friedenstein AJ,Chailakhyan RK,Gerasimov UV,et al.Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers[J].Cell Tissue Kinet 1987;20:263-72.
    11. Bruder SP, Kurth AA, Shea M. et al. Bone regeneration by implantation of pufified, culture-expanded human mesenchymal stem cells [J]. J Orthop Res. 1998: 16(2): 551-562.
    
    12. Bruder SP, Jaiswal N, Ricalton NS, et al. Mesenchymal stem cells in osteoligy and applied bone regeneration [J]. Clinical Orthopaedics and Related Research 1998; 355x:247-56.
    
    13. Jaiwal N, Hayneworth SE, Caplan Al, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro [J]. J Cell biochem 1997; 64:295-312.
    
    14. Ryden M, Dicker A, Gotherstrom C, et al. Functional characterization of human mesenchymal stem cell-derived adipocytes [J]. Biochem Biophys Res Common 2003;311:391-407.
    
    15. Byers RJ, Brown J, Brandwood C, et al. Osteoblastic differentiation and mRNA analysis of stromal positive human bone marrow stromal cells using primary in vitro culture and poly (A) PCR [J]. J Pathol 1999;187:374-81.
    
    16. Chen GS Liu D, Tadokoro M, et al. Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold[J]. Biochemical and Biophysical Research Communications 2004;322:50-55.
    
    17. Pereira RF, O'Hara MD, Laptev AV, et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta [J]. Proc Natl Acad Sci USA 1998;95:1142-7.
    
    18. Barinag M. Fetal neuron grafts pave the way of stem cell trerapeis [J]. Science 2000; 287(5457):1421-2.
    19. Korbling M, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells [J]. N Engl J Med 2002;346:738-46.
    
    20. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium [J]. Nature 2001 ;410:701-5.
    
    21. PoulsomR, Forbes SJ, Hodivala-Dilke K, et al. Bone marrow contributes to renal mesenchymal turnover and regeneration [J]. J Pathol 2001;195:229—35.
    
    22. Young RT, Butler DL, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for a chines tendon repair [J]. J Orthop Res 1998;16: 406-13.
    
    23. Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing ability following culture. Leukemia. 2003, 17(1) : 160~170.
    
    24. Satake K, Lou J, Lenke LG. Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue. Spine.2004, 29(18):1971-1979.
    
    25. Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004, 95(1):9—20.
    
    26. Wang FS, Trester C. Bone marrow cells and myocardial regeneration.Int J Hematol. 2004, 79(4) :322—327.
    
    27. Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002,73(6):1919 — 1925;discussion 1926.
    
    28. Smogorzewska EM, Weinberg KI. [Treatment progress of Duchenne Muscular Dystrophy (DMD)}. Med Wieku Rozwoj. 2004,8(1):25—32.
    29.Ferrari q Angefis GC,Coletta M,et al.Muscle regeneration by bone marrow derived myogenic progenitor[J].Science,1998,279:1528-1530.
    30.Jiang Y,Jahagrirdar BN,Reinhardt RI,et al.Pluripotential of Mesenchymal stem cells derivedform adult marrow}J}.Nature,2002,418:41-49
    31.Sanchez-Ramos J,Song S,Cardozo-Pelaez F,et al.Adult bone marrow stromal cells differentiation into neural cells in vivo[J].Exp Neurol,2000,164:247-256.
    32.Schwartz RE,Reyes M,Koodie L,et al.Multipotential adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells[J].J Clin Invest,2002,109:1291-1302.
    33.Kopen GC,Prekop DJ,Phinney DG.Marrow stromal cells migrate through forebrain and cerebellum,and they differentiate into astrocytes after injection neonatal mouse brain[J].Cell Biology,1999,96(19):10711-10716.
    34.Pittenger MF,Mackay AM,Jaiswal SC,et al.Multilineage potential of adult human mesenchymal stem cells[J].Science 1999;284:143-7.
    35.白晓东,付小兵.骨髓间充质干细胞诱导增殖分化信号的研究进展[J].中国危重病急救医学2004;16(5):318-20.
    36.Brazerlton TR,Rossi FMV Keshet GL,et al.From marrow to brain:expression of neuronal phenotypers in adult mice[J].Science 2000;290(5497):1775.
    37.Ferrari Q,Cusella-DeAngelis Q,Coletta M,et al.Muscle regeneration by bone marrow-derived myogenic progenitors[J].Science 1998;279:1528-30.
    38.Azizi SA,Stokes D,Augelli BJ,et al.Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocytegrafts[J].Proc Natl Acad Sci USA 1998;95:3908-13.
    39.Pereira RF,Hara MD,Halford KW,et al.Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone and lung in irradiated mice[J].Proc Natl Acad Sci USA 1995;92(11):4857-61.
    40.Tremain N,Korkko J,Ibberson D,et al.MicroSAGE analysis of 2,353expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages [J].Stem Cells 2001;19(5):408-18.
    41.Watt FM,Hogan BL.Out of eden:stem cells and their niches[J].Science 2000;287:1427-30.
    42.王炜,整形外科学。杭州,浙江科学技术出版社,2000,76-97
    43.Le Blanc K,Rasmusson I,Gotherstrom C,et al.Mesenchymal stem cellsinhibit the expression of CD25(interleukin-2 receptor) and CD38onphytohae magglutinin-activated lymphocytes.Scand J Immunol.2004,60(3):307-315.
    44.Le Blanc K.Immunomodulatory effects of fetal and adult mesenchymal stemcells.Cytotherapy.2003,5(6):485-489.
    45.[高艳红,孙圣坤,白慈贤,等.骨髓间充质干细胞对大鼠皮肤损伤促愈作用的研究[J].中华创伤杂志,2003,19(4):203-206.
    46.Yaojiong Wu,Liwen Chen,Paul G.Scott and Edward E.Tredget.Mesenchymal Stem Cells Enhance Wound Healing Through Differentiation and Angiogenesis Stem Cells 2007;25;2648-2659
    47.王正国,创收学—基础与临床(上)。武汉,湖北科学技术出版社,2007, 1187—1210
    
    48. Pittenger MF, Mackay AM, Jaiswal SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284:143—147
    
    49. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium. Nature, 2001, 410:701—705
    
    50. Walcitani S, Saito T} Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 1995, 18: 1417-1426
    
    51. Peterson BE} Bowen WC} Patrene KD, et al. Bone marrow as a potential source of hepatic oval cells. Science, 1999, 284:1168 — 1170
    
    52. PoulsomR, Forbes SJ, Hodivala-Dilke K, et al. Bone marrow contributes to renal parenchyma) turnover and regeneration. J Pathol, 2001 195:229-235
    
    53. Young RT, Butler DL, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res, 1998,16:406-413
    
    54. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 1999, 96: 10711-10716
    
    55. Brazelton TR, Rossi FMV, Keshet GI, et al. From marrow to brain:expression of neuronal phenotypes in adult mice. Science, 2000,290 :1775—1779
    
    56. Mezey E,Chandross KJ, Harta G, et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000, 290:1779—1782
    57. Krause DS; Theise ND, Collector Ml, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 2001,105:369-377
    
    58. KorblingM, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl JMed, 2002, 346:738-746
    
    59. Watt FM, Hogan BL. Out of eden: stem cells and their niches. Science,2000 287:1427-1430
    
    60. Wright DE, Wagers AJ, Gulati AP, et al. Physiological migration of hematopoietic stem and progenitor cells. Science.2001, 294(5548):1933 — 1936.
    
    61. E. Mansilla, G. H. Marin, H. Drago, et al. Bloodstream Cells Phenotypically Identical to Human Mesenchymal Bone Marrow Stem Cells Circulate in Large Amounts Under the Influence of Acute Large Skin Damage: New Evidence for Their Use in Regenerative Medicine.Transplantation Proceedings, 2006 (38): 967 - 969
    
    62. Gratzner HO. Monoclonal antibody to 5-bromo-and -iodo-deoxyuridine:A new reagent for detection of DNA replication [J]. Science, 1982,218: 474
    
    63. Grove JE, Lutzko C, Priller J, at al. Marrow-derived cells as vehicles fordelivery of gene therapy to pulmonary epithelium [J]. Am J Respir Cell Mol Biol, 2002, 27: 645-651
    
    64. Crain BJ, Tran SD, Mezey E. Transplanted human bone marrow cells generate new brain cells[J]. J Neurol Sci, 2005, 233(1-2):121-123
    
    65. Eglitis MA, Dawson D, Park KW, et al. Targeting of marrow-derived astroctes to the ischemic brain [J]. Neurireport 1999;10:1289-92.
    66.Mezey E,Chandross KJ,Harta q et al.Turning blood into brain:neuronal antigens generated in vivo from bone marrow cells bearing [J].Science 2000;290:1779-82.
    67.Mahmood A,Lu D,Yi L,et al.Intracranial bone marrow traumatic brain inj ury improving functional outcome in adult 2001;94:589-95.transplantation after rats[J].J Neurosurg
    68.方利君,付小兵,孙同柱等。骨髓间充质干细胞分化为血管内皮细胞的实验研究。中华烧伤杂志,2003 19:22-24
    69.方利君,付小兵,孙同柱等。在体诱导骨髓间充质干细胞分化为表皮细胞的初步观察。中华创伤杂志,2003 19:212-214
    70.Kateri A.Moore* and Ihor R.Lemischka.Stem Cells and Their Niches.Science 2006:311,1880-1885;
    71.Eyden B.Electron microscopy in the study of myofibroblastic lesions.Semin Diagn Pathol 2003;20(1):13-24
    72.Ehrlich HP,Desmouliere A,Diegelmann RF,et al.Morphological and immunochemical differences between keloid and hypertrophic scar.Am J Pathol.1994;145(1):105-113
    73.Zhao LR,Duang WM,Reyes M,et al.Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats.Exp Neurol.2002,174(1):11-20.
    74.Conger PA,Minguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.J Cell Physiol.1999,181(1):67-73.
    1.Wakayama T,Tabar V,Rodriguez I,et al.Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer[J].Science 2001;292(5517):740-3.
    2.Clarke D,Frisen J et al.Differentiation potential of adult stem cells[J].Current Opinion in Genet&Develop 2001;11:575-80.
    3.Young Chung,Irina Klimanskaya,Sandy Becker,et al.Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres.Nature 2006 439(1):216-219.
    4.Slack JM,Tosh D.Transdifferentiation and metaplasia—switching cell types.Curr Opin GenetDev,2001,11(5):581-586.
    5.Blau HM,Brazelton TR,Weimann JM.The evolving concept of a stem cell:entity or function? Cell,2001,105(7):829-841.
    6.Kazutoshi Takahashi,1 Koji Tanabe,1 Mari Ohnuki.et al Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors.Cell,2007,131 1-12,
    7.Junying Yu,Maxim A.Vodyanik,James A.Thomson et al.Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells Science 2007:Vol.318.no.5858,pp.1917-1920
    8.Minguell JJ,Erices A,Conget P,et al.Mesenchmal stem cells[J].Exp Biol Med(May wood) 2001;226(6):507-20.
    9.付小兵.利用成体干细胞,可塑性潜能重建受创皮肤解剖和生理功能研究的现状与展望[J].中华实验外科杂志2003;2(11):965-6.
    10.Jiang Y,et al.Pluripotency of mesenchymal stem cells derived fromadult marrow.Nature 2002;418:41-9.
    11. Toma JG, et al. Isolation of multipotent adult stem cells from thedermis of mammalian skin. Nat Cell Biol 2001;3:778-84.
    
    12. Korbling M, Estrov Z. Adult stem cells for tissue repair—a new therapeutic concept? N Engl J Med 2003;349:570-82.
    
    13. Rosenthal N. Prometheus's vulture and the stem-cell promise. N Engl JMed 2003;349:267.
    
    14. Bruder SP, Jaiswa IN, Haynesworth SE, et al. Growthikinetics, self renewal, and the osteogential of purified human mesenchymal stem cells during extensive subculativtion and following cryopreservation [J]. J Cell Biochem 1997;64(2):278.
    
    15. Preston SL, Alison MR, Forbes SJ, et al. The new stem cell biology:something for everyone [J]. J Clin Pathol: Mol Pathol 2003;56:86-96.
    
    16. Krause DS, TheiseND, Collector Ml, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell [J]. Cell 2001;105:369-77.
    
    17. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro [J]. Exp Neurol 2000;164 :247-56.
    
    18. Woodbury D, Schwarz EJ, Prockp DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neuron [J]. Neurosci Res 2000;61 (4):364-70.
    
    19. Li TY, Shu C, Wong CHY, et al. Plasticity of rat bone marrow derived 5-hydroxytryptamine sensitive neurons: dedifferentiation and redifferentiation [J]. Cell Biol Int 2004; 28 (11):801-7.
    
    20. Bruder SP, Jaiswal N, Ricalton NS, et al. Mesenchymal stem cells in osteoligy and applied bone regeneration [J]. Clinical Orthopaedics and Related Research 1998;355x:247-56.
    
    21. Jaiwal N, Hayneworth SE, Caplan Al, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro [J]. J Cell biochem 1997;64:295-312.
    
    22. Ryden M, Dicker A, Gotherstrom C, et al. Functional characterization of human mesenchymal stem cell-derived adipocytes [J]. Biochem Biophys Res Common 2003;311:391-407.
    
    23. Byers RJ, Brown J, Brandwood C, et al. Osteoblastic differentiation and mRNA analysis of stro-1-positive human bone marrow stromal cells using primary in vitro culture and poly (A) PCR [J]. J Pathol 1999;187: 374-81.
    
    24. Chen GS Liu D, Tadokoro M, et al. Chondrogenic differentiation of human mesenchymal stem cells cultured in a cobweb-like biodegradable scaffold[J]. Biochemical and Biophysical Research Communications 2004;322: 50-55.
    
    25. Wakitani S, Saito T, Caplan AI, et al. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine [J]. Muscle Nerve 1995;18:1417-26.
    
    26. Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro [J]. Stem Cells 2004;22(3):377-84.
    
    27. Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for celluar cardiomyoplasty: feasibility and potential clinical advantages [J]. J Thorac Cardiovasc Surg 2000;120(5):999-1005.
    
    28. Herzog EL, Chai L, Krause DS, et al. Plasticity of marrow-derived stem cells [J]. Blood 2003;102:3483-93.
    29.Pittenger MF,Mackay AM,Jaiswal SC,et al.Multilineage potential of adult human mesenchymal stem cells[J].Science 1999;284:143-7.
    30.Kadiyala S,Young RGS Thiede MA,et al.Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro[J].Cell Transplant 1997;6:125-34.
    31.Fortier LA,Nixon AJ,Williams J,et al.Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells [J].Am J Vet Res 1999;59(9):1182-7.
    32.Lisignoli q Remi ddi q Cattinil L,et al.An elevated number of differentiated ostelblast clonies can be obtained form rat bone marrow stromal cells using agradient isolation procedure[J].Connect Tissue Res 2001;42:49-57.
    33.Minguell JJ,Erices A,Conget PA,et al.Mesenchymal stem cells[J].Exp Biol Med 2001;226:507-20.
    34.Kitano Y,Radu A,Shabban A,et al.Selection enrichment and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells.Exp Hematol,2000;45:1460-1469.
    35.Prockop DJ.Marrow stromal cells as stem cells or nonhematopoietic tissues.Science,1997;276:71-75.
    36.Ghilzon R,Mccllon CA,Zohar R.Stromal mesenchymal progenitor cells in process citation[J].Leuk Lymphoma 1999;32:211-21.
    37.艾国平,粟永萍,门新泽,等.骨,髓间充质干细胞的分离和培养[J].第三军医大学学报2001:23(5):553-5.
    38.Deryugina EL,Muller S.Stromal cells in long-term cultures:keys to the elucidation of hematopoietic development?[J]Crit Rev Immunol 1993;13:115 — 50.
    
    39. Encina NR, Billotte Wq Hofmann MC, et al. Immunomagnetic isolation of osteoprgenitors from human bone marrow stroma [J] Lab Invest 1999;79:449-57.
    
    40. Gussoni E, Soneoka Y , Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999,401 (6751):390-394.
    
    41. Ramiya VK, Maraist M, Arfors KE, et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells.Nat Med, 2000, 6(3):278-282.
    
    42. Gratzner HO. Monoclonal antibody to 5-bromo-and -iodo-deoxyuridine:A new reagent for detection of DNA replication [J]. Science, 1982,218: 474
    
    43. Fischell TA, Carter AJ, Laird JR. The beta-particle-emitting radioisptope stent (isostent):animal studies and planned clinical trials [J]. Am J Cardiol, 1996, 78(suppl 3A):45-50
    
    44. Chandra P, Mildner B, Dann 0, et al. Influence of 4' -6' diamidino-2- phenylindole on the secondary structure and template activities of DNA and polydeoxynucleotides[J]. Mol Cell Biochem, 1977, 18(2-3):81-86
    
    45. Haas J, Bauer P, Rolfs A, et al. Immunocytochemical characterization of in vitro PKH26-labelled and intracerebrally transplanted neonatal cells [J].Acta Histochem, 2000, 102: 273-280
    
    46. Honig MG, Hume RI. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures[J]. J Cell Biol, 1986, 103: 171-187
    47. Shimomura 0, Johnson FH, Saiga Y, et al. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea[J]. J Cell Comp Physiol, 1962, 59: 223
    
    48. Matz MV, Fradkov AF, Labas YA, et al. Fluorescent protein from nonbioluminescent anthozoa species [J]. Nat Biotechnol, 1999, 17:69-973
    
    49. Modo M, Cash D, Mellodew K, et al. Tracking transplanted stem cell migrationusing bifunctional, contrast agent-enhanced, magnetic esonance imaging [J]. Neuroimage, 2002, 17: 803-811
    
    50. Doi K, Nibu K, Ishida H, et al. Adenovirus-mediated gene transfer in olfactory epithelium and olfactory bulb: a long-term study[J]. Ann Otol Rhinol Laryngol, 2005, 114: 629-633
    
    51. Grove JE, Lutzko C, Priller J, at al. Marrow-derived cells as vehicles fordelivery of gene therapy to pulmonary epithelium [J]. Am J Respir Cell Mol Biol, 2002, 27: 645-651
    
    52. Crain BJ, Tran SD, Mezey E. Transplanted human bone marrow cells generate new brain cells[J]. J Neurol Sci, 2005, 233(1-2):121-123
    
    53. Devine SM, Bartholomew AM, Mahmud N, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol, 2001、 29 (2):244-255.
    
    54. Saito T, Kuang JQ, Bittira B, et al. Xenotransplant cardiac chimera:immune tolerance of adult stem cells. Ann Thorac Surg, 2002, 74(1):19-24.
    
    55. Mosca . ID, Hendricks JK, Buyaner D, et al. Mesenchymal stem cells as vehicles forgene delivery. Clin Orthop, 2000, (379 Supply: 571-90
    
    56. Devine MJ, Mierisch CM, Jung E, et al. Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res, 2002, 20(6):1232-1239.
    
    57. Wang L, Li Y, Chen J, et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol, 2002, 30 (7):831-836.
    
    58. Kraitchman DL, Tatsumi M, Gilson WD, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 2005, 112 (10): 1451 — 1461.
    
    59. Martin BJ, Meyers J. Kuang JK, et al. Allogeneic mesenchymal stem cell engratment in the infarcted rat myocardium: timing and delivery route. Bone Marrow Transplant, 2002, 29: S 144.
    
    60. Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture.Leukemia., 2003, 17 (1):160-170.
    
    61. Pereira RF, O'Hara MD, Laptev AV, et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta [J]. Proc Natl Acad Sci USA 1998;95:1142-7.
    
    62. Barinag M. Fetal neuron grafts pave the way of stem cell trerapeis [J]. Science 2000;287(5457) :1421-2.
    
    63. KorblingM, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells [J]. N Engl J Med 2002;346:738-46.
    
    64. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium [J]. Nature 2001:410:701—5.
    
    65. PoulsomR, Forbes SJ, Hodivala-Dilke K, et al. Bone marrow contributes to renal parenchymal turnover and regeneration [J]. J Pathol 2001; 195:229-35.
    
    66. Young RT, Butler DL, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for a chines tendon repair [J]. J Orthop Res 1998;16: 406-13.
    
    67. Brazerlton TR, Rossi FMV Keshet GL, et al. From marrow to brain:expression of neuronal phenotypers in adult mice [J]. Science 2000;290(5497):1775.
    
    68. Ferrari q Cusella-DeAngelis q Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors [J]. Science 1998;279:1528-30.
    
    69. Azizi SA, Stokes D, Augelli BJ, et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocytegrafts [J]. Proc Natl Acad Sci USA 1998;95: 3908—13.
    
    70. Pereira RF, Hara MD, Halford KW, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone and lung in irradiated mice [J]. Proc Natl Acad Sci USA 1995;92(11):4857-61.
    
    71. E. Mansilla, G. H. Marin, H. Drago, et al. Bloodstream Cells Phenotypically Identical to Human Mesenchymal Bone Marrow Stem Cells Circulate in Large Amounts under the Influence of Acute Large Skin Damage: New Evidence for Their Use in Regenerative Medicine. Transplantation Proceedings, 2006 (38):967-969
    
    72. Stephen M. Bauer, MD, Lee J, et al. The bone marrow-derived endothelial progenitor cell response is impaired in delayed wound healing from ischemia . J Vasc Surg 2006; (43):134-41
    73.Murasawa S,Asahara T.Endothelial progenitor cells for asculogenesis.Physiology 2005;(20):36-42.
    74.Simman R,Craft C,McKinney B,et al.Improved survival of ischemic random skin flaps through the use of bone marrow nonhematopoietic stem cells and angiogenic growth factors.Ann Plast Surg.2005 54(5):546-52.
    75.Ito M,Liu Y,Yang Z,et al.Cotsarelis G Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis.Nat Med 2005(11):1351-1354
    76.Alphonsus K.S.Chong,Abel D.ing,James C.H.Gob,et al.Bone Marrow-Derived msenchymal Stem Cells Influence Early Tendon-Healing in a Rabbit Achilles Tendon Model J.Bone Joint Surg.Am.2007(89):74-81.
    77.Borue X,et al.Bone marrow-derived cells contribute to epithelial engraftment during wound healing.Am J Pathol 2004;165:1767-72.
    78.方利君,付小兵,孙同柱,等.在体诱导骨髓间充质干细胞分化为表皮细胞的初步观察[J].中华创伤杂志2003:19:2122-14.
    79.Peacock E.Wound repair.Philadelphia7 WB Saunders;1984.
    80.Tumbar T,et al.Defining the epithelial stem cell niche in skin.Science 2004;303:359- 63.
    81.Taylor G,et al.Involvement of follicular stem cells in forming not only the follicle but also the epidermis.Cell 2000;102:451- 61.
    82.Morris RJ,et al.Capturing and profiling adult hair follicle stem cells.Nat Biotechnol 2004;22:411-7.
    83.Han SK,et al.Potential of human bone marrow stromal cells to accelerate wound healing in vitro.Ann Plast Surg 2005;55:414- 9.
    84. Falanga V. Evaluation of bilayered cell therapy for full thickness excision wounds: a multicenter, prospective, randomized, controlled trial. Wound Repair Regen 2005;13:A12.
    
    85. Mikako Sasaki, Riichiro Abe, Yasuyuki Fujita, et al. Mesenchymal Stem Cells Are Recruited into Wounded Skin and Contribute to Wound Repair by Transdifferentiation into Multiple Skin Cell Type . The Journal of Immunology, 2008, 180: 2581-2587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700