用户名: 密码: 验证码:
转正、反义磷脂酶Dα基因和Bt毒蛋白基因毛白杨的获得及其抗性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物生长发育经常遇到的逆境以干旱、盐碱、虫害等最为严重,在干旱、盐碱等逆境胁迫下会导致植物的渗透胁迫和氧化胁迫伤害,使植物细胞膜的结构和功能遭到破坏,以致光合作用和信号转导作用大大降低。如果通过基因工程的手段将植物细胞膜上起到重要信号传递作用的磷脂酶Dα(Phospholipase Dα,PLDα)基因导入植物,发挥抗氧化、渗透调节功能,将能有效的提高植物抗旱、耐盐等抗逆能力。毛白杨是我国特有的乡土树种,是我国北方地区重要的造林和平原绿化树种。随着杨树人工林面积的不断扩大,虫害问题越来越突出,危害严重,利用基因工程技术培育抗虫杨树新树种,是防治害虫的有效手段。本研究将正、反义PLDα基因分别转入毛白杨,进行了基因功能的鉴定。在此基础上,选取超表达PLDα基因耐盐、抗旱性较强的毛白杨优良株系,导入具有抗虫功能的Bt毒蛋白基因,培育获得了既耐盐、抗旱又抗虫的多抗毛白杨新品种。转基因植株的获得为探讨植物抗逆的生理和分子机制以及抗性转基因杨树的实际应用打下良好的基础。主要实验结果如下:
     1.正、反义PLDα基因转化毛白杨及基因功能的鉴定
     (1)利用农杆菌介导的叶圆盘转化法分别将正、反义PLDα基因转入毛白杨。在含有卡那霉素的培养基上筛选,获得转正义PLDα基因的抗性植株45个株系,转反义PLDα基因的抗性植株49个株系。
     (2)微量提取植物总DNA进行PCR检测,结果显示,在含有卡那霉素培养基上筛选的抗性植株(除转反义基因1株外)均扩增出约780bp大小的目的带,初步证明卡那霉素抗性植株为转基因植株。
     (3)大量提取转正、反义PLDα基因植株的总DNA分别用限制型内切酶XbaI和BamHI酶切,Southern blot分析结果显示,PCR检测结果呈阳性的毛白杨植株均检测到信号,证明目的基因已经整合到杨树的染色体中,并且有1~5个拷贝数。
     (4)Northern blot分析结果显示,各转正义PLDα基因植株均检测到明显的杂交信号,转反义PLDα基因植株杂交信号弱于野生型,表明正义PLDα基因在转录水平进行了有效的超表达,反义基因抑制了植物内源PLDα基因的表达。
     (5)试管苗的耐盐抗旱性实验表明,在含有不同浓度的NaCl(0,68,102,136,172mmol/L)和甘露醇(0,150,200,250,300mmol/L)的培养基上,转正义PLDα基因杨树的生根率和平均根长都明显高于野生型和转反义PLDα基因的植株,表明转正义PLDα基因杨树的耐盐、抗旱能力较强。
     (6)干旱或盐胁迫处理条件下,不同转基因植株的Northern blot分析结果显示:经过干旱或盐胁迫处理的野生型和转正义PLDα基因植株的信号都强于正常浇水的植株;在正常浇水的转反义PLDα基因植株中检测不到信号,而干旱或盐处理植株中都检测到信号。表明干旱或盐胁迫可以诱导植物PLDα基因的表达,或者使PLDα基因的表达量有不同程度的提高,也说明转反义PLDα基因并没有完全抑制内源PLDα的转录。
     (7)在20% PEG6000模拟干旱条件下,转正义PLDα基因杨树的质膜损伤程度小于野生型,而转反义PLDα基因杨树的质膜损伤程度大于野生型;同时在200mmol/L NaCl模拟盐害条件下,也得出了类似上述结果。表明转正义PLDα基因提高了植物的抗旱和耐盐性,而转反义PLDα基因反而降低了植物的耐盐、抗旱能力。
     (8)杨树叶片细胞形态学分析得知,正常条件下细胞膜系统完整,细胞膜,线粒体膜,叶绿体膜,叶绿体基粒片层等膜系统和结构都比较规则。经过200mmol/LNaCl或20%PEG6000处理以后,转基因和野生型植株细胞膜系统都有不同程度的破坏;野生型植株细胞膜受到破坏,叶绿体变圆,外膜受到损伤,线粒体破坏严重,膜不完整;转正义PLDα基因植株细胞受到的破坏较轻,线粒体外膜有点损伤,细胞膜、叶绿体膜和液泡膜还比较完整;而转反义PLDα基因植株细胞膜系统破坏最严重,叶绿体变圆,基粒片层错乱,叶绿体外膜、细胞膜和液泡膜都受到严重的损伤。由此推测,转正义PLDα基因植株中PLDα基因的超表达,对渗透胁迫条件下植物细胞膜系统有保护作用。
     2.耐盐、抗旱、抗虫多抗转基因毛白杨的获得
     (1)构建了包含Bt毒蛋白基因的植物表达载体pBT1946,内含有抗除草剂(bar)基因,作为选择性标记基因。叶片分化实验确定适宜的筛选压力为PPT浓度0.4mg/L。
     (2)选取具有较强耐盐、抗旱能力的转正义PLDα基因毛白杨9号株系(S9)作为受体材料,利用农杆菌介导法导入Bt毒蛋白基因(cry1Ab),在含有除草剂(PPT)的培养基上筛选获得70个抗性株系。
     (3)微量提取植物总DNA进行PCR检测,结果显示,在含有除草剂培养基上筛选获得的抗性植株,有50个株系扩增出约500bp大小的目的带,初步表明外源基因已整合到这些植株的染色体基因组中。
     (4)大量提取转Bt毒蛋白基因植株的总DNA,用限制型内切酶HindⅢ酶切。Southern blot分析结果显示,PCR检测结果呈阳性的毛白杨植株均检测到信号,证明目的基因已经整合到毛白杨S9的染色体中,并且存在1~5个拷贝数。
     (5)Northern blot分析结果显示,各转基因植株均检测到明显的杂交信号,而非转基因植株无任何杂交信号,表明Bt毒蛋白(cry1Ab)基因在转录水平得到了有效表达。
     (6)ELISA检测结果表明,Bt毒蛋白基因在翻译水平进行有效的表达,植物中Bt蛋白的含量为725.11ng/g~866.43ng/g。
     (7)饲虫实验结果表明,盆栽苗幼嫩叶片饲喂舞毒蛾幼虫30d后,各个转基因株系幼虫死亡率均在90%以上,最高达到98.9%;而非转基因植株幼虫死亡率仅为10%。证明转Bt毒蛋白基因杨树具有较强的抗虫能力。
The plant growth is affected by many factors, especially drought, salt and insect pest. The plant suffers from osmotic stress and oxidative stress in drought and salt etc. conditions, which causes the damages of membrane structure and function and results in reducing of signal transduction and photosynthesis. The drought resistance and salt tolerance of plant can be increased when the Phospholipase Dα(PLDα) gene on membrane with important signal transduction fulfills antioxidation function and osmotic adjust action after the PLDαis introduced into plants by the way of genetic engineering. Populus tomentosa(P. tomentosa), a native species in China is important tree species for affbrestation and plain greening in northern region of China. The insect pest is more serious with expanding of poplar plantation, which leads more damages. It is an effective method to control insect pest to breed new poplar tree species using genetic engineering technology. Sense PLDαand anti-sense PLDαwere introduced into P. tomentosa respectively in this study and experiments for analysis of plant resistances and gene functional identification were performed. Overexpression of the PLDαgene promoted a higher level of drought and salt tolerance in vivo in transgenic P. tomentosa, the plants with higher drought and salt tolerance were screened out and transformed with anti-insect gene Bt, so as to obtain a new breed of P. tomentosa with high drought and salt tolerance as well as better anti-insect ability. It is new production in application and demonstrated the potential of PLDαto confer osmotic stress tolerance in P. tomentosa. It would be significative to widely planting the high osmotic tolerance and anti-insect trees in the saline soils as well as to investigating the overexpression of PLDαgene in other plants with the aim of improving plant tolerance to multiple environmental stress and further understanding the function mechanism of PLDαgene. The main results are as followed:
     1.Transformation of P. tomentosa with sense or anti-sense PLDαgene and identification of gene functions
     (1) The PLDαand anti-PLDαgene were introduced into P. tomentosa respectively by Agrobacterium-tumefaciens-mediated transformation. Plants were selected to survive on the culture medium with kanamycin to obtain 45 resistant plants with PLDαgene and 49 resistant plants with anti-PLDαgene.
     (2) The result from PCR analysis showed that an about 780bp band corresponding to the size of PLDαgene was observed for the kanamycin-tolerant plants selected on culture medium with kanamycin (except 1 transgenic plant with anti- PLDαgene), which primarily proved that kanamycin-tolerant plants were transgenic plants.
     (3) Genomic DNA of the plants with PLDαgene or anti- PLDαgene digested by XbaI or BamHI was hybridized with the PLDαprobe. Southern-blot analysis showed that the hybridization signals were specifically detected in the transgenic plants which were positive in PCR but not in the wt plants. It indicated that objective genes had been integrated into plant genome and carried 1 to 5 copies of the foreign genes.
     (4) Northern-blot analysis revealed the presence of PLDαmRNA in plants of all PLDαtransgenic lines, but the hybridization signals in anti-PLDαtransgenic plants were much weaker than in wild type plants. It indicated PLDαgene had an effective over-expression at transcription level in P. tomentosa and anti-PLDαgene restrained the expression of plant endogenous PLDαgene.
     (5) Tube seedlings of several transgenic lines and wt plants (control) were evaluated for drought and salt tolerance and gene expression. The results showed that the rhizogenesis rate and the average root-length of trans-PLDαlines were distinctly higher than those of wt and anti-PLDαtransgenic plants on culture medium with NaCl of different concentrations (0, 68, 102, 136, 172mmol/L) and mannitol (0, 150, 200, 250, 300mmol/L) under the same growth conditions. It indicated that PLDαgene transgenic plants exhibited higher drought and salt tolerance.
     (6) To study the relationship between PLDαexpression and drought or salt stresses in transgenic plants, Northern-blot analysis showed that the signals of PLDαtransgenic and wild type plants with drought or salt treatments were significantly stronger than those well watered corresponding plants. No signal was detected in the well watered plants with anti-PLDαgene, whereas signals were present in drought or salt treatment ones. It indicated that drought or salt stresses may induce or increase PLDαgene expression in different degree, and anti-sense gene had not restrained PLDαat transcription level completely.
     (7) Under 20% PEG6000, the damnification of plasmalemma in PLDα-s transgenic lines is lower than that in wt plants, whereas the damnification of plasmalemma in PLDα-a transgenic lines is more serious than that in wild type plants. Meanwhile, the same results were achieved with 200mmol/L NaCl treatment. Which further testified that plant drought and salt tolerance were promoted by PLDα-s transformation but reduced by the anti-sense gene.
     (8) Cytomorphology analysis showed that cell membrane system was of integrity under normal conditions, and the membrane system including cell membrane, mitochondrial membrane, chloroplast membrane and chloroplast membranes etc. is relatively regular. After 200mmol/L NaCl or 20% PEG6000 treatment, the membrane systems of transgenic and wild type plants were damaged in different degree; for the wt plant, the membrane was damaged to be not complete, chloroplast became round, membrane of chloroplast and mitochondrial was seriously damaged; for the PLDαtransgenic plants, the damage was light, mitochondrial membrane was damaged a little and cell membrane, chloroplast membrane and tonoplast were comparatively complete; while the anti-PLDαtransgenic plant cells were damaged most seriously, chloroplast showed round, grana lamella garbled and chloroplast membrane, tonoplast and cell membrane were damaged seriously. It is supposed that overexpression of PLDαgene in transgenic PLDαgene plants could protect the plant membrane system under osmotic stresses.
     2.Obtaining of transgenic P. tomentosa with high salt and drought-tolerance and insect-resistant
     (1) The Bt gene was cloned into the pE1946 vector, The resulting plasmid pBT1946, contained bar gene as the plant selective marker and was mobilized to Agrobacterium tumefaciens strain EHA105 for plant transformation. The sprout proliferation experiment was carried out, and PPT concentration was fixed on 0.4mg/L as the appropriate selectivity pressure.
     (2) High salt and drought tolerance P. tomentosa S9 was screened out from PLDα-s transgenic lines as plant receptor, Bt gene (cry1Ab) was introduced into S9 by Agrobacterium-tumefaciens-mediated transformation. 70 resistant plants with Bt gene were selected to survive on the culture medium with PPT.
     (3) The result from PCR analysis showed that an about 500bp band corresponding to the size of Bt gene was observed for 50 PPT-tolerant plants selected on culture medium with PPT, which primarily confirmed that Bt gene had been integrated into genome of these plants.
     (4) Genomic DNA of trans-Bt plants digested by HindⅢwas hybridized with the Bt probe. Southern-blot analysis showed that the hybridization signals were specifically detected in the transgenic plants which were positive in PCR but not in the control plants. It indicated that objective gene had been integrated into S9 P. tomentosa genome and carried 1 to 5 copies of the foreign genes.
     (5) Northern-blot analysis showed that the hybridization signals were only specifically detected in the transgenic plants but not in the control plants. It indicated that Bt gene took an effective expression at transcription level in S9 P. tomentosa.
     (6) ELISA showed that Bt toxic protein gene could be efficiently expressed at translation level and the content of Bt protein in plants was 725.11ng/g-866.43ng/g.
     (7) Insect feeding test showed that after 30 days feeding Lymantria dispar larva with potted plant tender leaves, the mortality rate of Lymantria dispar larva fed with every transgenic line was over 90%, even up to 98.9%; but the mortality rate of larva fed with non-transgenic plants was only 10%. It indicated that the transformation of P. tomentosa with Bt gene enhanced its anti-insect ability.
引文
陈翠霞,于元杰。棉花耐盐突变体的RAPD分析及抗盐生理研究[J]。生物学报,1999, 25(50):643-646。
    陈拓,任红旭,王勋陵。UV-B辐射对小麦叶抗氧化系统的影响[J]。环境科学学报, 1997,19(4):453-455。
    陈拓,王勋陵。增强UV-B辐射对小麦叶片中CAT、POX和SOD活性的影响[J]。武汉植物学研究,1999,17(2):101-104。
    陈耀锋,贺普超,廖祥如,席美丽。葡萄脯氨酸累积变异系CAT和SOD活性研究[J]。西北农业大学学报,1998,26(1):36-40。
    陈云鹏,陈火英,庄天明。Bt毒蛋白基因在转基因抗虫植物中的应用[J]。生物学通报,2000,35(5):15-l6。
    崔德才,温孚江。磷脂酶D(PLD)在植物信号转导中的作用。山东农业大学学报(自然科学版),2000,31(2):115-119
    董永华,史吉平,李广敏,韩建民,商振清。外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果[J]。西北植物学报,1998,18(2):202-206。
    杜秀敏,殷文璇,赵彦修,张慧。植物中活行氧的产生及清除机制[J]。生物工程学报, 2001,17(2):121-125。
    高宝嘉,张炬红,王永芳等。转基因741杨抗虫性研究[J]。河北农业大学学报, 2004, 27(3): 60-63。
    高岩,刘果厚,王均喜,刘美珍,步文国。渗透胁迫对绵刺(Potaninia mongolica Maxim)嫩枝保护酶活性的影响[J]。干旱区资源与环境,1999,13(3):89-93。
    郭同斌,嵇保中,诸葛强等。转Bt基因杨树(NL-80106)对杨小舟蛾抗虫性研究[J]。南京林业大学学报,2004,28(6):5-9。
    郝贵霞,朱祯,朱之悌。豇豆胰蛋白酶抑制剂基因转化毛白杨的研究[J]。植物学报, 1999, 41(12):1276-1282。
    郝贵霞,朱祯,朱之悌。转CpTI基因毛白杨的获得[J]。林业科学,2000,36(专刊1): 116-119。
    郝贵霞,朱祯,朱之悌。转水稻巯基蛋白酶抑制剂基因毛白杨的获得[J]。高技术通讯,1999(11):17-21。
    郝玉兰,潘金豹,张秋芝,李爱萍。不同生育期水分胁迫对玉米叶片CAT和MDA的影响[J]。北京农学院学报,2003,18(3):178-180。
    侯丙凯,陈正华。植物抗虫基因工程研究进展[J]。植物学通报,2000,17(5):385—393。
    胡建军,张蕴哲,卢孟柱等。欧洲黑杨转基因稳定性及对土壤微生物的影响[J]。林业科学,2004,40(5):105-109。
    吉永华等。东亚钳蝎4个软瘫型抗虫神经毒素的纯化及其分子特征[J]。中国科学(B 辑),1993,23 :923。
    蒋红等。蜘蛛杀虫肽基因的合成及基在植物中表达质粒的构建[J]。植物学报,1995,37 :321-325。
    李广敏,关军锋。作物抗旱生理与节水技术研究(M)。北京:气象出版社, 2001
    李海燕,朱延明,马风鸣。植物抗虫基因工程的研究进展[J]。东北农业大学学报,2000,31(4):309-406。
    李玲,齐力旺,韩一凡等。TA29-Barnase基因导致抗虫转基因欧洲黑杨雄性不育的研究[J]。林业科学,2000,36 (1):28-32。
    李明亮,张辉,胡建军等。转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究[J]。林业科学,2000,36(2):93-97。李培夫,世界农业,1999,7:36-37。
    梁革梅,王桂荣等。昆虫Bt毒素受体蛋白的研究进展[J]。昆虫学报,2003,46(3):390-396。
    梁峥,赵原,汤岚。渗透调节对大麦幼苗和一些呼吸酶活性的影响[J]。植物学集刊, 1994,7:217-222。
    林良斌等。Bt毒蛋白基因与植物抗虫基因工程[J]。生物工程进展,1997,17 (2) : 51-55。
    刘国花,韩素英,齐力旺。植物抗旱耐盐基因工程研究及应用前景[J]。世界农业, 2003,291(74):44-46。
    刘俊军,彭学贤,王海云。转基因烟草的甘露醇合成和耐盐性[J]。生物工程学报, 1996,12(2):206-210。
    刘凯于,姚汉超,杨红,洪华珠。昆虫中肠Bt杀虫晶体蛋白毒亲受体氨态酶N的研究进展[J]。昆虫知识,2004,41(3)。
    刘婉,胡文玉。NaC1胁迫下离体小麦叶片内抗坏血酸与几种生理生化指标变化的关系[J]。植物生理学通讯,1997,33(6):423-425。
    陆静梅,刘有良。中国野生大豆盐腺的发现[J]。科学通报,1998,43(19):2074-2079。
    饶红宇,陈英,黄敏仁等。杨树NL-80106转Bt基因植株的获得及抗虫性[J]。植物资源与环境学报,2000,9(2):1-5。
    饶红宇。双价抗虫基因转化杨树的研究[D]。南京林业大学,2000,26-48。
    沈义国,陈受宜。植物盐胁迫应答的分子机制[J]。遗传,2001,23(4):365-369。
    孙金月,赵玉田。小麦细胞壁糖蛋白的耐盐性保护作用与机制研究[J]。中国农业科学,1997,30(4):9-12。
    谭声江,陈晓峰等。昆虫对Bt毒素的抗性机理研究进展[J]。昆虫知识,2001.38(1)。
    田颖川,李太元,莽克强等。抗虫转基因欧洲黑杨的培育[J]。生物工程学报,1993, 9(4):291-297。
    王琛柱等。植物蛋白酶抑制素抗虫的研究进展[J]。昆虫学报,1997,40 (2) : 212-218。
    王关林,方宏筠。植物基因工程原理与技术[M]。北京:科学出版社,1998。
    王慧中,黄大年,鲁慧芳等。转mtlD/gutD双价基因水稻的耐盐性[J]。科学通报, 2000,45(70):724-729。
    王世贵。转Bt杀虫蛋白基因植物及其抗虫性研究进展[J]。杭州师范学院学报,2000,(3):90-95。
    王树凤,徐礼根,马建义。抗虫转基因植物研究进展[J]。农药,2000,39(9):6-9。
    王学聘,韩一凡,戴莲韵等。抗虫转基因欧美杨的培育[J]。林业科学,1997,33(1): 69-74。
    王永芳,高宝嘉,郑均宝等。转基因741杨树桑天牛的抗性鉴定[J]。河北农业大学学报,2002,25(2):53-56。
    伍宁丰,范云六。含苏云金杆菌杀虫蛋白基因的杨树工程植株的建立[J]。科学通报,1991(9):705-708。
    伍宁丰,孙芹,姚斌等。抗虫的转AaIT基因杨树的获得[J]。生物工程学报,2000, 16(2): 129-133。
    杨静慧,杨焕庭。苹果树植物叶片角质层厚度与植物抗旱性[J]。天津农学院学报,1996, 3(3):27-28。
    余叔文,汤章城。植物生理与分子生物学(第二版)[M]。北京:科学出版社,1998,pp752-769。
    张冰玉,苏晓华,李义良等。转双价抗蛀干害虫基因杨树的获得及其抗虫性鉴定[J]。林业科学研究,2005,18(3):364-368。
    张充,蒋继志,廖祥儒等。植物中的磷脂酶D[J]。植物生理学通讯,2005,41(5):691-697。
    张海燕,赵可夫。盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J]。植物学报,1998,40(1):56-57。
    张劲松,谢灿,刘峰。植物中存在新的两组分信号系统基因[J]。科学通报,1999, 44(6):628-633。
    张真,王军辉,张建国等。Bt转基因杨树对杨树昆虫群落结构的影响[J]。林业科学, 2004, 40(2): 84-89。
    赵福庚,孙诚,刘友良。盐胁迫激活大麦幼苗脯氨酸合成的鸟氨酸途径[J]。植物学报,2001, 43(1):36-40。
    赵可夫,李法曾。中国盐生植物[M]。北京:科学技术出版社,1999,48-62。
    赵可夫,邹琦。盐分和水分胁迫对盐生和非盐生植物膜脂过氧化作用的效应[J]。植物学报,1993, 35(7):519-522。
    赵强,张廷婷,崔德才。植物来源抗虫基因的应用[J]。生物技术通讯,2005,16(4):456-459。
    郑均宝,梁海永,高宝嘉等。转双抗虫基因741毛白杨的选择及抗虫性[J]。林业科学,2000,36(2):13-19。
    诸葛强,王婕琛,陈英等。豇豆胰蛋白酶抑制剂(CpTI)抗虫转基因新疆杨的获得[J]。分子植物育种,2003, 1 (4):491-496。
    Adang.M,J.Characterized full Length and Rruncated Plasmid Clones of the Crystal Protein of Bacillusthuringiensis Sub Sp.[J].Kurstak HD-73 and the Irtoxicity to Manduca Sexta Gene,1985,(36):289–300.
    Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis [J]. Elsevier Science Publishers, Amsterdam, 1987, pp227–287.
    Augustin S, Courtin C, RejasseA, et al. Genetics of resistance totransgenicBacillus thuringiensispoplars in Chrysomela tremulae (Coleoptera: Chrysomelidae) [J]. Journal of Entomology, 2004, 97(3): 1058-1064.
    Aziz A, Larher F. Osmotic stress induced changes in lipid composition and peroxidation in leaf discs of Brassica napus L [J]. Journal of Plant Physiology, 1998, 153: 754-762. Barton K A, MillerM J. Transgenic plants expressing insecticideproteins [M]. EurPatApplEp, 1990, USA ppl 425–443.
    Barton K.A., Whitely H.R. and N.S.,Yang.Plantphysiol[J].1987,85:1103-1109.
    Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and applicable to acrylamide gels [J]. Anal. Biochem, 1971, 44: 276–287.
    BoulterD, Edwards G A, Gatehouse AM R, et a.l Additive pro-tective effects of different plant derived insect resistantce genes intransgenic tobacco plants[J]. Crop prot, 1990(9): 351-354.
    Bowler C, Slooten L, Larson TJ, et al. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants [J]. EMBO J, 1991, 10, 1723-1732.
    Bowler C, Slooten L, Vandenbranden S, et al. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants [J]. EMBO J, 1991, 10:1723–1732.
    Bowler C, Van CW, Van MM, et al. Super Oxide Dismutase in Plants [J]. Crit Rev in Plant Sci, 1994(13):199–218.
    Boyer J S. Plant productivity and environment [J]. Science, 1982, 218: 443–448.
    Bray EA. Molecular responses to water deficit [J]. Plant Physiol, 1993, 103:1035-1040
    Cerda H, Wright D J. Modeling the spatialand temporal location ofrefuge tomanage resistance in Bt transgenic crops [J]. Agricul-ture, Ecosystems and Environment, 2004(102): 163–174.
    Chance B, Maehly A C. Assay of catalases and peroxidases [J]. In: Colowick SP, Kaplan NO, eds. Meth. Enzymol. (Vol. 2), 1955, pp. 764–775.
    Chapman K D. Phosphplipase activity during plant growth and development and in response to environmental stress [J]. Trends Plant Sci, 1998, 3: 419-426.
    Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. Plant J, 1998, 16: 735–743.
    Cornu D, Leple J C, Bonade-BottinoM, et al. Expression of aproteinase inhibitor and aBacillus thuringiensisdelta-endotoxin intransgenic poplars [J]. Somatic cellgenetics and moleculargenetics of trees, 1996, 131-136.
    D A Baker, J L Hall. Solute transport in plant cells and tissues, Longman Scientific and Technical [M]. EssEX, 1998.498-537.
    De Jong C F, Laxalt AM, Bargmann B O, et al. Phosphatidic acid accumulation is an early response in the Cf24PAvr4 interaction [J]. Plant J , 2004 , 39 (1) : 1-12.
    Delledonne M, Allegro G, Belenghi B, et al. Transformation ofwhite poplar (populus albaL. ) with a novel Arabidopsis thalianacysteine proteinase inhibitor and analysis of insect pest resistance[J]. Molecular Breeding, 2001(7): 35-42.
    DiFazio S P, LeonardiS, Cheng S, et al. Assessing potential risks of transgene escape from fiber plantations[C]. Gene flow and agriculture: relevance for transgenic crops [J]. Proceeding of a symposium held at Keele, UK on 12-14 April 1999. 1999, 171-176; BCPC Symposium Proceedings N0 72.
    Dyer J M, Chapital D C, Cary J W. Pepperman chilling-sensitive, post-transcriptional regulation of a plant fatty acid desaturase expressed in yeast [J]. Biochemi Biophys Res Commun, 2001, 282(4):1019-1025.
    Fan L, Cui D, Wang X. Subcellular distribution and tissue expression of phospholipase Dα,β, andδ, in Arabidopsis [J]. Plant Physiol, 1999, 119: 1371–1378.
    Fan L, Zheng S, Wang X. Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves [J]. Plant Cell, 1997, 9: 2183-2196.
    Fishhoff,D.A.,Bowdish,K.S.,Perlak,F.J.Insect Tolerant Transgenic Tomato Plants[J].Biotechnology,1987,(5):807-813.
    Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: where next? [J]. Aust J Plant Physiol, 1995, 22: 875–884.
    Foyer C H, Lelandais M, Kunert K J. Photooxidative stress in plants [J]. Physiologia Plantarum, 1994, 92: 696-717.
    Frank, W., Munnik, Kerkmann, K., Salamini, S. et al. Water-deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantainenm [J]. Plant Cell, 2000, 12:111-123.
    Frankenhuyzen K V, Beardmore T. Current status and environmental impact of transgenic forest tress [J]. Canadian Journal of Forest Research, 2004, 34(6): 1163-1180.
    Gao X H, Ren Z H, Zhao Y X, et al. Overexpression of SOD2 Increases Salt Tolerance of Arabidopsis [J]. Plant Physiol, 2003, 133:1873-1881.
    Genissel A, Leple J C, Millet N, et al. High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a syn-thetic Cry3Aa gene from Bacillus thuringiensis ssptenebrionis [J]. Molecular Breeding, 2003, 11(2): 103-110(8).
    GenisselA, Augustin S, Courtin C, et al. Initial frequency of al-leles conferring resistance to Bacillus thuringiensis poplar in a field population of Chrysomela tremulae [J]. Biological Sciences, 2003, 270(1517): 791-797.
    Heller M. Phospholipase D [J]. Adv Lipid Res, 1978, 16:267–326.
    Hilder, V.A. Gatehouse, A.M.R. and Sheerman, S.E., et al. Nature [J]. 1987, 300: 160-163.
    Hu J J, TianY C, HanY F, etal. Field evaluation of insect-re-sistant transgenicPopulus nigratrees [J]. Euphytica, 2001, 121(2): 123-127.
    Jacob T, Ritchie S, Assmann S M, et al. Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity [J]. Proc.Natl Acad.Sci., 1999, 96, 12192-12197.
    JamesR R.Utilizing a socialethic toward the environment in asses-sing genetically engineered insect-resistance in trees [J]. Agricul-ture andHuman values, 1997, 14(3): 237-249.
    Jenkins G M, Frohman M A. Phospholipase D: a lipid centric review [J]. CMLS, Cell. Mol. Life Sci, 2005, 62:2305–2316.
    Johnson K D, Chrispeels M J. Tonoplast-bound protein kinase phosphorylates tonoplast intrinsic protein [J]. Plant Physiol, 1992, 100(5):1787-1795.
    Kang-Hoduck, Hall R B, Heuchelin S A, et al. TransgenicPopu-lus: in vitro screening for resistance to cottonwood leafbeetle (Co-leoptera: Chrysomelidae) [J]. Canadian Journal of Forest Re-40江苏林业科技第33卷search, 1997, 27(6): 943-944.
    Kang-Hoduck, Kang H D.Genemanipulation of Pin 2 (ProteinaseinhibitorⅡ) to the cottonwood leaf beetle (Coleoptera: Chry-somelidae) in transgenic poplar (Populus deltoids×P. nigra) [J]. Journal of Korean Forestry Society, 1997, 86(4): 407-414.
    Katagiri T, Ishiyama K, Kato T, et al. An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana [J]. Plant J, 2005, 43(1):107-117.
    Katagiri T, Takahashi S, Shinozaki K. Involvement of a novel Arabidopsis phospholipase D, AtPLDd, in dehydrationinducible accumulation of phosphatidic acid in stress signaling [J]. Plant J, 2001, 26:595–605.
    Kishor P B K, Homg Z, Miao G H, et al. Overexpression of 2-pyrroline-5-carboxylate Synthase Increases Praline Production and Confers Osmoto lerance in Transgenic Plant [J]. Plant Physiol, 1995(108): 1387-1394.
    Kleiner K W, Ellis D D, McCown B H, et al. Field evaluation oftransgenic poplar expressing aBacillus thuringiesnisCry1A(a)δ-endotoxin gene against forest tent caterpillar (Lepidoptera:Lasiocampidae) and gypsymoth (Lepidoptera: Lymantriidae) fol-lowing winter dormancy[J]. Environmental-Entomology, 1995, 24(5): 1358-1364.
    Klopfenstein N B, McNabb H S J, Hart E R, etal. Transformation of Populus hybrids to study and improve pest resistance [J]. SilvaeGenetica, 1993, 42(2-3): 86-90.
    Klopfenstein N B, Allen K K, Avila F J, eta.l Proteinase inhibitorⅡgene in transgenic poplar: Chemical and Biological assay [J]. Biomass and Bioenegy, 1997, 12(4): 299-311.
    Kn¨oraer OC, Durner J, B¨oger P. Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress [J]. Physiol Plant, 1996, 97: 388–396.
    Kodama H, Akagi H, Kusumi K. Structure, chromosomal location and exprossion of a rice gene encoding the microsome omega-3 fatty acid desaturase [J]. Plant Mol Biol, 1997, 33(3): 493-502.
    KOPKA J , P ICAL C, GRAY J E, et al. Molecular and enzymatic characterization of three phosphoinositide -specific phospholipase C isoforms from potato [J]. Plant Physiol, 1998, 116: 239-250.
    Kwon S I, An C S. Molecular cloning, characterization and expression analysis of a catalse cDNA from hot pepper (Capsicum annuum L) [J]. Plant Sci, 2001, 160(5):961-969
    Laxalt A M, Munnik T. Phospholipid signalling in plant defence [J]. CurrOp in Plant Biol, 2002, 5 (4): 332 - 338.
    Li H S, Wang L, Su H Y, et al. Transformation of platanusacerifoliawilld with antisense phospholipase Dγgene [J]. Journal of Shandong Agricultural University (Natural Science), 2006, 37 (4): 546-552.
    Lascano H R, Antonicelli G E, Luna C M, et al. Antioxidant system response of different wheat cultivars under drought: field and in vitro studies [J]. Australia Journal of Plant Physiology, 2001, 28: 1095-1102.
    Lee S H, Chae H S, Lee T K, et al. Ethylene-mediated phospholipids catabolic pathway in glucose-starved carrot suspension cells [J]. Plant Physiol, 1998, 116: 223-229.
    Lee S, Park J, Lee Y. Phosphatidic acid induces actin polymerization by activating protein kinases in soybean cells [J]. Mol Cells, 2003, 15(3) : 313-319.
    Lee S, Suh S, Kim S, et al. Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants [J]. Plant J, 1997, 12: 547-556.
    Leple J C, Bonade-BottinoM, Augustin S, et al. Toxicity to Chry-somela tremulae (Coleoptera: Chrysomelidae) of transgenic pop-lars expressing a cysteine proteinase inhibitor [J]. Molecular Breeding, 1995, 1(4): 319-328.
    Li W, Li M, Zhang W, et al. The plasma membrane-bound phospholipase D delta enhances freezing tolerance in Arabidopsis thaliana [J]. Nat Biotechnol, 2004, 22(4) : 427-433.
    Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes [J]. Methods in Enzymology, 1987, 148: 350-382.
    Liewelyn,D.Proceeding of the 2nd Canberra Meeting On Bacillusthuringiensis CSIRO [J]. Australia,1994,(3):19-21.
    Lin S Z, Zhang Z Y, Zhang Q, Lin Y Z. Progress in the study of molecular genetic improvements of poplar in China [J]. J Integr Plant Biol, 2006, 48(9), 1001?1007.
    Liu F, Lv W T, Cui D C, et al. Transformation of wheat with anti- phospholipase Dγgene [J]. Llitters in biotechnology, 2006, vol.17 2 189-191.
    Liu Y,Deng L Q. The Drought resitance of the main tree species in relation with their root characteristice in the western areas of Liaoning province [J]. Jumal of Shenyang Agricultural University, 1995, 26(2):171-176.
    Loescher W H, Tyson R H, Gout E, et al. Mannitol synthesis in higher plants: evidence for the role and characterization of NADH-dependent mannose-phosphate reductase [J]. Plant Physiol, 1992, 98:1396-1402.
    Mc Gaughey W H, et al. Journal of Eci Entomology,1988,81: 28-33.
    Mc Clung C R. Regulation of catalase in Arobidopsis [J]. Free Radical Biology & Medicine, 1997, 23(3): 489-496.
    McCown B H, Mclab D E, Russell D R, et al. Stable transforma-tion ofPopulusand incorporation ofpest resistance by electric dis-charg particle acceleration [J]. PlantCellReports, 1991, 9(10): 590-594.
    Metthr,L.The Proceedln8 the 2rid Pacific Rimconfemnce on Biotechnology of Bacillusthuringlensis and its Impact on the Environment [J]. Thailand,1996,78-79.
    Munnik T, Musgrave A.Phospholipid signaling in plants: holding on to phospholipids D [J]. Sci STKE, 2001, 111: 42.
    Munnik T. Phosphatidic acid: an emerging plant lipid second messenger [J]. Trends Plant Sci, 2001, 6 (5): 227-233.
    Munnik T. Phosphatidic acid: an emerging plant lipid second messenger [J]. Trends in Plant Science, 2001, 6(5): 227-233.
    Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures [J]. Physiol Plant, 1962, 15: 473-497.
    Murray M G, Thompson W F. Rapid isolation of high molecular weight plant cDNA [J]. Nucleic Acids Res, 1980, 8: 4321-4325.
    Nakano Y, Asada K. Hydrogen peroxide scanvenged by ascorbated specific peroxidase in spinach chloroplast [J]. Plant and Cell Physiology, 1981, 22: 867-880.
    Nelson D E, Shen B, Bohnert H J. Salinity tolerance: mechanisms, models and the metabolic engineering of complex traits [J]. Genetic Engineering, Principles and Methods, 1998, Vol 20, pp 153-176.
    Pappan K, Austin-Brown S, Chapman K D, et al. Substrate selectivities and lipidmodulation of phospholipase Dα,βandγfrom plants [J]. Arch Biochem Biophys, 1998, 353:131-140.
    Pappan K, Qin W, Dyer J H, et al. Molecular cloning and functional analysis of polyphospho-Inositide-dependent phospholipase D, PLDβfrom Arabidopsis[J]. Biol Chem, 1997a, 272:7055-7061.
    Pappan K, Wang X. Molecular and biochemical properties and physiological roles of plant phospholipase D [J]. Biochim Biophys Acta, 1999, 1439: 151-166
    Pappan K, Zheng S, Wang X. Identification and characterization of a novel phospholipase D that requires polyphosphoinositide and submicromolar calcium for activity inArabidopsis[J]. Biol Chem, 1997b, 272:7048-7054.
    Pappan K, Zheng S, Wang X. Identification and characterization of a novel phospholipase D that requires polyphosphoinositide and submicromolar calcium for activity in Arabidopsis [J]. J Biol Chem, 1997, 272: 7048–7054.
    Park J, Gu Y, Lee Y, et al. Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation[J] . Plant Physiol, 2004, 134(1): 129-136.
    Patra H L, Kar M, Mishre D. Catalase activity in leaves and cotyledons during plant development and senescence. Biochemistry Physiology, 1978, 172: 385-390.
    Peferoen M. Progress and prospects for field use of Bt genes in crops [J]. Trends Biotechnol. 1997(15): 173-177.
    Perlak,F.J.Modification of the Coding SeqIlence Enhances Plant Expression of Insect Control Protein Gene [J].Biotechnology,Proc.Natl.Acad.Sci(USA),1991,(88):324-328.
    Potocky M, Elias M, Profotova B, et al. Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth [J]. Planta, 2003, 217 (1): 122-130.
    Qin C, Wang X. The Arabidopsis phospholipase D family: characterization of a Ca2+-independent and phosphatidylcholine-selective PLDz1 with distinct regulatory domains. Plant Physiol, 2002, 128: 1051-1068.
    Qin W, Pappan K, Wang X. Molecular heterogeneity of phospholipase D (PLD): Cloning of PLDαand regulation of plant PLDα, and b by polyphosphoinositides and calcium [J]. J Biol Chem, 1997, 272: 28267–28273.
    Quintero F J, Blatt M R, Pardo J M, et al. Functional conservation between yeast and plant endosomal Na+ /H+ antiporter [J]. FEBS Lett, 2000, 47(1):224-228.
    Ramachandran R, Raffa K F, Bradley D, et al. Activity of an in-secticidal protein fromBacillus thuringiensisHD-290-I strain tocoleopteran and lepidopteran defoliators of poplars [J]. EnvironEntomol, 1993, 22: 190-196.
    Rishi A S, Nelson N D, GoyalA. Genetic modification for improvement of Populus [J]. Physiol Mol Biol Plants, 2001 (7):7-21.
    Rishi A S, Nelson N D, Goyal A. Improvement of Populus through Genetic Engineering [J]. Indian J Plant Physiol, 2001, 6(2):119-126.
    Ritchie S, Gilroy S. Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity [J]. Proc.Natl Acad.Sci.USA, 1998, 95: 2697-2702.
    Robinon D J, McCown B H, RaffaK F.Responses of gypsymoth (Lepidoptera: Lymantriidae) and forest tentcaterpillar (Lepidop-tera: Ladiocampidae) to transgenic poplar, Populus spp., contai-ning aBacillus thuringiensisδ-endotoxin gene [J]. Environ En-tomol, 1994, 23(4): 1030-1041.
    Roush R T, Denholm E, Pickett J A, et al. Two-toxin strategies formanagement of insecticidal transgenic crops: can pyramiding succeed where pesticide mixture have not [J]. Insecticide resistance: from mechanisms to management, philosophical-transactions of the royal society of London, Series B, Biological Science, 1998, 353(1376): 1777-1786.
    Russell B L, Rathinasabapathi B, Hanson AD. Osmotic stress induces expression of choline monoxygenase in sugar beet and Amaranth [J]. Plant Physiol, 1998, 116:859-865.
    Ryu B S, Wang X. Increase in free linolenic and linoleic acids associated with phospholipase D-mediated hydrolysis of phospholipids in wounded castor bean leaves [J]. Biochim Biophys Acta, 1998, 1393: 193–202.
    Sakamoto A, Murata N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold [J]. Plant Mol Biol, 1998, (38):1011-1019.
    Sakamoto T, Shen G, Higashi S. Alteration of low-temperature susceptibility of the cyanobacterium synechococcus sp. PCC 7002 by genetic manipulation of membrane lipid unsaturation [J]. Arch Microbiol, 1998, 169(1):20-28.
    Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, Ed 2.Cold Spring Harbor laboratory Press, Cold Spring Harbor, NY,1989.
    Sang Y M, Zheng S Q, Li W Q, et al. Regulation of plant water loss by manipulating the expression of phospholipase Da [J]. The Plant Journal, 2001, 28(2): 135-144.
    Sang Y, Cui D, Wang X. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis [J]. Plant Physiol, 2001, 126 (4): 1449-1458.
    Scandalios JG. Response of plant antioxidant defense genes to environmental stress [J]. Adv Genet, 1990, 28:1-41.
    Schardl C L, Byrd A D, Benzion G, et al. Design and construction of a versatile system for the expression of foreigh genes in plants [J]. Gene, 1987, 61 (1): p.1-11.
    Seneoka H, Nagaska C, Hahn D T, et al. Salt tolerance of glycinebetaine deficient and constaining maize lines [J]. Plant Physiol, 1995, (107):631-638.
    Serranp R, Gaxioda R. Microbial models and salt stress tolerance in plants [J]. Crit Rev in Plant Sei, 1994, 13(2):121-138.
    Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii [J]. Physiologia Plantarum, 1998, 104: 167-174.
    Steponkus PL. Role of the plasma membrane in freezing injury and cold acclimation [J]. Ann Rev Plant Physiol, 1984, 35:543-584.
    Stewart R C, Bewley J D. Lipid peroxidation associated with accelerated aging of soybean axes [J]. Plant Physiology, 1980, 65: 245-248.
    Strauss S H. Treegenetic Engineering Research Cooperative Annual Report, 1999, 1998-1999.
    Szaboles I. The global problems of salt-affected soils [J]. Acta Agron Hung, 1987, 36: 159–172.
    Testerink C, Munnik T. Phosphatidic acid: a multifunctional stress signaling lipid in plants [J]. Trends Plant Sci, 2005, 10 (8): 368-375.
    Tjus S E, Moiler B L, Scheller H V. Photosystem I is a nearly target of photoinhibition in barley illuminated at chilling temperatures [J]. Plant Physiol, 1998, 116:755-764.
    VanRie,J.,McGaughey,W.H.and Johnson,D.E.Mechanism of Insect Resistance in the Micro Bial Insect Icid Bacillust-huringiensis [J]. Science, 1990, (247):72-74.
    Wang C, Zien C, Afitlhile M, et al. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis [J]. Plant Cell, 2000, 12: 2237–2246.
    Wang G J, Castiglione S, Chen Y, et a.l Poplar (Populus nigraL. ) plants transformed with aBacillus thuringiensistoxin gene:insecticidal activity and genomic analysis [J]. Transgenic Re-search, 1996, 5(5): 289-301.
    Wang X M. Molecular analysis of phospholipase D [J]. Trends Plant Sci, 1997, 2: 261-266.
    Wang X. Plant Phospholipase [J]. Annual Review of Plant Physiology and Molecular Biology, 2001, 52: 211-222.
    Wang X. Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses [J]. Plant Physiol, 2005, 139(2): 566-573
    Wang X. Multiple forms of phospholipase D in plants: the gene family, catalytic and regulatory properties, and cellular functions [J]. Prog Lipid Res, 2000, 39:109-149.
    Wang X. Phospholipase D in hormonal and stress signaling [J]. Plant Biology, 2002, 5: 408-414.
    Wang X, Dyer JH, Zheng L. Purification and immunological analysis of phospholipase D from castor bean endosperm [J]. Arch Biochem Biophys, 1993, 306: 486-494
    Wang X, Wang C X, Sang Y M, et al. Net-working of phospholipases in plant signal transduction [J]. Physiologia Plantarum, 2002, 115: 331–335.
    Willekens T, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plant [J]. EMBO Journal, 1997, 16(16): 4806-4816.
    Young, S.A., Wang, X. and Leach, J.E. Changes in the plasma membrane distribution of rice phospholipase D during resistant interaction with Xanthomonas oryzae pv oryzae [J]. Plant Cell, 1996, 8: 1079-1090.
    Zhang W, Wang C, Qin C, et al. The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2 -induced cell death in Arabidopsis [J]. Plant Cell, 2003, 15 (10): 2285-2295.
    Zhao J Z, Shi X P, Fan X L, et al. Insecticidal activity of trans-genic tobacco co-expressing Bt and CpTI genes onHelicoverpa ar-migeraand its role in delaying the development of pest resistance [J]. Rice BiotechnologyQuarterly, 1998 (34): 9-10.
    Zhao J Z, Fan X L, Shi X P, et al. Gene pyramiding: an effective strategy of resistance management for Helicoverpa armigera and Bacillus thuringiensis [J]. Resistant Pest management, 1997, 9(2): 19-21.
    Zhao Z W, Zhao Q, Cui D C. Transformation of White Clover With Anti-PLDγGene [J]. Biotechnology Bulletin, 2005, 1: 47-51.
    Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis [J]. Plant Physiol, 2000, 124: 941-948.
    Zhu J. Genetic analysis of salt tolerance in Arabidopsis Thaliana: Evidence of a critical role for potassium nutriation [J]. Plant Cell, 1998, (10):1180-1192.
    Zhu Z J, Gerendas J, Bendixen R, et al. Different tolerance to light stress in NO3- and NH4+-grown Phaseolus vulgaris L [J]. Plant Biology, 2000, 2: 558-570.
    Zien C A, Wang C, Wang X, et al. In-vivo substrates and the contribution of the common phospholipase D, PLDα, to wound-induced metabolism of lipids in Arabidopsis [J]. Biochim Biophys Acta, 2001, 1530: 236–248.
    Zou W H, Zhao Q, Cui D C, et al. Transformation of Populus deltoideswith Anti-PLDγGene and Chitinase Gene [J]. Scientia Silvae Sinicae, 2006, 42: 37-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700