用户名: 密码: 验证码:
BtCry1A基因转化中嘉8号杨的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金杆菌是一类非常重要的昆虫病原体,它能产生特异性的杀虫晶体蛋白,对农业上和生物医学上的许多害虫具有毒杀作用。Bt毒蛋白(或内毒素Bt-toxin)基因是世界范围内广泛使用的抗虫基因,2005年全球转Bt基因作物的种植面积达263,000,000 hm~2。虫害是杨树造林生产上面临的一大难题。虽然利用Bt基因转化欧洲黑杨、雄性毛白杨、美洲黑杨、欧美杨等获得了成功,但受多种因素的影响,至今未见转Bt基因抗虫杨用于造林生产的报道,转Bt基因抗虫杨的研究仍是杨树抗虫育种的热点。中嘉8号杨是湖北省重点推广的杨树优良无性系,但虫害发生较严重。本研究通过根癌农杆菌介导的叶盘法,将经过人工改造的苏云金杆菌杀虫晶体蛋白基因BtCrylA成功导入中嘉8号杨,并得到转基因杨树再生植株。经PCR检测、ELISA检测、SDS-PAGE鉴定和MTT法检测证实了BtCrylA基因在中嘉8号杨中的整合与表达。用中嘉8号杨转Bt基因植株叶片饲喂杨扇舟蛾幼虫,结果表明转基因杨植株具有明显的抗虫活性。为探索培育杨树抗虫新品系开辟了一条新途径。本研究的主要结论如下:
     以水培法萌芽的叶片为外植体,研究了中嘉8号杨组织培养技术。愈伤组织诱导的最佳培养基为:MS+BA1.0 mg/L+2,4-D 0.1 mg/L+蔗糖30g/L+琼脂6.5g/L。经方差分析,2,4-D和BA两因素对愈伤组织分化不定芽的影响都不显著,但2,4-D的影响比BA大。愈伤组织分化不定芽的最佳培养基为:MS+BA0.5mg/L+2,4-D 0.1mg/L+蔗糖30g/L+琼脂6.5g/L,此时不定芽平均分化率为71.1%。叶片直接分化不定芽的最佳培养基为:(1/2N)MS+BA 0.2mg/L+NAA0.02mg/L+蔗糖25g/L+琼脂6.5g/L,此时单个外植体平均产生有效芽3.9个,平均分化率达85%以上。低浓度的KT对杨树组培苗生根具有一定的促进作用,最佳生根培养基为:MS+KT0.05mg/L+NAA0.02mg/L+琼脂6~7g/L+蔗糖30g/L。生根组培苗室内炼苗1~2周,用0.1%ABT生根粉溶液蘸根,用灭菌的园土:山沙(4:1)做基质,生根组培苗移栽成活率可达90%以上。
     通过几种抗生素对根癌农杆菌菌株LBA4404的抑菌试验和对中嘉8号杨叶片分化不定芽影响的研究,建立了比较有效的中嘉8号杨叶片直接分化芽基因转化受体系统。研究结果表明:噻孢霉素(cef)对农杆菌LBA4404的抑制效果最好,最佳用量为150~200mg/L,此时对农杆菌的校正抑菌率为81.8%~100%,叶片分化不定芽的频率可达73.3%以上。卡那霉素(Km)用量为5~60mg/L时完全抑制愈伤组织和不定芽的发生;Km对芽的伸长生长也有抑制作用,Km=60mg/L时,芽的存活率为0。在筛选转化体时,Km使用浓度对芽苗以30mg/L为宜。生根筛选Km浓度为15mg/L较为合适。链霉素(str)对杨树叶片分化不定芽具有类似生长素的作用效果。用Str10mg/L代替NAA 0.02mg/L与BA配合,不定芽分化率可达71.1%:Str 20 mg/L、NAA 0.02 mg/L与BA0.2 mg/L配合,不定芽分化率高达100%。此外,一定浓度的链霉素影响叶片出芽的部位,在含有链霉素的培养基上,部分叶片在叶柄处分化不定芽,或叶柄叶缘同时分化不定芽,而对照不定芽仅从叶缘发生。
     研究了影响根癌农杆菌介导BtCry1A基因导入中嘉8号杨的若干因子,建立了中嘉8号杨简单、有效的遗传转化系统。最优转化条件为:预培养12h、菌液(OD_(600)=0.3~0.4)浸染外植体10~15min、共培养4d、共培养培养基中附加乙酰丁香酮(AS)150μmol/L及共培养后延迟10d选择,此时Km~r芽平均诱导率最高达到28.9%。本试验讨论的所有影响转化的因子中,选择时间的影响最大,其次是共培养时间。在转化策略上,采用先再生后选择的方式筛选转化体,尽管假转化体多,后期淘汰率高,纯合难度大,但可以克服由于低浓度Km抑制中嘉8号杨叶片诱导愈伤组织和不定芽分化导致转化难以完成的问题。本研究共转化外植体1936个,分化出Km~r芽外植体171个,Km~r芽平均诱导率为8.8%。经不定芽生长及诱导生根阶段卡那霉素连续筛选,获得了17株Km~r植株,平均转化率为0.88%。
     对中嘉8号杨转BtCry1A基因植株进行了分子检测和抗虫性鉴定。通过分子检测,从17株中嘉8号杨Km~r植株中,共筛选得到转BtCry1A基因的PCR阳性植株6株,占35.3%;酶联免疫测试和SDS-PAGE电泳结果表明BtCry1A基因在PCR阳性植株6个株系中都有表达,Bt毒蛋白含量幅度为3.88~2.36ppb,平均为3.32ppb。检测结果表明,BtCry1A基因已已整合到中嘉8号杨基因组中并得到表达。MTF法测定结果表明,经中嘉8号杨PCR阳性植株蛋白质处理的粉纹夜蛾细胞死亡率较高,所产生的病理变化与Bt毒素蛋白处理粉纹夜蛾细胞的病变类似,证明BtCry1A基因在转基因植株中得到表达,转基因植株对昆虫离体细胞具有毒杀作用。室内抗虫试验结果表明,饲虫第8天,参试的3个转基因株系对杨扇舟蛾幼虫生长的抑制率分别为66.13%、60.94%和46.65%;虫饲第10天,3个转基因株系的幼虫相对死亡率分别为75.99%、36%和55.99%,此时,对照未转基因植株叶片饲喂的存活幼虫全部化蛹,而3个测试株系叶片饲喂的存活幼虫化蛹率分别为33.3%、18.8%、54.5%,且未化蛹的存活幼虫行动迟缓,体型较小,至饲虫第12天仍不能化蛹。室外栽种的PCR阳性植株也表现出了较明显的抗虫性。虫测结果表明,3个PCR阳性株系对杨扇舟蛾幼虫的生长发育都有明显的抑制作用,其中株系X1效果最好。杨扇舟蛾幼虫取食中嘉8号杨转BtCry1A基因植株叶片后,其中肠上皮细胞出现的病理变化具有典型的Bt晶体毒素作用于鳞翅目昆虫的病理学特征。因此,本研究获得的中嘉8号杨转BtCry1A基因植株为抗虫植株,有进一步测试及推广价值。
Bacillus thuringiensis (Bt) is a very important entomopathogen which can produce specifically toxic crystal proteins against many agriculturally and biomedically detrimental pests. Bt(or endotoxin Bt-toxin) gene is a gene that is wildly used for controlling the pests in the world. In 2005, the areas of transgenic crops have increased to 2630 ha. Poplars are seriously attacked by insects in many areas and insect-resistant poplars are expected in forest production. Bt gene has been successfully transformed into Populus alba, Populus nigra, Populus tomentosa, POpulus simonii, Populus deltoides. However, it is little known about the plantation of transgenic insect-resistant poplars to date. Further researching of transgenic poplars with Bt gene is fundamental for poplars insect-resistant breeding. In the present studies, the modified BtCrylA gene was transformed to the explants of Populus deltoides (I-63×I-69) mediated by Agrobacterium tumefaciens. PCR amplification of the chromosomal DNA demonstrated that the BtCrylA gene was detected in the transformed plants. ELISA, SDS-PAGE and MTT analysis indicated that the insecticidal protein was efficiently expressed in P. deltoides (I-63×I-69). The anti-insect experiments showed that the transformed poplar plants obtained evidently the resistance to the larvae of Clostera anachoreta (Fabricius). These results suggested that transgenic plants would offer a new way for protecting the poplars against attacking of insect pests. The following are results:
    Water-cultured method was used in this experiment, the optimal induction medium is MS + 1.0 mg/L BA + 0.1 mg/L 2,4-D + 30g/L sucrose + 6.5g/L agar. Among the callus culture of bud differentiation, the differentiation rate can reach 71.1% when cultured on the medium of MS + 0.5mg/L BA + 0.1mg/L 2,4-D + 30g/L sucrose + 6.5g/L agar. The best medium for buds differentiation of the leave directly is (1/2N)MS + 0.2mg/L BA + 0.02mg/L NAA + 25g/L sucrose +7g/L agar, with the bud differentiation rate of 85%. KT has the stimulation to the plants rooting of P. deltoides (I-63×I-69), the better rooting medium is MS + 0.05mg/L KT + 0.02 mg/L NAA + 6-7 g/L agar + 30g/L sucrose, with the rooting rate of 82.2%.
    Several antibiotics were used to eliminate A .tumefaciens LBA4404 during plant transformation. Their effects on inhibition of A. tumefaciens LBA4404 and bud differentiation of leaf from P. deltoides (I-63×I-69) were analyzed. Proliferation of A. tumefaciens LBA4404 was completely suppressed in the medium containing 150-200mg/L cefotaxime with the buds differentiation rate of 73.3%. Analyzing from many angles, the lowest limit concentration of kanamycin used for selection of transformation seedings was 30mg/L when taking buds as acceptor; at rooting stage, lower limit
     concentration was 15mg/L. The experiment also proved that streptomycin(str) has the same effect as NAA on the bud regeneration. The combination of 10 mg/L str and 0.2 mg/L BA with the differentiation rate of 71.1%, and 20mg/L str+0.02 mg/L NAA+0.2 mg/L BA with the differentiation rate of 100%.
     Several factors affecting BtCry1A gene transformation of P. deltoides (Ⅰ-63×Ⅰ-69) mediated by A. tumefaciens were studied, and a simple and effective protocol with optimized condition for transformation of P. deltoides (Ⅰ-63×Ⅰ-69) was established. The results demonstrated that the highest frequency of the transformation was 28.9% under these conditions: the 12 h of pre-eulture time, explants infected by A. tumefaciens (OD_(600)=0.3~0.4), co-culture time(4d), acetosyringone (150μmol/L) was added during co-culture and selection was delayed after 10 days of co-culture. Through successive selection in buds growth and root induction stage at high concentration of kanamycin presence we obtained 17 kanamycin-msistance rooted plants.
     PCR analysis showed that 6 of these 17 kanamycin-resistant rooted plants were BtCry1A gene positive. These 6 PCR positive plants were further confirmed by ELISA and SDS-PAGE analysis. Our results indicated that BtCry1A gene was efficiently expressed and the quantity of Bt insecticidal protein is about 3.88~2.36ppb, MTr analysis showed that the protein of PCR positive plant named X1 was strikingly insecticidal to cultured Trichoplusia ni Hubner cells in vitro. Bioassay results that X1 was significantly resistant to feeding by first larvae of Clostera anachoreta(Fabricins), compared with the untranaformed control plant. The significant decrease of leaf consumption by larvae, a slow weight gain of larvae and a higher larvae mortality rate of Clostera anachoreta (Fabricius) were observed.
引文
1. Ahuja M R. Mcropagation of woody plants. New York: Dordrecht Klauwer Academic Publishers, 1993, 187-194.
    2. Ahuja M R, Hanover J W, Keathley D E et al.. Gene transfer in Genetic Manipulation of Woody Plants, New York:Plenum Press, 1988, 25-41.
    3. Barton K A, Whiteley H R, Yang N S. Bacillus thuriniensis d-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant physiol, 1987, 85: 1103-1109.
    4. Becker J, Siegert H, Logemann J, et al. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. The Plant Journal, 1994, 5(2): 299.
    5. Berliner E. Uber die schlaffsuchtr der mehlmottenraupe(Ephestia kuehniella zell), undihren erreger Bacillus thuringiensis n.sp. Zeitschrift fU rangewandtes entomologie(Ger), 1915, 2: 29-56.
    6. Bevan M W, Flavell R B, Chilton N D.A chimaetic antibiotic resistance gene as a selectable marker for plant cell transformation.. Nature, 1990, 304:184-187.
    7. Bourgouin C, Delecluse A, Ribier J et al.. A Bacillus thuringiensis subsp, Israelensis gene endoing a 125-kilodalton larvieidal polypeptide is associated repeay sequences. Bacteriol, 1988, 170: 3575-3583.
    8. Bradley D, Harkey M A, Kim M K et al.. The insecticidal CryIB crystal protein of Bacullus thuringiensis has dual specificity to coleopteran and lepidopteran larvae. Invert. Pathol., 1995, 65:162-173.
    9. Bravo et al..Cryoprotective activity of a cold-induced dehydrin purified from barHy. Physoil Plant, 2004, 118: 262-269.
    10. Cannon R J C. Bacillus thuringiensis use in agriculture: a molecular perspective, Biol. Rev, 1996, 71: 561-636.
    11. Carozzi N B, Kramer V C, Warren G W, et al.. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ Microbiol, 1991, 57:3057-3061.
    12. Chen X J, Curtiss A, Alcantara E et al.. Mutations in domain I of Bacillus thuringiensis d-endotoxin CryIAb reduce the irreversible binding of toxin to Manduca sexta brash border membrane vesicles. Biol.Chen., 1995, 270: 6412-6419.
    13. Cho H J, Kim S J, Rhim S L et al. Transgenic Tomato Plants Expressing Insecticide Activity against Colepteran Larvae.Mol.Cells, 1992, 2: 329-334.
    14. Choma C T, Surewicz W K, Carey PR et al.. Unusual proteolysis of the protoxin and tixin of Bacillus thuringiensis structural implications.Eur. Biochem., 1990, 189: 523-527.
    15. Coleman G D, Ernst S G.In vitro shoot regeneration of Populus deltoides: effect of cytokinin and genotype. Plant Cell Rep, 1989, 8: 459-462.
    16. Confalonieri M, Balestrazzi A, Celia R. Genetic transformation of Populus deltoides and P.xeura mericana clones using Agrobacterium tumefaciens. Plant Cell, Tissue Org Cult, 1997, 48: 53-61.
    17. Cook R J,Thomashow L S,Weller D W, et al.. ProcNatl Acad Sci. USA, 1995, 92: 4197-4201.
    18. Crickmore N, Zeigler DR, Feitelson J et al..Program and abstracts of the 28th annual meeting of the society for invertebrate pathology. Society invertebrate pathology, 1995.
    19. Crickmore N, Zeigler D R, Feitelson J et al.. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiogy and Molecular Biology Reviews, 1998, 62: 807-8140.
    20. Crickmore N, Zeigler D R, Feitelson J,et al.. Revision of nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 1998(62): 807-813.
    21. Cummings CE, Armsrong G, Hodgman TC et al..Structural and functional studies of a synthetic peptide mimicking a proposed membrane inserting region of a Bacillus thuriniensis d-endotoxin. Mol. Memb. Biol., 1994, 11:87-92.
    22. DeBlockM. Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol, 1990, 93: 1110-1116.
    23. Eriksson M E, Israelsson M, Olsson O, Moritz T. Increased gibberellin biosynthesis in transgenic trees promotes growth,biomass production and xylem fiber length.Nat Biotechnol, 2000, 18(7): 4-8.
    24. Feitelson, Payne and Kim.Bacillus thuringiensis insects and beyond. Bio/Technology. 1992, 10:271-275.
    25. Ferre J, Van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual. Review of Entomology, 2002, 47:501-533.
    26. Fillati J J et al.. Agrobacterium mediated transformation and regeneration of poplar. Mol. Gen. Genet., 1987, 206:192-199.
    27. Fischhoff, Bowdish, Perlak. et al.. Insect Tolerent Tomato Plants. Biotechnology, 1987, (5): 807-813.
    28. Gallardo F, Fu J M. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta, 1999, 2(10): 19-26.
    29. Garczynski SF, Crim JW and Adang MJ.Identification of putative insect brush border membranebinding molecules specific to Bacillus thuriniensis d-endotoxin by protein blot analysis. Appl. Environ.Microbiol., 1991, 57:2816-2820.
    30. Gazit E and Shai Y. Structural and functional characterization of the a5 segment of Bacillus thuriniensis d-endotoxin. Biochemistry, 1993, 32:3429-3436.
    31. Ge A Z, Shivarova N I and Dean D H. Location of the Bombyx mori specificity domain on a Bacillus thuriniensis d-endotoxin protein. Prec. Natl. Acad. Sci., 1989, 86:4037-4041.
    32. Gill S S, Ccowlest E A and Pictrantonio PV. The mode of action of Bacillus thuriniensis endotoxins. Annu. Rev. Entomal., 1992, 37:615-636.
    33. Gonza lez J M, Jr B, Brcwn J, et al..Transfer of Bacillus thuringiensis plamids encoding for d-endotox in among strains of B. thuringiensis and B. cereus. Proe Nail Acsd. Sci., 1982, 79: 6951-6955.
    34. Griffitts J S, Haslam S M, Yang T, et al. Glycolipids as receptor for Bacillus thuringiensis Crystal toxin. Science, 2005, 307: 922-925.
    35. Grochulski P, Masson L, Borisova S et al..Bacillus thuriniensis CryA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol., 1995, 254:447-464.
    36. Hainder MZ, Knowles B and Ellar DJ. Specificity of Bacillus thuriniensis Var. colmeri insecticidald-endotoxin by differential processing of the protoxin by larval gut proteases. Eur. Biochem., 1986, 156:531-540.
    37. Hannary C L. Crystalline inchusions in aerobic spore-formlng bacteria. Nature, 1953,172:1004.
    38. Hannary C L and Fitz-James. The protein crystals of Bacillusthuringiesis Berliner. Can. J. Microbiol., 1955, 1:674-710.
    39. Hamilton C M.A binary-BAC system for plant transformation with high-molecular-weight DNA.Gene,1997,200:107-116.
    40. Hamilton C M,Frary A, Lewis C,et al..Stable transfer of intact high molecular weight DNA into plant chromosomes.Proc Nail Acad. Sci. USA, 1996, 93:9975-9979.
    41. Hofte H and Whiteley H R. Insecticidal crystal proteins of Bacillus huringiensis. Microbiol. Rev., 1989, 53:241-255.
    42. Horsh R B. A simple and general method for transfering genes into plants. Science, 1985, 217:1229-1231.
    43. Howe G T, Goldfarb B, Strauss S.H. Agrobacterium-mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants. Plant Cell Tissue Org Cult, 1994, 36: 59-71.
    44. Huang F H, Li X Y. Effects of concentration of acetosyringone and Agrobacterium tumefaciens on Gus gene transformation efficiency of Populus. In Vitro Cell Dev Biol, 1994, 30A (3, Part Ⅱ):67.
    45. Huetteman C A, Preece J E. Thidazuron:a potent cytokinin for woody plant tissure culture. Plant Cell Tissure Org Cult, 1993, 33:105-119.
    46. Hu W J, Harding S A, Lung J, Popko J, Stokke D, Tsai C, Chiang V. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol, 1999, 17: 808-812.
    47. Ipekel Z,Ogras T, Altinkut A, Bajrovic K, Gozukirmlzl N, Boydak M, Tunctaner K, Tulukcu M, Balkan H, Tanriyar H. Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar. Plant Biotechnol, 1999, 16: 381-387.
    48. Jacq B, Lesobre O, Sangwan R S, et al.. Factors influencing T-DNA transfer in Agrobacterium tumefaciens-mediated transformation of Agrobacterium-mediated transformation of sugarbeet. Plant Cell Rep, 1993, 12:621-624.
    49. Karl W K, David D E, et al.. Field evaluation of transgenic poplar expressing a Bacillus thuringiensis Cry1A(a) d-endotoxin gene against forest tent caterpillar (Lepidoptera: Lecsiocampidae) and gypsy moth (L:Lymantriidae) following winter dormancy. Environ Entomol, 1995, 24(5): 1358-1364.
    50. Kleiner K W, Ellis D D, McCown B H, et al.. Field evaluation of transgenic poplar expressing a Bacillus thuringiensis Cry1A(a) endotoxin gene against forest tent caterpillar and gypsy moth following winter dormancy.J.Entomology, 1995, 24(5):1385-1364.
    51. Klopfenstein N B, Mcnabb J H, Hart E R. Transformation of Populus hybrids to study and improve pest resistance. Silvae Genet, 1993, 42:86-90.
    52. Knight PJ, Crickmore N, Ellar DJ.The receptor for Bacillus thuriniensis CryA(c) d-endotoxins in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol., 1994, 11:429-436.
    53. Knight P J K, Crichmaore N, et al.. The receptor for Bacillus thuringiensis Cry1A(c) d-endotoxin in the brush border membrane of the Lepidopteram Manduca sexta is a minopeptiase N. J. Mol Microbiol, 1994, 11:429-430.
    54. Knowles BH and Ellar D J. Characterization and partial purification of a plasma membrane receptor for Bacillus thuriniensis var kurstaki Lepidopteran-specific d-endotoxin. Cell Sci., 1986, 83:89-101.
    55. Kronstad J M, Schnepf H E, White ley H R. Diversity of locations for Bacillus thu ring iensis crystal prote in genes. Bacte riol, 1983, 154; 419-428.
    56. Kuo W S. Chak K E Identification kf novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polym orphism kf the PCR amplified DNA.Appl. Environ Microbiol, 1996, 62(4):1369-1377.
    57. Labra M, Savini C, Bracale M, et al.. Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Rep, 2001, 20: 325-330.
    58. Lan Godwin et al. The effects of acetosyringone and PH on Agrobacterium mediated transformation vary according to plant species. Plant Molecular Biology Report, 1992, 10 (1):1-36..
    59.Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate J C, Boeijan W, Ferret V, De Nadai V, Jouanin L. Structural alteration of lignins in transgenic poplars with depressed cinnamy alcohol dehydrogenase or caffeic acid Omethy-transferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol, 1999, 119:153-163.
    60. Leple J C, Brasileiro A C M, Michel M F, et al.. Transgenic poplars:expression of chimeric genes using four different constructs J. Plant Cell Report, 1992(11): 137-141.
    61. Leple J C, Pilate G, Jouanin L.Transgenie poplar trees(Populus species). Berlin: Springer-Verlag Berlin Heidelberg, 1999, 221-244.
    62. Liewellyn D. Proceeding of the 2nd Canberra Meeting on Bacillus thuringiensis Csiro. Australia, 1994, (3):19-21.
    63. Lin J J, Assadd-garcis N, Kou J. Plant horm one effect of antibiotics on the transformation efficiency of plant tissue by Agrobacterium tumefacieus cells. Plant Sci., 1995, 109:171-177.
    64. Li JJ, Carroll and Ellar D J. Crystal structure of an insecticidal protein:thed-endotoxin gene from Bacillus thuringiensis subsp. Tenebrionis at 2.5 resolution. Nature, 1991, 353:815-821.
    65. Liu Y G, Shirano Y, Fukaki H, et al.. Comple mentation of plant mutants with large genomic DNA fragments by a transformation-competent artifical chromosome vector accelerates positional cloning. Proc Natl Acad Sci. USA, 1999, 96:6535-6540.
    66. Masson L, Mazza A, Brousseau B et al.. Kinetic of Bacillus thuringiensis toxin binding with brush border membrance vesicles from susceptible and resistant lavae of Plutella xylostella. J.Bio.Chem., 1995, 270(20):11887-11896.
    67. McGaughey W H, Beeman R W. Resistance to Bacillus thuringiensis in colonies of Indian meal moth and almond moth(Lepidoptera: Pyralidae). Journal of Economic Entomology, 1988(81):28-33
    68. Mettler, L. The Proceeding the 2nd Pacific Rimconference on Biotechnology of Bacillus thuringiensis and its Impact on the Environment. J.Thailand, 1996, 78-79.
    69. Nishimoto T, Yoshisue H, lhara K et al..Functional analysis of block 5,one of the highly conserved amino acid sequence in the 130-kD CryIVA protein produced by Bacillus thuringiensis subsp. Israelensis. FEBS Lett., 1994, 348:249-254.
    70. Perlak F J, Deaton RW, Armstrong T A et al.. Insect resistant cotton plants. Bio/Teclnology, 1990, 8:939-942.
    71. Perlak,EJ. Modification of the Coding Sequence Enhances Plant Expression of Insect Control Protein Gene. Bioteclnology, Proc. Natl. Acad. Sci. USA, 1991, (88):324-328.
    72. Pierik R L M. In vitro culture of higher plants. Dordrecht: Martinus Nijhcff Publishers, 1987,183-229.
    73. Ping Wing. Mechanisms of Bt resistance in insects 第八届国际苏云金芽孢杆菌研讨会报告).2006,8.
    74. Rajamohan F, Flcantara E, Lee MK et al.. Single amino acid changes in domain Ⅱ of Bacillus thuringiensis CryIAB d-endotoxin Affect irreversible binding to Manduca sexta midgut membrance vesicles. Bacteriol, 1995, 177:2276-2282..
    75. Rhim S L, Jahn N, Schnetter W et al. Heterologous expression of a mutated toxin gene from B.thringiensis subsp, tenebrionis. FEMS Microbiology Lett., 1990, 66:95-100.
    76. Sangadala S,Walters F S, et al.. A mixture of Manduca sexta a minopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal cryIA(c) toxin binding and ~(86)Rb~+-K~+ offlux in vitro. Biol Chem, 1994, 11:429-430.
    77. Schnepf H E, Tomczak K, Ortega J P, et al.. Specificity-determining regions of lepidopteran-specific insecticidal proteins produced by Bacillus thuringiensis. Biol.Chem, 1990, 265: 20923-20930.
    78. Schrott M.Selectable marker and reporter genes[A]. In:Spangenbery P G (ed).Gene Transfer to Plants:A laboratory Manual [C]. Berlin Springer, 1995:325-336.
    79. Seong Lyul Rhim and Joon Chul Kim.Expression of Insectidal-Endotoxin Gene form Bacillus thuringiensis subsp, tenebrionis in Tobacco Plants.Korean. Plant Tissue Culture, 1992, 19(2):101-106.
    80. Sheerman S, M W Bevan. A rapid transformation method for solanum tubrtosum using brinary Agrobacterium tumefaciens vectors. Plant Cell Rep., 1988, 7:13-16.
    81. Smalla K, Cresswell N, Mendonca-Hagler L C,et al..Rapid DNA extraction protocol from soil for polymerase chain reaction mediated amplification.Appl Environ Microbiol, 1993, 74:78-85.
    82. Stoger E, Williams S, Keen D,et al.. Molecular characteristics of transgenic wheat and the effect on transgene expression.Transgenic Res., 1998, 7:463-471.
    83. Song Y N, Shibuya M, Ebizuka Y, et al.. Synergistic action of phendic signal compounds and carbohydrates in the induction of virukence gene expression in Agrobacterium tumefaciens. Chem Pharm Bull, 1991, 39: 2347-2350.
    84. Tabashnik et al..Resrstame management: Slowing pest adaptation to transgenic crops. Soil & Plant Science, 2003, 1(53): 51-56.
    85. Tuominen H, Puech L, Regan S, Fink S, Olsson O, Sundberg B. Cambial-region-specific expression of the Agrobacterium iaa genes in transgenic aspen visualized by a linked uidA reporter gene.Plant physiol, 2000, 123:531-42.
    86. Tuominen H, Sitbon F, Jacobsson C, Sandberg G, Olsson O, S undberg B. Altered growth and wood characteristics in transgenic hybrid aspen expressingAgrobacterium tumefaciens T-DNA indoleacetic acid biosynthetic genes. Plant Physiol, 1995, 109:1179-1189.
    87. Vadlamudi R K, Ji T H; Bulla L A et al. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. Berlin. J Bio Chem, 1993, 268.
    88. Vadlamudi R K, Weber E, et al..Cloning and expression of receptor for an insecticidal toxin of Bacillus thuringiensis. Biol Chem, 1995, 270:5490-5494.
    89. Vadlamudi R R, Ji T H anf Bulla L A. A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp.berliner. BiolChim., 1993, 269: 12334-12340.
    90. Vaeck M, Reynaerts A, Hofte H et al..Transgenic plants protected from insect attack.Nature, 1987, 328:33-37.
    91. VanRie J., McGaughey, W.H.andJohnson, D.E. Mechanism of Insect Resistance to the Micro Bial Insect Bacillus thuringiensis. Science, 1990, (247):72-74.
    92. Von Schwartzenberg K, Doumas P, Jouanin L, Pilate C. Enhancement of the endogenous cytokinin concertration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol, 1994, 14:27-35.
    93. Von Tersch MA, Slatin SL, Kulesza CA et al.. Membrance-permeabilizing activities of Bacillus thuringiensis Coleopteran-active toxin CryⅢB2 and CtyⅢB2 domain Ⅰ peptide. Appl. Environ. Microbiol., 1994, 60:3711-3717.
    94. Walters FS, Slatin SL, Kulesza CA et al.. Ion channel activity of N-terminal fragment from Cry Ⅰ A(c) d-endotoxin Biochem. Biophys. Res. Commun., 1993, 196:921-926.
    95. Welsh J, Mc Clell M.Finger printing genomes using PCR with arbitrary primers, Nucl Acids Res, 1990, 18:7213-7218.
    96. Willians J G, Kubelik A R, Livak K J, et al.. DNA polymorphism samplified by arbitrary primersa reuse fulasg enetic markers. Nucl Acids Res, 1990, 18:65313-6535.
    97. Whitely H R and Schnepf H E.The molecular biology of parasporal crystal body formation in Bacillus thuringiensis.Annu. Rev. Microbio., 1986, 40:549-576.
    98. Xiao-xia Liu, Chang-Gui Sun, Qing-wen Zhang. Effects of transgenic Cry1A + CpT1 cotton and Cry1Ac toxin on the parasitoid, Campoketis chlorideae (Hymenoptera: lchneumonidae). Insect Science, 2005, 12(2):101-107.
    99. Xiao-mu Ma, Xiao-xia Liu, Qing-wen Zhang, et al. Impact of transgenic Bacillus thuringiensis cotton on a non-target pest Tetranychus spp. in Northern China. Insect Science, 2006, 13 (4): 279-286.
    100. Xu S Z H, Lu N K, Jiang Y D, et al.. Synthesis of Ceftriaxone sodium. Chinese Journal of Antibiotics, 1994, 19(2):124-127(in Chinese).
    101. Yepes L M, Aldm Inkle H S. Factors that affect leaf regeneration efficiency in apple and effect antibiotics in morphogenesis. Plant Cell Tissue and Organ Culture, 1994, 37: 257-269.
    102.陈颖,韩一凡,李玲,等.苏云金杆菌杀虫晶体蛋白基因转化美洲黑杨的研究[J].林业科学,1997,33(1)69-74.
    103.常玉广,刘桂丰,姜静,等.小黑杨抗虫基因的遗传转化[J].东北林业大学学报,2004,32(6):40-41.
    104.陈丹,米景九,谢友菊,等.细菌CAT基因在转基因番茄植株上的表达[J].植物学报,1990,32(8):589-593.
    105.程振东,卫志明,许智宏.根癌农杆菌对甘蓝型油菜的转化及转基因植株的再生[J].植物学报,1994,36(9):657-663.
    106.陈业坚,张增勤,吴其褒,等.Bt基因在农业上的应用及其生物安全性[J].上海农业科技,2005,2:29-30.
    107.陈曲侯,李宗池主编.昆虫病理学纲要[M].武汉:华中师范大学出版社,1989.
    108.陈维伦,郭东红,杨善英,等.山新杨(P.davidiana×P.bolleana Loucne)叶外植体器官分化以及生长调节物质对它的影响[J].植物学报,1980,,22:311-315.
    109.曹川键,任玉芬,黄慧.三倍体速欧洲山杨的试管繁殖.植物生理学通讯[J],1998,34(2):124-1125.
    110.傅荣昭,孙勇如,贾士荣.植物遗传转化技术手册[M].北京:中国科学出版社,1994,4.
    111.海燕,何宁,康明辉,等.抗虫杨的组织组织培养[J].河南林业科技,2004,24(4):13-14.
    112.黄大年,李敬阳,章善庆,等.用抗除草剂基因快速检测和提高杂交稻纯度的新技术[J].科学通报,1998,43(1):67-70.
    113.洪华珠,杨红编著.杀虫微生物纲要[M].武汉:华中师范大学出版社,1998.
    114.惠楠.单倍体小黑杨抗生素敏感试验[J].林业科技,2004,29(4):7-9.
    115.郝贵霞,朱祯等.豇豆蛋白酶抑制剂基因转化毛白杨的研究[J].植物学报,1999,41(12):1276-1282.
    116.贾士荣,郭三堆,安道昌主编.转基因棉花[M].北京:科学出版社,2001.
    117.将泽平,朱鹿鸣.山杨叶柄的离体快繁[J].植物生理学通讯,,1991,27(1):42.
    118.罗建勋.西南杨的离体繁殖.植物生理学通讯[J],1995,31(6).433-434.
    119.李毅,邸利,刘从,等.箭胡毛杨良种无性快繁技术的研究[J].林业科技通讯,2001,9:10-11.
    120.李慧,陈晓阳,李支,等.银白杨叶片不定芽再生影响因素的研究[J].北京林业大学学报,2004,26(3):46-50.
    121.李卫,郭光沁,郑国錩.根癌农杆菌介导遗传转化研究的若干问题新进展[J].科学通报,2000,45(8):798-807.
    122.李明亮,张辉,胡建军,等.转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究[J].植物学通报,2000,42(3):263-268.
    123.李燕娥,焦改丽,李淑君,等.转基因棉花纯合系的获得和遗传分析研究[J].中国农业科学,1998,31(5):44-47.
    124.罗晓丽,肖娟丽,张安红,等.潮霉素作为选择抗生素在农杆菌介导转化中的应用[J].棉花学报,2005,17(3):186-188.
    125.刘凯于.粉纹夜蛾细胞对BtCry1Ac毒素的抗性特点及其机制的研究.华中师范大学博士学位论文,2005.
    126.林良斌,官春云.Bt毒蛋白与植物抗虫基因工程[J].生物工程进展,,1997,17(2):51-56.
    127.林善枝,肖基浒,张志毅.杨树抗性基因工程研究进展[J].北京林业大学学报,2002,22(6):84-88.
    128.毛国杰,欧阳晴,蔡文启,等.一种适用于转基因番茄检测的高校稳定的DNA提取方法[J].农业生物技术学报,2001,9:363—365.
    129.毛慧珠,唐惕,曹湘玲,等.抗虫转基因甘蓝及其后代的研究[J].中国科学(C辑),1996,26(4):339~347.
    130.马宗新,高玉祥,赵红,等.三倍体速生杨树的组织培养及应用.安徽农业科学[J],2004,32(4):715-716.
    131.祁春芳,郑智礼.白杨派杨树组培技术研究[J].山西林业科技,2000,(4):21-23.
    132.乔光明.抗虫基因Bt的研究进展[J].西南科技大学学报,2005,20(2):75-78.
    133.宋福平,张杰,黄大方,等.苏云金杆菌cry基因PCR-RFLP鉴定体系的建立[J].中国农业科学,1998,31(3):13-18.
    134.邵莉,李毅,杨美株,等.查尔酮基因对转基因植物花色和育性的影响[J].植物学报,1996,38(7):517-524.
    135.司少鹏,周萍,陈家美.84K杨树的离体快速繁殖试验[J].江苏林业科技,2002,29(3):29-29.
    136.苏建亚,周晓梅,沈晋良.抗Bt棉铃虫幼虫Bt受体氮肽酶N(APN2)基因克隆[J].中国生物工程杂志,2004,10(24):59-62.
    137.田颖川,李太元,莽克强,等.抗虫转基因欧洲黑杨的培育[J].生物工程学报,1993,9(4):291-297.
    138.唐万鹏,宋丛文.湖北省杨树产业化地现状、问题及对策.《湖北林业发展高峰论坛》论文汇编,2006.
    139.王学聘,韩一凡,戴莲韵,等.抗虫转基因欧美杨的培育[J].林业科学,1997,33(2):69-76.
    140.王永芳,高嘉宝,郑均宝,等。杨树抗虫基因工程研究进展[J].河北林果研究,2002,16(1):83-90.
    141.武长剑,范云六.水稻广亲和品种“02428”抗除草剂转基因植株的获得[M].农作物遗传工程[C].北京:中国农业出版社,1996.
    142.伍宁丰,孙芹,姚斌,等.抗虫的转AalT基因杨树的获得[J].生物工程学报,2000,16(2):129-133.
    143.王忠华,舒庆尧,崔海瑞,等.Bt杀虫基因与B转基因抗虫植物研究进展[J].植物学通报,1999,16(1):51-58.
    144.王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002.
    145.伍宁丰,范云六.含苏云金芽孢杆菌杀虫蛋白基因的杨树工程植株的建立[J].科学通报,1991,9:705-708.
    146.王宏乾,邱本旺,陈永新,等.中嘉8号等杨树杂交新品系选育[J].林业科技开发,2003,17(6):21-23.
    147.王桂荣,梁革梅,吴孔明.棉铃虫中肠氨基氨肽酶N基因的克隆及序列分析[J].中国农业科学,2003,36(11):1293-1300.
    148.杨美株.根癌农杆菌介导的植物基因转化[J].植物生理学报,1998,24(3):258-271.
    149.闰新甫.转基因植物[M].北京:科学出版社,2003.
    150.喻子牛主编.苏云金杆菌[M].北京:科学出版社,1990.
    151.尹伟伦主编.中国杨树栽培与利用研究[M].北京:中国林业出版社,2005.
    152.喻子牛主编.苏云金芽孢杆菌制剂的生产和应用[M].北京:农业出版社,1993.
    153.朱大保.国外杨树组培微繁技术的进展[J].北京林业大学学报,1990,12(1):84-91.
    154.朱玉贤,张翼凤,李慧英,等.用cDNA差式分析法克隆受GA抑制的豌豆基因[J].中国科学C辑,1997,3(2):253—257.
    155.郑均宝,张玉满,杨文芝,等.741杨离体叶片再生及抗虫基因转化[J].河北农业大学学报,1995,118(3):20-25.
    156.钟蓉,刘玉乐,刘峰,等.TA29-Bar基因导致油菜雄性不育的研究[J].植物学报,1996,38(7):582-585.
    157.郑均宝,梁海永.转双抗虫基因741毛白杨的选择及抗虫性[J].林业科学,2000,36(2):13-19.
    1. Ahuja M R, Mcropagation of woody plants. Dordrecht Klauwer Academic Publishers, 1993, 187-194.
    2. Coleman G D, Erst S G. In vitro shoot regeneration of Populus deltiodes:effect of cytokinin and genotype. Plant Cell Rep, 1989, 8:459-462
    3. Victor B, Busov, Richard Meilan, David W, Pearce,et al.. Activation Tagging of a Dominant Gibberellin Catabolism Gene from Popular That Regulates Tree Stature.Plant Physiology. 2003, 132:1283-1291
    4.陈维伦,郭东红,杨善英,等.山新杨(P.davidiana×P.bolleana Loucne)叶外植体器官 化以及生长调节物质对它的影响.植物学报[J],1980,,22:311-315.
    5.曹川键,任玉芬,黄慧.三倍体欧洲山杨的试管繁殖.植物生理学通讯[J],1998,34(2):124-1125.
    6.杜荣鶱主编.生物统计学[M].北京:高等教育出版社,2005.
    7.谷瑞生,蒋湘宁,郭仲琛,等.胡杨离体器官发生及试管无性系的建立.植物学报[J],1999,41(1):29—33.
    8.何生根,刘伟,许恩光,等编著.植物生长调节剂在观赏植物和林木上的应用[M].北京:化学工业出版社,2003.
    9.惠楠.单倍体小黑杨抗生素敏感试验[J].林业科技,2004,29(4):7-9.
    10.海燕,何宁,康明辉,等.抗虫杨的组织培养[J].河南林业科技,2004,24(4):13-14.
    11.将泽平,朱鹿鸣.山杨叶柄的离体快繁.植物生理学通讯[J],1991,27(1):42.
    12.李明浚编译.植物组织培养教程[M].北京:中国农业大学出版社,2003.
    13.李竣明编译.植物组织培养教程(第二版)[M].北京:中国农业大学出版社,2002.
    14.罗建勋.西南杨的离体繁殖[J].植物生理学通讯,1995,31(6).433-434.
    15.马宗新,高玉祥,赵红,等.三倍体速生杨树的组织培养及应用[J].安徽农业科学,2004,32(4):715-716.
    16.祁春芳,郑智礼.白杨派杨树组培技术研究[J].山西林业科技,2000,(4):21-23.
    17.司少鹏,周萍,陈家美.84K杨树的离体快速繁殖试验[J].江苏林业科技,2002,29(3):29-29.
    18.宋国庆,肖兴国,李绍华,等.草莓叶片和叶柄再生体系的建立[J].落叶果树,2000,(2):5-8.
    19.王宏乾,邱本旺,陈永新,等.中嘉8号等杨树杂交新品系选育[J].林业科技开发,2003,17(6):21-23
    20.王小青,李玲编.植物生长调节剂在植物组织培养中的应用[M].北京:化学工业出版社,2003.
    21.谢从华,柳俊主编.植物细胞工程[M].北京:高等教育出版社,2004.
    22.于志水,金红,茼胜军,等.黑杨派杨树组培再生系统的研究[J].辽宁林业科技,2002,6:11—13.
    23.张绮纹,苏晓华,李金花.中国杨树遗传改良[J].中国农业科技导报,1999,(2):54-58
    24.赵天赐,苏晓华主编.中国杨树集约栽培[M].北京:中国科技出版社,1994.
    25.朱大保.国外杨树组培微繁殖技术的进展.北京林业大学学报[J].1996,12(1):84-90
    26.赵芳,李云.生长物质对刺槐复叶离体再生的影响[J].核农学报2004,18(3):207~212.
    1. Block M. Factors influencing the tissue culture and the Agrobacterium tumefaciens mediated transformation of hybrid aspen and polar clones. Plant physiol, 1990, 93: 1110-1116.
    2. Holford P, Newburg H J. The effects of antibiotics and their breakdown products on the in vitro growth of antirrhinum majus. Plant Cell Rept, 1992, 11(2):93-94.
    3. Horsh R B. A simple and general method for transfering genes into plants. Science, 1985, 217:1229-1231.
    4. Lin J J, Assadd-Garcis N, Kou J. Plant horm one effect of antibiotics on the transformation efficiency of plant tissue byAgrobacterium tumefaciens ceils. Plant Sci., 1995, 109:171-177.
    5. Shackelford N J, Chlan C A.Identification of antibiotics that are effective in eliminating Agrobacterium tumefaciens. Plant Mol Biol Rep, 1996, 14(1):50~57.
    6. Sheerman S, M W Bevan A rapid transformation method for solanum tubrtosum using brinary Agrobacterium tumefaciens vectors. Plant Cell Rep.1988,7:13-16.
    7. Yepes L M, Aldwinkle H S. Factors that affect leaf regeneration efficiency in apple and effect antibiotics in morphogenesis. Plant Cell Tissue and Organ Culture, 1994,37:257-269.
    8.邓君萍,颜双春,候佩,等.不同抗生素种类及浓度对麻疯树组织培养的影响[J].应用与环境生物学报,2005,11(2):156-159.
    9.杜荣骞.生物统计学[M].北京:高等教育出版社,2003(第二版).
    10.樊军锋,韩一凡,李铃,等.84K杨树耐盐基因转化研究[J].西北林学院学报,2002,17(4):33—37.
    11.桂耀林,马城.植物组织培养[M].北京:科学出版社,1985.
    12.惠楠.单倍体小黑杨抗生素敏感试验[J].林业科技,2004,29(4):7-9.
    13.郝贵霞,朱祯等.豇豆蛋白酶抑制剂基因转化毛白杨的研究[J].植物学报,1999,41(12):1276-1282.
    14.黄学林,李莜菊.高等植物组织培养的形态建成及其调控[M].北京:科学出版社,1995.
    15.李浚明.植物组织培养教程[M].北京:中国农业大学出版社,2002.
    16.李慧,陈晓阳,李云,等.银白杨叶片不定芽再生影响因素的研究[J].北京林业大学学报,2004,26(3):46-50.
    17.潘瑞炽.植物组织培养[M].广州:广东高等教育出版社,2001.
    18.王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002.
    19.吴洁,谭文芳,阎文昭,等.不同抗生素养对甘薯遗传转化的影响[J].西南农业学报,2005,18(1):77-79.
    20.吴关庭,胡张华,郎春秀,等.抗生素对高羊茅胚性愈伤组织生长与分化的影响[J].核农学 报,2005,19(2):88-91.
    21.奚元龄,颜昌敬.植物细胞培养手册[M].北京:农业出版社,1992.
    22.闰新甫.转基因植物[M].北京:科学出版社,2003.
    23.于志水,金红,苘时军,等.黑杨派杨树组培再生系统的研究[J].辽宁林业科技,2002,(6):12-13.
    24.张锋,杨维春,王振平.转基因杨树的研究进展及应用前景[J].山东林业科技,2002,141(4):95-97.
    25.赵华燕,卢善发,晁瑞堂,等.杨树的组织培养及其基因工程研究[J].植物学通报,2001,8(2):169—176.
    26.张福明,高照海,徐希玉,等.转基因杨树的组培快繁[J].湖北林业科技,2000,(4):19.
    27.郑进,康薇,彭建新,等.抗生素对农杆菌的抑制和杨树叶片分化的影响[J].林业科技开发,2006,20(1):34-36.
    28.钟名其,楼程富,谈建中.桑树遗传转化技术中抗生素的浓度优化研究[J].汕头大学学报(自然科学版),2001,16(2):1-6.
    29.郑进,刘凯于,洪华珠.杨树抗性转基因研究进展[J].湖北林业科技,2004,31-37.
    1. Atkinson et al..The clear-felling of sand-dune plantations:soiland vegetational processes in babitat restoration. Biological Corservation, 1993, 66:171-183.
    2. Balton G W, Nester E W, Gordon M P. Plant phenolic compounds induce expression of the Agrobacterium faciens loci needed for virulence. Science, 1986, 232:983-985.
    3. Bevan M.Binary Agrobactefium vectors for plant transformation.Nucleic Acids Res,,1996, 12(22):8711-8721.
    3. Confalonieri M, Balestrazzi A, Celia R. Genetic transformation of Populus deltoides and P.xeuramericana clones using Agrobacterium tumefaciens. Plant Cell Tiss Org Cult, 1997, 48: 53-61.
    4. Confalonieri M, Balestrazzi A, Bisoffi S. Factors affecting Agrobacterium tumefaciens-mediated transformation in several black poplar clones. Plant Cell Tiss Org Cult, 1995, 43: 215-222.
    5. De Block M. Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol, 1990, 93: 1110-1116.
    6. Godwin I. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Mol Biol Rep, 1992, 10:12-36.
    7. Holford P, Hernandes N, Newbury H J.Factors influencing the efficiency of T-DNA transfer during co-cultivation of Antirrhinum majus with Agrobacterium tumefaciens. Plant Cell Rep, 1992, 11: 196-199.
    8. Horsch R B, et al.. A simple and general method for transferring genes to plants. Science, 1985, 227: 1229-1231.
    9. Huang F H, Li X Y. Effects of concentration acetosyringone and Agrobacterium tumefaciens on Gus gene transformation efficiency of Populus. In Vitro, 1994,30:67.
    10. Ishida Y, Saito H, Ohta S, et al. Efficiency transformation of maize mediated by Agrobacterium tumefaciens. Nature Biotech, 1996,14:745-751.
    11. McCown B H, McCabe D E, Russeu D R. Stable transformation of populus and corporation of pest resistance by electric discharge particle acceleration. Plant Cell Reports, 1991, 9:590-594.
    12. Owens L D, Smigocki A C. Transformation of soybean cells using mixed strains of Agrobacterium tumefaciens and phenolic compounds. Plant Physiol, 1988, 88: 570-573.
    13. Rashid H,Yokoi S,Toriyama K,et al. Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Reports, 1996,15:727-730.
    14. Stachel S E, Nester E W, Zambryski P C.A Plant cell factor induce Agrobacterium faciens vir gene expression. Proc Natl Acad Sci, USA, 1986,83:379-383.
    15. Steven H, Rogstad et al.DNA Extraction from plants:the use of pectinase. Plant Molecular Biology Reporter, 1991,225(3):501-509.
    16. Tingay S, McElroy D, Kalla R, et al. Agrobacterium faciens-mediated barley transformation. Plant. 1997,11(6):1369-1376.
    17. Tzfira T, Ben-Meir H, Vainstein A, Altman A. Highly efficient transformation and regeneration of aspen plant through shoot formation in root culture. Plant Cell Rep,1996,15:566-571.
    18. Zheng J-B(郑均宝), Wang F(王锋),Liu Q-L(刘群录), et al. Studies on the clones of gene-transformed Populus tomentosa. Sci Silv Sin(林业科学), 1995,31:181-184.
    19. Zhou J-M(周冀明),Wei Z-M(卫志明),Xu Z-H(许志宏).Agrobacterium-mediated transformation of Orychopheagmus violaceus and regeneration of transgenic plants. Acta Phytophysiol Sin(植物生理学报), 1997, 23:21-28(in Chinese).
    20.常玉广,刘桂丰,姜静,等.小黑杨抗虫基因的遗传转化[J].东北林业大学学报,2004,32 (6):40-41.
    21.陈颖,韩一凡,李玲,等.苏云金杆菌杀虫晶体蛋白基因转化美洲黑杨的研究[J].林业科学,1997,33(1):69-74.
    22.程建东,傅容昭.植物遗传转化技术手册[M].北京:中国科学技术出版社,1994.
    23.方宏筠,王关林,王火旭,等.抗菌肽基因转化樱桃矮化砧木获得抗根瘤病的转基因植物[J].植物学报,1999,41(11):1192—1198.
    24.郝贵霞,朱祯,朱之悌.毛白杨遗传转化系统的优化研究[J].植物学报,1999,41(9):936-940.
    25.郝贵霞,朱祯,朱之悌.杨树基因工程进展[J].生物工程进展,2000,20(4):6-9.
    26.胡建军,刘庆一,王克胜,等.欧洲黑杨转Bt毒蛋白基因植株大田抗虫性测定[J].林业科学研究,1999,12(2):202-205.
    27.贾士荣,郭三堆,安道昌主编.转基因棉花[M].北京:科学出版社,2001.
    28.贾士荣.农杆菌介导的植物遗传转化[M].北京:中国农科院生物技术中心出版,1995.
    29.李明亮,张辉,胡建军,等.转Bt基因和蛋白酶抑制剂基因杨树抗虫性的研究[J].植物学通报,2000,42(3):263-268.
    30.刘艳军,杨静慧,杨恩芹,等.提高农杆菌基因转化效率方法的研究[J].西南农业大学学报,2003,25(2):144-146.
    31.李铃,韩一凡.杨树对卡那霉素的敏感必测定[J].林业科学,1992,28(1):95-96.
    32 祁春芳,郑智礼.白杨派杨树组培技术研究[J].山西林业科技,2000。(4):21-23.
    33.饶红宇,伍宁丰,陈英,等.杨树NL-80106转Bt基因植株的获得及抗虫性[J].植物资源与环境学报,2000,9(2):1-5.
    34.施和平,李玲,潘瑞炽.乙酰丁香酮对发根农杆菌遗传转化黄瓜的影响[J].云南植物研究,1997,19(4):445-448.
    35.田颖川,李太元,莽克强,等.欧洲黑杨抗虫转基因研究[J].生物工程学报,1993,9(4):291-297.
    36.伍宁丰,范云六.含苏云金芽孢杆菌杀虫蛋白基因的杨树工程植株的建立[J].科学通报,1991,9:705-708.
    37.王永芳,高宝嘉,郑均宝,等.青杨双价抗虫基因转化系统研究[J].河北农业大学学报,2003,26(2):51-54.
    38.王关林,方宏筠主编.植物基因工程[M].北京:科学出版社,2002.
    39.王学聘,韩一凡,戴莲韵,等.抗虫转基因欧美杨的培育[J].林业科学,1997,33(2):69-76.
    40.王宏乾,邱本旺,陈永新,等.中嘉8号等杨树杂交新品系选育[J].林业科技开发,2003,17(6):21-23.
    41.徐淑平,卫志明,黄健秋.根癌农杆菌介导Bt基因和Cpt1基因对花椰菜的转化[J].植物生理与分子生物学学报,2002,28(3):193-199.
    42.徐春晖,夏光敏,贺晨霞.农杆菌转化系统研究进展[J].生命科学,2002,14(6):223-225.
    43.闰新甫主编.转基因植物[M].北京:科学出版社,2003.
    44.郑树松,安成才,李启任,等.乙酰丁香酮对棉花下胚轴遗传转化效率的影响[J].棉花学报,2003,15(2):125-126.
    45.张艳贞,王罡,胡汉桥,等.农杆菌介导Bt杀虫蛋白基因导入优良玉米自交系的研究[J].遗传,2002,24(1):35-39.
    46.郑进,刘凯于,洪华珠.杨树抗性转基因研究进展[J].湖北林业科技,2004,31-37.
    47.张冰玉,苏晓华,李义良,等.转双价抗蛀干害虫基因杨树的获得及其抗虫性鉴定[J].林业科学研究,2005,18(3):364-368.
    48.郑均宝,张玉满,杨文芝,等.741杨离体叶片再生及抗虫基因转化[J].河北农业大学学报,1995,118(3):20-25.
    49.郑均宝,梁海永.转双抗虫基因741毛白杨的选择及抗虫性[J].林业科学,2000,36(2):13-19.
    50.朱新生,朱玉贤.抗虫植物基因工程研究进展[J].植物学报,1997,39(3):282-288.
    51.赵华燕,卢善发,晁瑞堂,等.杨树的组织培养及其基因工程研究[J].植物学通报,2001,18(2):169~176.
    52.赵世民,祖国诚,刘根齐,等.通过农杆菌介导法将兔防御素NP-1基因导入毛白杨(P.tomentosa)[J].遗传学报,1999,26(6):711-714.
    1. Benedict J H, Sachs E S, Airman D W, el al. Field performance of cotton expressing transgenic Cry1A insecticidal proteins for resistance to Heliothis virescens and Helicoverpa zea(Lepidoptera: Noctuidae). J Econ Entomolo, 1996,89:230-238.
    2. Chow L E, Gill S S. A rapid colorimetric assay to evaluate the effects of Bacillus thuringiensis toxin on cultured insect cells. Tissue culturemethods, 1989, 12(1):39-42.
    3. Davis J M et al.Detection and analysis of T-DNA in crown gell tumors and Kanamycin-resistant callus of Robinis psecodacata. Canadian Journal of Forest Research. 1989, 19(9) :1118-1123.
    4. Davis J M, Keathly D E. Detection and anylysis of T-DNA in crown gall tumors and kanamycirr resistant callus of Robinia pseudoacacia. Can J Forest Res, 1989,19(4):1118-1123
    5. Edwards K,Johnstone C,Thomposon C.A simple and rapid method for the preparation of plant genomic DNA for PCR analysis.Nucleic Acids Research,1991,19(6):1349.
    6. Pal Maliga, Daniel F. Klessing, Anthony R,et al.Methods in Plant Molecular Biology:A Laboratory Course Manual. New York : Cold Spring Harbor Laboratory Press, 1995.
    7. R H Burdon,P H van Knippenbery. Monoclonal Antibody Technology. New York: Elsevier science publication company INC, 1984.
    8. Sambrook J, Fritsch E F, Maniatis T et al.. Molecular cloning-A laboratory manual 3rd ed, New York:Cold Spring Harbor Laboratory Press, 1989.
    9. Steven H, Streuss G H and Barry G,Prospects for geneticengineering of insect resistance in forest trees. Forest Ecology and anagement, 1991, 43(3,4):181-209.
    10. Shen F F, Yu Y J, Wang L M, et al. Detection of Bt toxin protein in transgenic cotton by Dot-ELISA. Agricultural Sciences in China, 1999, 32(1):15—19.
    11. Tian ying-Chuan,Zheng jun-Bao,Yu hong-Mei et al. Studies of transgenic hybrid Poplar 741 carrying two insect-resistant genes[J]. Acta Botanicas Sinica, 2000, 42(3):263-268.
    12. Wang B M, He Z P, Zhao J X.Enzy me-linked immunosorbent assay(ELISA) of Bacillus thuringensis insect control protein as expressed in transgenic cotton.Cotton Science, 1998, 10(4):220-221.
    13.陈颖,李强,李玲,等.抗虫转基因欧洲黑杨的Western印迹法分析[J].林业科学,1996,32(3):30—32.
    14.陈曲候,李琮池主编.昆虫病理学纲要[M].武汉:华中师范大学出版社,1989.
    15.曹静,赵志华,李道明.MTT法测定食管癌细胞株化疗药物敏感性[J].肿瘤基因与临床,2006,19(3):187-189.
    16.常玉广,刘桂丰,姜静,等.小黑杨抗虫基因的遗传转化[J].东北林业大学学报,2004,32(6):30-32.
    17.陈昆松,李方.改良CTAB法用于多年生植物组织基因组DNA的大量提取[J].遗传,2004,26(4):529—531.
    18.樊军锋,韩一凡,彭学贤,等.mtlD/gutD双价基因转化美洲黑杨×青杨地研究[J].林业科学,2002,38(6):30—35.
    19.郭尧君编著.蛋白质电泳实验技术(第二版)[M].北京:科学出版社,2005.
    20.郭国斌,稽保中,诸葛强,等.转Bt基因杨树(NL-80106)对杨小舟蛾抗虫性研究[J].南京林业大学学报(自然科学版),2004,28(6):5—9
    21.胡建军,刘庆一,王克胜,等.欧洲黑杨转Bt毒蛋白基因植株大田抗虫性测定[J].林业科学研究,1999,12(2):202-205.
    22.洪华珠,杨红编著.杀虫微生物纲要[M].武汉:华中师范大学出版社,1998.
    23.贾士荣,郭三堆,安道昌主编.转基因棉花[M].北京:科学出版社,2001.
    24.姜静,常广玉,董京祥,等。小黑杨双抗虫基因的研究[J].植物生理学通讯,2004,6(40):669—702.
    25.刘凯于,郑丙莲,蒋才富,洪华珠,彭建新.粉纹夜蛾离体细胞对BtCry1Ac毒素的抗性发展及其交互抗性[J].植物保护学报,2003,30(3):250—254.
    26.李继东,毕会涛,冯建灿,等.毛白杨无性系有机物质含量和酶活性与抗性关系研究[J].河南科学,2006,24(4):517-520.
    27.林福玉,陈昭烈,刘红,等.大规模动物细胞培养的问题和对策[J].生物技术通讯,1999,10(1):58-61.
    28.林良斌,官春云,周小云,等.转基因抗虫油菜中Bt杀虫基因稳定遗传和高效表达及抗虫性研究[J].作物学报,2002,2(28):175—178.
    29.牟信元,徐洪富,李火苟主编.昆虫生态与害虫测报[M].北京:中国农科技出版社,1997.
    30.饶红宇,陈英,黄敏仁,等.杨树NL-80106转Bt基因植株的获得及抗虫性[J].植物资源与环境学报,2000,9(2):1—5.
    31.田颖川,李太元,莽克强,等.抗虫转基因欧洲黑杨的培育[J].生物工程学报,1993,9(4):291-297.
    32.汪家政,范明主编.蛋白质技术手册[M].北京:科学出版社,2000.
    33.王京红,纵微星,杨应昌,等.B.tCry1A基因的人工设计、改造和建构(简报)[J].农业生物技术学报,1994,2(1):100—101.
    34.王保民,何钟佩,赵继勋.抗虫棉Bt杀虫晶体蛋白免疫检测的研究[J].棉花学报,1998,10(4):220-221.
    35.王学聘,韩一凡,戴韵莲,等.抗虫基因欧美杨的培育[J].林业科学,1997,33(1):69-74.
    36.王保民,李召虎,李斌,等.转Bt抗虫棉各器官毒蛋白的含量及表达[J].农业生物技术学报,2002,10(3):215-219.
    37.吴方丽,金伟波,王保莉,等.动物细胞大规模培养技术研究进展[J].仲恺农业技术师范学院学报,2005,18(3):64-70.
    38.王元天,许纯孝.MTT比色法测定膀胱癌细胞的体外侵袭力[J].肿瘤,2001,21(1):45-47.
    39.喻子牛主编.苏云金芽孢杆菌制剂的生产和应用[M].北京:农业出版社,1993.
    40.杨红,洪华珠.昆虫离体细胞对Bt晶体毒素的抗性选择及抗性测定[J].华中师范大学学报(自然科学版),1996,30(1):77—80.
    41.严吉明,叶华智,伍光庆,等.转Bt抗虫基因植物中杀虫蛋白地酶联免疫检测技术研究Ⅲ.酶联免疫(ELISA)间接法检测Bt杀虫蛋白地研究[J].四川农业大学学报,2005,23(3):280-284.
    42.郑均宝,梁海永.转双抗虫基因741毛白杨的选择及抗虫性[J].林业科学,2000,36(2):13-19.
    43.郑丙莲,杨红,彭建新,等.苏云金芽孢杆菌Coy1A(c)毒素对昆虫细胞的毒力研究(摘要).中国病毒学,2000,15卷专刊.
    44.张俊,朱正纲,刘风华,等.MTT法检测94例胃癌体外药敏[J].上海医学,2002,25(4):241-243.
    45.张海霞,方芸,葛卫红,等.四氮唑盐法肿瘤药敏试验及应用[J].中国医院药学杂志,2005,25(7):663-664.
    46.阎新甫主编.转基因植物[M].北京:科学出版社,2003.
    47.郑汉业,夏乃斌主编.森林昆虫生态学[M].北京:中国林业出版社,1993.
    48.张冰玉,苏晓华,李义良,等.转双价抗蛀干害虫基因杨树的获得及其抗虫性鉴定[J].林业科学研究,2005,18(3):364-368.
    1. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res, 1996, 12(22):8711-8721.
    2. Confalonieri M, Balestrazzi A, Cella R. Genetic transformation of Populus deltoides and P.xeuramericana clones using Agrobacterium tumefaciens. Plant Cell Tiss Org Cult, 1997, 48: 53-61.
    3. Confalonieri M, Balestrazzi A, Bisoffi S, Factors affecting Agrobacterium tumefaciens-mediated transformation in several black poplar clones. Plant Cell Tiss Org Cult, 1995, 43: 215-222.
    4. Fillati J J et al.. Agrobacterium mediated transformation and regeneration of poplar. Mol.Gen. Genet., 1987, 206: 192-199.
    5. Godwin I. The effects of acetosyringone and PH on Agrobacterium-mediated transformation vary according to plant species. Plant Mol Biol Rep, 1992, 10:12-36.
    6. Horsh R B. A simple and general method for transfering genes into plants. Science, 1985, 217:1229-1231.
    7. Lin J J, Assadd-Garcis N, Kou J. Plant horm one effect of antibiotics on the transformation efficiency of plant tissue by Agrobacterium tumefaciens cells. Plant Sci, 1995, 109:171-177.
    8. Leple J C, Pilate C,Jouanin L.Transgenic poplar trees(Populus species). Berlin:Springer-Verlag Berlin Heidelberg,1999,221-244.
    9. Xiao-xia Liu, Chang-Gui Sun, Qing-wen Zhang. Effects of transgenic Cry1A+CpT1 cotton and Cry1Ac toxin on the parasitoid,Campoketis chlorideae(Hymenoptera:lchneumonidae). Insect Science, 2005, 12(2):101-107.
    10. Xiao-mu Ma, Xiao-xia Liu, Qing-wen Zhang,et al. Impact of transgenic Bacillus thuringiensis cotton on a non-target pest Tetranychus spp. in Northern China. Insect Science, 2006, 13(4): 279-286.
    11.陈曲候,李琮池主编.昆虫病理学纲要[M].武汉:华中师范大学出版社,1989.
    12.常玉广,刘桂丰,姜静,等.小黑杨抗虫基因的遗传转化[J].东北林业大学学报,2004,32(6):30-32.
    13.洪华珠,杨红编著.杀虫微生物纲要[M].武汉:华中师范大学出版社,1998.
    14.贾士荣,郭三堆,安道昌主编.转基因棉花[M].北京:科学出版社,2001.
    15.林福玉,陈昭烈,刘红,等.大规模动物细胞培养的问题和对策[J].生物技术通讯,1999,10(1):58-61.
    16.吴方丽,金伟波,王保莉,等.动物细胞大规模培养技术研究进展[J].仲恺农业技术师范学院学报,2005,18(3):64-70.
    17.王元天,许纯孝.MTT比色法测定膀胱癌细胞的体外侵袭力[J].肿瘤,2001,21(1):45-47.
    18.王学聘,韩一凡,戴韵莲,等.抗虫基因欧美杨的培育[J].林业科学,1997,33(1):69-74.
    19.于志水,金红,苘时军,等.黑杨派杨树组培再生系统的研究[J].辽宁林业科技,2002,(6):12-13.
    20.杨红,洪华珠.昆虫离体细胞对B.t晶体毒素的抗性选择及抗性测定[J].华中师范大学学报(自然科学版),1996,30(1):77—80.
    21.闫新甫主编.转基因植物[M].北京:科学出版社,2003.
    22.张冰玉,苏晓华,李义良,等.转双价抗蛀干害虫基因杨树的获得及其抗虫性鉴定[J].林业科学研究,2005,18(3):364-368.
    23.郑丙莲,杨红,彭建新,等.苏云金芽孢杆菌Cry1A(c)毒素对昆虫细胞的毒力研究(摘要)[J].中国病毒学,2000,15卷专刊.
    24.张海霞,方芸,葛卫红,等.四氮唑盐法肿瘤药敏试验及应用[J].中国医院药学杂志,2005,25(7):663-664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700