用户名: 密码: 验证码:
人骨髓间充质干细胞及其成骨分化过程组蛋白H3K9位赖氨酸表观修饰和基因表达的基因组水平分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间充质干细胞(MSCs)是一种非胚胎来源的成体干细胞,并且具有自我更新能力和分化的多潜能性。目前研究表明,染色质的表观修饰对于干细胞的状态至关重要。本研究采用启动子芯片(ChIP-on-chip)和基因表达谱芯片(expression microarray)技术,首先对人骨髓来源的间充质干细胞的组蛋白H3-Lys9表观修饰和基因表达状态在基因组水平上进行了分析鉴定,结果表明人骨髓间充质干细胞基因启动子区H3-Lys9的乙酰化和二甲基化状态与基因的表达水平密切相关。另外,我们发现这些受启动子区H3-Lys9表观修饰状态调控的基因与一系列维持细胞分化多潜能性的重要的生物学功能通路相关,如细胞信号相关通路,细胞周期相关通路以及细胞因子相关通路等。而后又在人骨髓来源的间充质干细胞成骨分化过程中在基因组水平上对组蛋白H3-Lys9表观修饰和基因表达变化情况进行分析。我们发现在人骨髓来源的间充质干细胞成骨分化过程中组蛋白H3-Lys9整体乙酰化水平下降,而二甲基化水平显著上升。而且我们还鉴定出在人骨髓来源的间充质干细胞成骨分化过程中mRNA表达水平受表观修饰调控的基因,而这部分基因与一系列细胞分化过程中所必需的生物学事件相关,如细胞周期停滞、细胞内骨架重塑等。此外我们还发现维生素D受体可能在间充质干细胞成骨分化过程中参与到H3-Lys9去酰化和甲基化,进而使所调控的基因发生转录抑制。
     由此我们认为基因启动子区H3-Lys9乙酰化和二甲基化所控制的基因开关,以及由此引起的某些细胞通路的激活与关闭,不仅在维持人骨髓间充质干细胞的自我更新和增殖状态过程中发挥着重要的作用;而且对于其成骨分化过程的顺利推进同样至关重要
Mesenchymal stem cells (MSCs) of non-embryonic origins possess the self-renewal and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms such as histone modifications could be critical for determining the fate of stem cells. In this study, full human genome promoter microarrays and expression microarrays were used to examine the roles of histone modifications (H3-Lys9 acetylation and dimethylation) in regulation of gene expression in human bone marrow MSCs and upon MSC osteogenic differentiation. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. Our results also revealed that the enrichment of H3-Lys9 acetylation was decreased globally at the gene promoters, whereas the number of promoters enriched with H3-Lys9 dimethylation was increased evidently upon osteogenic induction. By combined analysis of data from both ChIP-on-chip and expression microarrays, a number of differentially expressed genes monitored by changes of H3-Lys9 acetylation and/or dimethylation were identified, implicating their roles in several biological events, such as cell cycle withdraw and cytoskeleton reconstruction that were essential to differentiation process. In addition, our results also showed that vitamin D receptor played a trans-repression role via alternations of H3K9Ac and H3K9Me2, upon MSC osteogenic differentiation. Our data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal, multi-potency and differentiation process. This study provides information about genes that are important for MSC self-renewing and osteogenic differentiation, as well as the epigenetic mechanisms that regulate their expression.
引文
1. Salvagiotto, G., et al., Molecular profiling reveals similarities and differences between primitive subsets of hematopoietic cells generated in vitro from human embryonic stem cells and in vivo during embryogenesis. Exp Hematol, 2008. 36(10): p. 1377-89.
    2. Paquette, J.A., et al., Assessment of the Embryonic Stem Cell Test and application and use in the pharmaceutical industry. Birth Defects Res B Dev Reprod Toxicol, 2008. 83(2): p. 104-11.
    3. Zwaka, T.P. and J.A. Thomson, A germ cell origin of embryonic stem cells? Development, 2005. 132(2): p. 227-33.
    4. Zwaka, T.P. and J.A. Thomson, Homologous recombination in human embryonic stem cells. Nat Biotechnol, 2003. 21(3): p. 319-21.
    5. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20.
    6. Yu, J. and J.A. Thomson, Pluripotent stem cell lines. Genes Dev, 2008. 22(15): p. 1987-97.
    7. Tremoleda, J.L., et al., Bone tissue formation from human embryonic stem cells in vivo. Cloning Stem Cells, 2008. 10(1): p. 119-32.
    8. Thomson, A.J. and J. McWhir, Biomedical and agricultural applications of animal transgenesis. Mol Biotechnol, 2004. 27(3): p. 231-44.
    9. Sathananthan, A.H. and A. Trounson, Human embryonic stem cells and their spontaneous differentiation. Ital J Anat Embryol, 2005. 110(2 Suppl 1): p. 151-7.
    10. Peura, T.T., A. Bosman, and T. Stojanov, Derivation of human embryonic stem cell lines. Theriogenology, 2007. 67(1): p. 32-42.
    11. Thomson, J.M., et al., Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev, 2006. 20(16): p. 2202-7.
    12. Lerou, P.H. and G.Q. Daley, Therapeutic potential of embryonic stem cells. Blood Rev, 2005. 19(6): p. 321-31.
    13. Kameda, T. and J.A. Thomson, Human ERas gene has an upstream premature polyadenylation signal that results in a truncated, noncoding transcript. Stem Cells, 2005. 23(10): p. 1535-40.
    14. He, J.Q., et al., Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res, 2003. 93(1): p. 32-9.
    15. Ben-Porath, I., et al., An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet, 2008. 40(5): p. 499-507.
    16. Thomson, J.A. and J.S. Odorico, Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol, 2000. 18(2): p. 53-7.
    17. Piedrahita, J.A., et al., Advances in the generation of transgenic pigs via embryo-derived and primordial germ cell-derived cells. J Reprod Fertil Suppl, 1997. 52: p. 245-54.
    18. First, N.L. and J. Thomson, From cows stem therapies? Nat Biotechnol, 1998. 16(7): p. 620-1.
    19. Evan, E.E., et al., Sexual health and self-esteem in adolescents and young adults with cancer. Cancer, 2006. 107(7 Suppl): p. 1672-9.
    20. Bjorklund, L.M., et al., Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A, 2002. 99(4): p. 2344-9.
    21. Edmondson, S.D., et al., (2S,3S)-3-Amino-4-(3,3-difluoropyrrolidin-1-yl)-N,N-dimethyl-4-oxo-2-(4-[1 ,2,4]triazolo[1,5-a]-pyridin-6-ylphenyl)butanamide: a selective alpha-amino amide dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem, 2006. 49(12): p. 3614-27.
    22. Lumelsky, N., et al., Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 2001. 292(5520): p. 1389-94.
    23. Conget, P.A. and J.J. Minguell, Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999. 181(1): p. 67-73.
    24. Stewart, C.L., Formation of viable chimaeras by aggregation between teratocarcinomas and preimplantation mouse embryos. J Embryol Exp Morphol, 1982. 67: p. 167-79.
    25. Lin, H.T., et al., Characterization of pancreatic stem cells derived from adult human pancreas ducts by fluorescence activated cell sorting. World J Gastroenterol, 2006. 12(28): p. 4529-35.
    26. Izadpanah, R., et al., Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev, 2005. 14(4): p. 440-51.
    27. Baksh, D., L. Song, and R.S. Tuan, Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med, 2004. 8(3): p. 301-16.
    28. Monticone, M., et al., Gene expression profile of human bone marrow stromal cells determined by restriction fragment differential display analysis. J Cell Biochem, 2004. 92(4): p. 733-44.
    29. Trzaska, K.A., E.V. Kuzhikandathil, and P. Rameshwar, Specification of a dopaminergic phenotype from adult human mesenchymal stem cells. Stem Cells, 2007. 25(11): p. 2797-808.
    30. Ohgushi, H. and A.I. Caplan, Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res, 1999. 48(6): p. 913-27.
    31. Bellows, C.G., A. Ciaccia, and J.N. Heersche, Osteoprogenitor cells in cell populations derived from mouse and rat calvaria differ in their response to corticosterone, cortisol, and cortisone. Bone, 1998. 23(2): p. 119-25.
    32. Bruder, S.P., N. Jaiswal, and S.E. Haynesworth, Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem, 1997. 64(2): p. 278-94.
    33. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
    34. Ferraru, R., Prognosis following a second whiplash injury (Inj 2000;31:249-51). Injury, 2001. 32(3): p. 258-9; author reply 260.
    35. Brazelton, T.R., et al., From marrow to brain: expression of neuronal phenotypes in adult mice. Science, 2000. 290(5497): p. 1775-9.
    36. Sanchez-Ramos, J., et al., Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000. 164(2): p. 247-56.
    37. Nuttall, M.E., et al., Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res, 1998. 13(3): p. 371-82.
    38. Ishida, Y. and J.N. Heersche, Progesterone stimulates proliferation and differentiation of osteoprogenitor cells in bone cell populations derived from adult female but not from adult male rats. Bone, 1997. 20(1): p. 17-25.
    39. Lee, K., et al., Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther, 2001. 3(6): p. 857-66.
    40. Dao, M.A. and J.A. Nolta, Use of the bnx/hu xenograft model of human hematopoiesis to optimize methods for retroviral-mediated stem cell transduction (Review). Int J Mol Med, 1998. 1(1): p. 257-64.
    41. James, I.E., et al., Human osteoclastoma-derived stromal cells: correlation of the ability to form mineralized nodules in vitro with formation of bone in vivo. J Bone Miner Res, 1996. 11(10): p. 1453-60.
    42. Lazarus, H.M., et al., Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant, 1995. 16(4): p. 557-64.
    43. Pereira, R.F., et al., Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci U S A, 1998. 95(3): p. 1142-7.
    44. Ahmad, K., The end in sight. Mol Cell, 2004. 15(4): p. 494-5.
    45. Cuthbert, G.L., et al., Histone deimination antagonizes arginine methylation. Cell, 2004. 118(5): p. 545-53.
    46. Wolffe, A.P., Chromatin remodeling regulated by steroid and nuclear receptors. Cell Res, 1997. 7(2): p. 127-42.
    47. Wachsman, J.T., DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res, 1997. 375(1): p. 1-8.
    48. Eladad, S., et al., Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum Mol Genet, 2005. 14(10): p. 1351-65.
    49. de la Serna, I.L., et al., MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol Cell Biol, 2005. 25(10): p. 3997-4009.
    50. Cai, Y., et al., The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J Biol Chem, 2005. 280(14): p. 13665-70.
    51. Furumatsu, T., et al., Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem, 2005. 280(42): p. 35203-8.
    52. Ling, Y., et al., Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res, 2004. 32(2): p. 598-610.
    53. Kristeleit, R., et al., Histone modification enzymes: novel targets for cancer drugs. Expert Opin Emerg Drugs, 2004. 9(1): p. 135-54.
    54. Kelly, T.L. and J.M. Trasler, Reproductive epigenetics. Clin Genet, 2004. 65(4): p.247-60.
    55. Karagiannis, T.C., A.J. Smith, and A. El' Osta, Radio- and chemo-sensitization of human erythroleukemic K562 cells by the histone deacetylase inhibitor Trichostatin A. Hell J Nucl Med, 2004. 7(3): p. 184-91.
    56. Nowak, S.J. and V.G. Corces, Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet, 2004. 20(4): p. 214-20.
    57. Morey, L., et al., The histone fold domain of Cse4 is sufficient for CEN targeting and propagation of active centromeres in budding yeast. Eukaryot Cell, 2004. 3(6): p. 1533-43.
    58. Tollefsbol, T.O., Methods of epigenetic analysis. Methods Mol Biol, 2004. 287: p. 1-8.
    59. Paranjape, S.M., R.T. Kamakaka, and J.T. Kadonaga, Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem, 1994. 63: p. 265-97.
    60. Cheng, X., R.E. Collins, and X. Zhang, Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct, 2005. 34: p. 267-94.
    61. Yan, L., X. Yang, and N.E. Davidson, Role of DNA methylation and histone acetylation in steroid receptor expression in breast cancer. J Mammary Gland Biol Neoplasia, 2001. 6(2): p. 183-92.
    62. Wolffe, A.P., Transcriptional regulation in the context of chromatin structure. Essays Biochem, 2001. 37: p. 45-57.
    63. Davie, J.R., Covalent modifications of histones: expression from chromatin templates. Curr Opin Genet Dev, 1998. 8(2): p. 173-8.
    64. Allfrey, V.G., R. Faulkner, and A.E. Mirsky, Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A, 1964. 51: p. 786-94.
    65. Kim, J.H., et al., Histone cross-linking by transglutaminase. Biochem Biophys Res Commun, 2002. 293(5): p. 1453-7.
    66. Jones, P.A., DNA methylation and cancer. Oncogene, 2002. 21(35): p. 5358-60.
    67. Roth, S.Y., J.M. Denu, and C.D. Allis, Histone acetyltransferases. Annu Rev Biochem, 2001. 70: p. 81-120.
    68. Khorasanizadeh, S., The nucleosome: from genomic organization to genomic regulation. Cell, 2004. 116(2): p. 259-72.
    69. Workman, J.L. and R.E. Kingston, Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem, 1998. 67: p. 545-79.
    70. Snowden, A.W., et al., Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol, 2002. 12(24): p. 2159-66.
    71. Smith, C.M., et al., Heritable chromatin structure: mapping "memory" in histones H3 and H4. Proc Natl Acad Sci U S A, 2002. 99 Suppl 4: p. 16454-61.
    72. Carrozza, M.J., et al., The diverse functions of histone acetyltransferase complexes. Trends Genet, 2003. 19(6): p. 321-9.
    73. Varga-Weisz, P.D. and J.Z. Dalgaard, A mark in the core: silence no more! Mol Cell, 2002. 9(6): p. 1154-6.
    74. Turner, B.M., Cellular memory and the histone code. Cell, 2002. 111(3): p. 285-91.
    75. Berger, S.L., Histone modifications in transcriptional regulation. Curr Opin GenetDev, 2002. 12(2): p. 142-8.
    76. Emre, N.C. and S.L. Berger, Histone post-translational modifications regulate transcription and silent chromatin in Saccharomyces cerevisiae. Ernst Schering Res Found Workshop, 2006(57): p. 127-53.
    77. Marmorstein, R. and S.L. Berger, Structure and function of bromodomains in chromatin-regulating complexes. Gene, 2001. 272(1-2): p. 1-9.
    78. Turner, B.M., A.J. Birley, and J. Lavender, Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell, 1992. 69(2): p. 375-84.
    79. He, H. and N. Lehming, Global effects of histone modifications. Brief Funct Genomic Proteomic, 2003. 2(3): p. 234-43.
    80. Strahl, B.D. and C.D. Allis, The language of covalent histone modifications. Nature, 2000. 403(6765): p. 41-5.
    81. Clements, A., et al., Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell, 2003. 12(2): p. 461-73.
    82. Chakrabarti, S.K., et al., Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J Biol Chem, 2003. 278(26): p. 23617-23.
    83. Wade, P.A. and N. Kikyo, Chromatin remodeling in nuclear cloning. Eur J Biochem, 2002. 269(9): p. 2284-7.
    84. Venditti, S., et al., Genetic remodeling and transcriptional remodeling of subtelomeric heterochromatin are different. Biochemistry, 2002. 41(15): p. 4901-10.
    85. Thomson, S., L.C. Mahadevan, and A.L. Clayton, MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin Cell Dev Biol, 1999. 10(2): p. 205-14.
    86. Cheung, P., C.D. Allis, and P. Sassone-Corsi, Signaling to chromatin through histone modifications. Cell, 2000. 103(2): p. 263-71.
    87. Akhtar, A. and P.B. Becker, Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell, 2000. 5(2): p. 367-75.
    88. Zhang, Y. and D. Reinberg, Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev, 2001. 15(18): p. 2343-60.
    89. Kouzarides, T., Histone methylation in transcriptional control. Curr Opin Genet Dev, 2002. 12(2): p. 198-209.
    90. Nielsen, P.R., et al., Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature, 2002. 416(6876): p. 103-7.
    91. Grant, P.A., A tale of histone modifications. Genome Biol, 2001. 2(4): p. REVIEWS0003.
    92. Thiel, G., M. Lietz, and M. Hohl, How mammalian transcriptional repressors work. Eur J Biochem, 2004. 271(14): p. 2855-62.
    93. Boggs, B.A., et al., Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet, 2002. 30(1): p. 73-6.
    94. Heard, E., et al., Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell, 2001. 107(6): p. 727-38.
    95. Edmondson, D.G., M.M. Smith, and S.Y. Roth, Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev, 1996. 10(10): p. 1247-59.
    96. Kuo, W.N., J.M. Kocis, and J.K. Webb, Protein denitration/modification by Escherichia coli nitrate reductase and mammalian cytochrome P-450 reductase. Front Biosci, 2002. 7: p. a9-14.
    97. Li, E., Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet, 2002. 3(9): p. 662-73.
    98. Cosma, M.P., T. Tanaka, and K. Nasmyth, Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell, 1999. 97(3): p. 299-311.
    99. Grozinger, C.M., et al., Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem, 2001. 276(42): p. 38837-43.
    100. Spotswood, H.T. and B.M. Turner, An increasingly complex code. J Clin Invest, 2002. 110(5): p. 577-82.
    101. Tsai, S.C. and E. Seto, Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem, 2002. 277(35): p. 31826-33.
    102. Galasinski, S.C., et al., Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem, 2002. 277(22): p. 19618-26.
    103. Tsai, S.C., et al., Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet, 2000. 26(3): p. 349-53.
    104. Kornberg, R.D. and Y. Lorch, Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 1999. 98(3): p. 285-94.
    105. Fischle, W., Y. Wang, and C.D. Allis, Histone and chromatin cross-talk. Curr Opin Cell Biol, 2003. 15(2): p. 172-83.
    106. Peterson, C.L. and M.A. Laniel, Histones and histone modifications. Curr Biol, 2004. 14(14): p. R546-51.
    107. Margueron, R., P. Trojer, and D. Reinberg, The key to development: interpreting the histone code? Curr Opin Genet Dev, 2005. 15(2): p. 163-76.
    108. Bannister, A.J., R. Schneider, and T. Kouzarides, Histone methylation: dynamic or static? Cell, 2002. 109(7): p. 801-6.
    109. Loidl, P., A plant dialect of the histone language. Trends Plant Sci, 2004. 9(2): p. 84-90.
    110. Rea, S., et al., Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000. 406(6796): p. 593-9.
    111. Bannister, A.J., et al., Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001. 410(6824): p. 120-4.
    112. Fischle, W., et al., Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev, 2003. 17(15): p. 1870-81.
    113. Eissenberg, J.C., et al., Selected topics in chromatin structure. Annu Rev Genet, 1985. 19: p. 485-536.
    114. Tachibana, M., et al., G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis.Genes Dev, 2002. 16(14): p. 1779-91.
    115. Ayyanathan, K., et al., Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev, 2003. 17(15): p. 1855-69.
    116. Elgin, S.C. and S.I. Grewal, Heterochromatin: silence is golden. Curr Biol, 2003. 13(23): p. R895-8.
    117. Partridge, J.F., B. Borgstrom, and R.C. Allshire, Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev, 2000. 14(7): p. 783-91.
    118. Wiener-Ogilvie, S., et al., Do practices comply with key recommendations of the British Asthma Guideline? If not, why not? Prim Care Respir J, 2007. 16(6): p. 369-77.
    119. Grewal, S.I. and S.C. Elgin, Heterochromatin: new possibilities for the inheritance of structure. Curr Opin Genet Dev, 2002. 12(2): p. 178-87.
    120. Kondo, Y., L. Shen, and J.P. Issa, Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol, 2003. 23(1): p. 206-15.
    121. Suehiro, Y., et al., Epigenetic-genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways in colorectal carcinoma. Clin Cancer Res, 2008. 14(9): p. 2560-9.
    122. Lietz, M., M. Hohl, and G. Thiel, RE-1 silencing transcription factor (REST) regulates human synaptophysin gene transcription through an intronic sequence-specific DNA-binding site. Eur J Biochem, 2003. 270(1): p. 2-9.
    123. Nakayama, J., et al., Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science, 2001. 292(5514): p. 110-3.
    124. Curran, D.P., Chemistry. Fluorous tags unstick messy chemical biology problems. Science, 2008. 321(5896): p. 1645-6.
    125. de Leon, J., Pharmacogenomics: The Promise of Personalized Medicine for CNS Disorders. Neuropsychopharmacology, 2008.
    126. Suzuki, A., et al., Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology, 2008.
    127. Mihara, M., T. Itoh, and T. Izawa, In silico identification of short nucleotide sequences associated with gene expression of pollen development in rice. Plant Cell Physiol, 2008. 49(10): p. 1451-64.
    128. Oberthuer, A., et al., Subclassification and Individual Survival Time Prediction from Gene Expression Data of Neuroblastoma Patients by Using CASPAR. Clin Cancer Res, 2008. 14(20): p. 6590-6601.
    129. Yuan, J., et al., In silico comparison of transcript abundances during Arabidopsis thaliana and Glycine max resistance to Fusarium virguliforme. BMC Genomics, 2008. 9 Suppl 2: p. S6.
    130. Kobayashi, H., E.M. Tan, and S.E. Fleming, Acetylation of histones associated with the p21WAF1/CIP1 gene by butyrate is not sufficient for p21WAF1/CIP1 gene transcription in human colorectal adenocarcinoma cells. Int J Cancer, 2004. 109(2): p. 207-13.
    131. Yang, Y., et al., The histone code regulating expression of the imprinted mouse Igf2r gene. Endocrinology, 2003. 144(12): p. 5658-70.
    132. Nicolas, E., C. Roumillac, and D. Trouche, Balance between acetylation and methylation of histone H3 lysine 9 on the E2F-responsive dihydrofolate reductase promoter. Mol Cell Biol, 2003. 23(5): p. 1614-22.
    133. Jeukens, J., et al., Candidate genes and adaptive radiation: Insights from transcriptional adaptation to the limnetic niche among coregonine fishes (Coregonus spp., Salmonidae). Mol Biol Evol, 2008.
    134. Ott, H., et al., Clinical usefulness of microarray-based IgE detection in children with suspected food allergy. Allergy, 2008. 63(11): p. 1521-8.
    135. Ryge, J., et al., Gene expression profiling of two distinct neuronal populations in the rodent spinal cord. PLoS ONE, 2008. 3(10): p. e3415.
    136. Cao, Y., et al., Loss of Annexin A1 Expression in Breast Cancer Progression. Appl Immunohistochem Mol Morphol, 2008.
    137. Dozmorov, M.G., et al., From microarray to biology: an integrated experimental, statistical and in silico analysis of how the extracellular matrix modulates the phenotype of cancer cells. BMC Bioinformatics, 2008. 9 Suppl 9: p. S4.
    138. Lee, T., et al., Testing for treatment effects on gene ontology. BMC Bioinformatics, 2008. 9 Suppl 9: p. S20.
    139. Shi, L., et al., The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies. BMC Bioinformatics, 2008. 9 Suppl 9: p. S10.
    140. Roig, I. and S. Keeney, Probing meiotic recombination decisions. Dev Cell, 2008. 15(3): p. 331-2.
    141. Chaudhary, B., et al., Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol Dev, 2008. 10(5): p. 567-82.
    142. Chen, X., et al., Supervised Principal Component Analysis for Gene Set Enrichment of Microarray Data with Continuous or Survival Outcomes. Bioinformatics, 2008.
    143. Chiu, C.Y., et al., Identification of cardioviruses related to Theiler's murine encephalomyelitis virus in human infections. Proc Natl Acad Sci U S A, 2008. 105(37): p. 14124-9.
    144. Chou, M.Y., et al., Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses. J Exp Biol, 2008. 211(Pt 19): p. 3077-84.
    145. Chua, Y.L., et al., Microarray analysis of chromatin-immunoprecipitated DNA identifies specific regions of tobacco genes associated with acetylated histones. Plant J, 2004. 37(6): p. 789-800.
    146. Kaeser, M.D. and R.D. Iggo, Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci U S A, 2002. 99(1): p. 95-100.
    147. Soloff, M.S., et al., Interleukin-1-induced NF-kappaB recruitment to the oxytocin receptor gene inhibits RNA polymerase II-promoter interactions in cultured human myometrial cells. Mol Hum Reprod, 2006. 12(10): p. 619-24.
    148. Lee, H., et al., Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol, 2006. 26(14): p. 5259-69.
    149. Armstrong, K., C.N. Robson, and H.Y. Leung, NF-kappaB activation upregulates fibroblast growth factor 8 expression in prostate cancer cells. Prostate, 2006. 66(11): p. 1223-34.
    150. Pollicino, T., et al., Hepatitis B virus replication is regulated by the acetylation status of hepatitis B virus cccDNA-bound H3 and H4 histones. Gastroenterology, 2006.130(3): p. 823-37.
    151. Jin, C. and G. Felsenfeld, Distribution of histone H3.3 in hematopoietic cell lineages. Proc Natl Acad Sci U S A, 2006. 103(3): p. 574-9.
    152. Nishida, H., et al., Comparative analysis of expression of histone H2a genes in mouse. BMC Genomics, 2005. 6: p. 108.
    153. Ehrnsperger, A., et al., Epigenetic regulation of the dendritic cell-marker gene ADAM19. Biochem Biophys Res Commun, 2005. 332(2): p. 456-64.
    154. Kwon, Y.S., et al., Sensitive ChIP-DSL technology reveals an extensive estrogen receptor alpha-binding program on human gene promoters. Proc Natl Acad Sci U S A, 2007. 104(12): p. 4852-7.
    155. Garcia-Bassets, I., et al., Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell, 2007. 128(3): p. 505-18.
    156. Gamble, M.J. and W.L. Kraus, Visualizing the histone code on LSD1. Cell, 2007. 128(3): p. 433-4.
    157. Reyes, M., et al., Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 2001. 98(9): p. 2615-25.
    158. Boulikas, T., Phosphorylation of transcription factors and control of the cell cycle. Crit Rev Eukaryot Gene Expr, 1995. 5(1): p. 1-77.
    159. Lassar, A.B., S.X. Skapek, and B. Novitch, Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol, 1994. 6(6): p. 788-94.
    160. Hofbauer, R. and D.T. Denhardt, Cell cycle-regulated and proliferation stimulus-responsive genes. Crit Rev Eukaryot Gene Expr, 1991. 1(4): p. 247-300.
    161. Rasmussen, T.P., Embryonic stem cell differentiation: a chromatin perspective. Reprod Biol Endocrinol, 2003. 1: p. 100.
    162. Brero, A., et al., Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. J Cell Biol, 2005. 169(5): p. 733-43.
    163. Sabbattini, P., et al., A novel role for the Aurora B kinase in epigenetic marking of silent chromatin in differentiated postmitotic cells. Embo J, 2007. 26(22): p. 4657-69.
    164. Lachner, M., R.J. O'Sullivan, and T. Jenuwein, An epigenetic road map for histone lysine methylation. J Cell Sci, 2003. 116(Pt 11): p. 2117-24.
    165. Cheskis, B. and L.P. Freedman, Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers. Mol Cell Biol, 1994. 14(5): p. 3329-38.
    166. Sierra, J., et al., Regulation of the bone-specific osteocalcin gene by p300 requires Runx2/Cbfa1 and the vitamin D3 receptor but not p300 intrinsic histone acetyltransferase activity. Mol Cell Biol, 2003. 23(9): p. 3339-51.
    167. Yuan, W., et al., 1,25-dihydroxyvitamin D3 suppresses renin gene transcription by blocking the activity of the cyclic AMP response element in the renin gene promoter. J Biol Chem, 2007. 282(41): p. 29821-30.
    168. Kato, S., et al., Ligand-induced transrepressive function of VDR requires a chromatin remodeling complex, WINAC. J Steroid Biochem Mol Biol, 2007. 103(3-5): p. 372-80.
    169. Fujiki, R., et al., Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. Embo J, 2005. 24(22): p. 3881-94.
    170. Wolthuis, R., et al., Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol Cell, 2008. 30(3): p. 290-302.
    171. Yin, S., et al., Cdc20 is required for the anaphase onset of the first meiosis but not the second meiosis in mouse oocytes. Cell Cycle, 2007. 6(23): p. 2990-2.
    172. Izawa, I., et al., Densin-180 interacts with delta-catenin/neural plakophilin-related armadillo repeat protein at synapses. J Biol Chem, 2002. 277(7): p. 5345-50.
    173. Medina, M., et al., Hemizygosity of delta-catenin (CTNND2) is associated with severe mental retardation in cri-du-chat syndrome. Genomics, 2000. 63(2): p. 157-64.
    174. Dai, B. and T.P. Rasmussen, Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells. Stem Cells, 2007. 25(10): p. 2567-74.
    175. Miao, F., et al., Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J Biol Chem, 2007. 282(18): p. 13854-63.
    176. Struhl, K., Histone acetylation and transcriptional regulatory mechanisms. Genes Dev, 1998. 12(5): p. 599-606.
    177. Goll, M.G. and T.H. Bestor, Histone modification and replacement in chromatin activation. Genes Dev, 2002. 16(14): p. 1739-42.
    178. Neuhuber, B., et al., Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res, 2004. 77(2): p. 192-204.
    179. Kratchmarova, I., et al., Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science, 2005. 308(5727): p. 1472-7.
    180. Jian, H., et al., Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev, 2006. 20(6): p. 666-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700