用户名: 密码: 验证码:
高梁子粒淀粉遗传特性及积累规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国80%的粒用高粱用于酿酒业,出酒率的高低主要取决于淀粉含量。淀粉是高粱子粒的主要成分,其含量高低是决定高粱酿造产量和品质的重要因素。目前,在粒用高粱的研究和应用上主要以高淀粉酿造型高粱为主。对高粱子粒淀粉含量遗传特性、积累规律及调控技术进行深入研究,无疑对高粱育种、栽培的理论和实践上都有重要的现实意义。但有关高粱子粒淀粉遗传特性、淀粉积累规律及其与叶片生理关系,以及钾肥调控对高粱子粒淀粉积累特性的影响研究很少或尚未见系统报道。
     本研究以高淀粉和低淀粉高粱不育系和恢复系,利用NCⅡ设计的不完全双列杂交设计组配杂交组合,通过对杂交种的淀粉含量进行测定,分析淀粉在亲本和杂交种间的遗传表现。以高淀粉和低淀粉高粱为试验材料,研究了高淀粉和低淀粉高粱淀粉积累特性及其与叶片生理关系,以及钾肥调控对淀粉积累特性的影响。主要结果与结论如下。
     1、高粱总淀粉含量、直链淀粉含量和支链淀粉含量的一般配合力效应和特殊配合力效应对3个性状的表型值均有重要作用。在高淀粉高粱杂交种的选育中,首先要重视对双亲一般配合力的选择。在一般配合力高的基础上更多的选择有较高的特殊配合力的组合,才能使杂交种获得较高的淀粉含量。淀粉含量占高粱籽粒产量的70~80%,对高粱的品质性状有着决定性的影响。亲本会对杂交后代总淀粉中的直(支)链淀粉比例产生显著影响。高淀粉含量主要与高支链淀粉含量有关。由于支链淀粉的合成需要消耗更多的能量,因此对这个性状的改良难度更大。本研究结果表明,恢复系群体的一般配合力效应值多为正值,通过加强对这个群体的性状改进,选育出支链淀粉含量更高的恢复系是可行的。
     2、高淀粉和低淀粉高粱子粒淀粉积累特性研究结果表明,高粱子粒总淀粉、支链淀粉和直链淀粉含量随子粒灌浆过程推进均呈不断上升趋势,至成熟期达到最大值。在子粒灌浆过程中,高淀粉高粱和低淀粉高粱子粒淀粉含量变化趋势均呈“S”型曲线变化;高淀粉高粱和低淀粉高粱在灌浆初期子粒直链淀粉含量并无显著差异,而在灌浆中后期才逐渐表现差异;与直链淀粉积累不同,高淀粉高粱子粒支链淀粉含量在灌浆初期就显著高于低淀粉高粱子粒支链淀粉含量;子粒总淀粉积累的差异主要是由于整个灌浆期支链淀粉积累和灌浆中后期直链淀粉积累的不同造成的。
     3、高淀粉和低淀粉高粱开花后叶片光合指标及其与子粒淀粉含量关系研究结果表明,高淀粉高粱叶片比叶重、叶绿素含量和净光合速率均高于低淀粉高粱叶片。在灌浆中后期,子粒淀粉含量与叶片比叶重、叶绿素含量、净光合速率之间存在显著正相关关系。其中子粒淀粉含量和净光合速率之间的相关性要比淀粉含量与比叶重、叶绿素含量之间的相关性密切。由于现代技术手段的改进,可方便地进行叶片净光合速率的瞬时、准确测定,因此可以把净光合速率作为选择高淀粉高粱的一个有效指标。
     4、高淀粉和低淀粉高粱开花后叶片保护酶活性、丙二醛含量及其与子粒淀粉含量关系研究结果表明,高粱开花后,叶片SOD、POD和CAT活性均呈单峰曲线变化,SOD和CAT活性峰值出现在花后28天,POD活性峰值出现在花后21天。高淀粉与低淀粉高粱叶片SOD和CAT活性在花后14天内差异不显著;在开花21天后,高淀粉高粱叶片SOD和CAT活性显著高于低淀粉高粱叶片SOD和CAT活性。在开花后35天内,高淀粉高粱叶片POD活性显著高于低淀粉高粱叶片POD活性,42天后,高淀粉与低淀粉高粱叶片POD活性差异不大。在开花21天后,子粒淀粉含量与叶片SOD、CAT活性之间存在显著正相关关系;在开花35天内,子粒淀粉含量与叶片POD活性之间存在显著正相关关系。高淀粉与低淀粉高粱叶片MDA含量在花后14天内差异不显著;在开花21天后,高淀粉高粱叶片MDA含量显著低于低淀粉高粱叶片MDA含量,子粒淀粉含量与叶片MDA含量之间存在显著负相关关系。高淀粉高粱开花后,叶片保持较高的保护酶活性和较低的丙二醛含量,使叶片衰老减缓,为保持较高光合作用强度奠定基础。
     5、钾肥调控对高粱植株干物质积累与分配的影响研究结果表明,施用钾肥增加高粱植株有效绿叶叶面积和干物质积累量,使干物质向经济器官积累增多,提高经济系数,增加子粒产量。其中以每公顷基施钾肥90kg,追施钾肥30kg产量最高。
     6、钾肥调控对高粱子粒淀粉积累特性的影响研究结果表明,施用钾肥明显提高子粒总淀粉、支链淀粉和直链淀粉含量;施钾肥提高灌浆期高粱总淀粉积累速率和支链淀粉积累速率,以及灌浆中后期直链淀粉积累速率。其中以每公顷基施钾肥90kg,追施钾肥30kg子粒淀粉含量最高。
     7、钾肥调控对高粱叶片光合生理指标的影响研究结果表明,施用钾肥可以增加高粱花后叶片比叶重、叶绿素含量和净光合速率,这是施钾增产量的原因之一。其中以每公顷基施钾肥90kg,再追施钾肥30kg效果最好。
     8、钾肥调控对高粱叶片保护酶活性和丙二醛含量的影响研究结果表明,施钾肥调控能显著提高高粱叶片SOD、POD和CAT活性,降低叶片MDA含量,有利于活性氧的清除,延缓叶片衰老进程,这是施用钾肥提高子粒产量的原因之一。
About 80% of sorghum grains is used to brew. The alcohol yield mainly depends on starch content. And starch is the main component of grain sorghum. Its high-low contents are the important factors which decide sorghum brewing quality. At present, in grain sorghum research and application, we mainly use the brewery sorghum with high starch. The relevant in-depth researches, such as in sorghum starch content, genetic characteristics and starch accumulation regulation, have no doubt important practical significance on sorghum breeding, cultivation theory and practice. But the researches are rare or have not been reported in the genetic characteristics of sorghum grain starch, starch accumulation regulation, its physiological relationship with leaves and the influence of potassium control on starch accumulating characteristics. In sorghum sterility and restorers of high starch and low starch, through the use of B. Griffing incomplete double row cross to design hybrids and measuring the starch content of cross seeds, the study analyzed the genetic performances of starches between parents and hybrids.
     With high starch and low starch sorghum as test materials, it studied the sorghum starch accumulation properties of high starch and low starch and their relations with leaf physiological properties, and the influence of potassium regulation on starch accumulation. The main results and conclusions were as followed.
     1. The content of parental sorghum amylopectin and amylose would have a significant effect on the proportion of amylopectin and amylose of the total starch in the offspring. The general combining ability and specific combining ability for the contents of total sorghum starch, amylopectin and amylose were highly significant. It indicated that both additive and non-additive effects had important roles on the three phenotypic traits. We should attach importance to the choice of GCA in sorghum hybrid breeding of the high starch. In order to make hybrids get a higher starch content, we should choose higher combination of specific combining ability on the basis of general combining ability. It will have a decisive influence on the quality and traits of sorghum if starch content occupies 70 to 80% of sorghum grain yield, especially amylopectin. Since the synthesis of amylopectin need to consume more energy, the improvement of this trait is more difficult. The results showed that the value of general combining ability of the restorer line group is more positive and we should strengthen to improve the traits of this group. It is feasible to breed a restorer with a higher amylopectin content.
     2. The research on the accumulation characteristics of sorghum grain starch of high starch and low starch. The results showed that total starch, amylopectin and amylose contents increased continuously along with the advance of grain filling process and reached the maximum at maturity stage. The changes of the starch accumulation in both high and low starch sorghum during grain filling stage showed as "S" curve. The amylose accumulation rate was not significantly different between the high starch sorghum and low starch sorghum at the early stage of grain filling. The amylose accumulation rate was significantly different between the high starch sorghum and low starch sorghum at the middle and later stages of grain filling. The difference in amylopectin content appeared at the early stage of grain filling, and amylopectin of high starch sorghum were constantly higher than that of low starch sorghum during grain filling period. The amylopectin accumulation depended on the average filling rate and the high filling rate at the early stage of grain filling. The difference in the total starch content was mainly ascribed to amylopectin content at the all stages of grain filling, and amylose content at the middle and later stages of grain filling.
     3. The researches on the leaf photosynthesis index after high starch and low starch sorghum flowering and its relationship with grain starch content. The results showed that the weights, chlorophyll contents and net photosynthetic rates of high-starch sorghum leaves were higher than the low starch sorghum leaves. In the late filling stage, there was a significant positive correlation among grain starch content, leaf weight, chlorophyll content and net photosynthetic rate. Among them, the correlation between grain starch content and net photosynthetic rate was closer than the correlation among the starch content, specific leaf weight and chlorophyll content. Because of the improvement of modern technological means, we can easily make Instantaneous and accurate determination to leaf net photosynthetic rate. So we take the net photosynthetic rate as an effective indicator of high sorghum starch.
     4. The research on the relationship among the leaf protective enzyme activities, MDA content and grain starch content after flowering of high and low starch sorghum. The results showed that after sorghum flowering, the activity of leaf SOD. POD and CAT showed a single peak curve. The activity peak of SOD and CAT appeared at 28 days after flowering and the activity peak of SOD appeared at 21 days after flowering. There were no significant differences about the activity of high starch and low starch sorghum leaves SOD and CAT within 14 days after flowering.21 days after flowering later, the activities of high-starch sorghum leaves SOD and CAT were significantly higher than those of the low-starch SOD and CAT. In 35 days after flowering, the activity of leaf POD of the high-starch sorghum was significantly higher than the activity of leaf POD of the low-starch of sorghum.42 days later, sorghum leaf POD activities between high starch and low starch were similar.21 days after flowering, there was a significant positive correlation between grain starch content and the activity of leaf SOD, CAT; In 35 days after flowering, there was a significant positive correlation between grain starch content and the activity of leaf POD.14 days after flowering, there were not significant differences in MDA content between high starch and low starch sorghum; 21 days after flowering, the content of high starch sorghum leaves MDA was significantly lower than the content of low starch sorghum leaves MDA and there was a significant negative correlation between grain starch content and the leaf MDA content. After high-starch sorghum flowering, the leaves keep a higher enzymes activity and a lower MDA content to slow leaf senescence and lay a foundation in maintaining a high photosynthesis.
     5. The research on the influence of regulation of potassium on dry matter accumulation and distribution of sorghum. The results showed that using fertilizer effectively increased the green leaf area of sorghum plants and the accumulation of dry matter and made dry matter increase the accumulation of economic organ, improved economic factors and increased grain yield. The yield will be the highest if we use 90kg of Potassium in per hectare, and then add another 30kg potassium fertilizer to it.
     6. The research on the influence of potassium regulation on the accumulation characteristics of sorghum grain starch. The results showed that using K fertilizer significantly increased the total sorghum starch accumulation rate during the filling stage, accumulation rate of amylopectin and accumulation rate of amylose in mid or late filling stage. using K fertilizer increased filling rate of and and amylose in the late filling accumulation rate. The starch content will be the highest if we use 90kg of Potassium in per hectare, and then add another 30kg potassium fertilizer to it.
     7. The research on the influence of potassium regulation on physiological index of sorghum leaves. The results showed that using K fertilizer could increase the sorghum leaf weight after flowering, chlorophyll content and net photosynthetic rate. It was one of the reasons which using K fertilizer could increase production. The effect will be the best if we use 90kg of Potassium, and then add another 30kg potassium fertilizer to it.
     8. The research on the influence of potassium regulation on protective enzyme activities of sorghum leaves and MDA content. The results showed that using K fertilizer could significantly improve the activity of sorghum leaf SOD, POD and CAT, decrease MDA content in leaves and be conducive to the removal of active oxygen, delay leaf senescence, which is one of the reasons to improve grain yield by using K fertilizer.
引文
1.蔡水文,陈良碧.2004.水稻灌浆期温度对籽粒淀粉积累和FBP酶活性的影响[J].农业现代化研究.(4)18-20
    2.曹士亮.2005.黑龙江省中早熟玉米淀粉积累的动态分析[J].黑龙江农业科学.(4):4-7.
    3.陈温福等.2003.水稻超高产育种生理基础[M].中国沈阳.辽宁科学技术出版社.11:156-241.
    4.陈洋.2006.氮素阳量对春玉米碳水化合物形成和积累的影响[J].东北农业大学硕士研究生论文.4
    5.陈楚.2003.水稻直链淀粉的遗传及应用研究.安徽农业大学硕士研究生论文
    6.程庆军,张福耀,赵威军等.2010.高淀粉高梁种质筛选及其研究利用[J].中国农学通报.26(11):103-106
    7.丁国祥,里天炬等.1999.糯高粱籽粒淀粉含量及其组份的配合力分析[J].西南农业大学学报.(2)10-13
    8.段民孝.2002.玉米子粒淀粉研究进展[J].玉米科学,10(1):29-32.
    9.董玉琛,曹永生.2003.粮食作物种质资源的品质特性及其利用[J].中国农业科学.36(1):111-114.
    10.戴双,李豪圣,刘爱峰等.2006.氮钾配施对济南17淀粉理化特性的影响.麦类作物学报.26(4):107-110
    11.顾蕴洁,王忠,陈义芳等.2002.高粱胚乳发育的观察与研究[J].南京师大学报(自然科学版),(3)6-8
    12.范濂.1983.农业试验统计方法[M].河南农业科技出版社.
    13.方保停,郭天财,王晨阳等.2005.限水灌溉对强筋小麦子粒淀粉积累的影响[J].西北农业学报,14(1):153-157
    14.高荣岐等.1993.夏玉米子粒发育过程中淀粉积累与粒重的关系[J].山东农业大学学报.24(1):42-48.
    15.高欣,肖木楫,周宇飞,许文娟,黄瑞冬.2009.种植密度对高粱子粒淀粉积累的影响[J].作物杂志.6:35-37
    16.郭尚敬,李加瑞,乔卫华等.2006.玉米种子发育过程中直链淀粉积累规律的分析[J].遗传学报(11)7-10
    17.郭玉春等.2001.新株型水稻物质生产与产量形成的生理生态Ⅰ.新株型水稻物质生产与灌浆特性[J].福建农业大学学报.30(1):16-21
    18.韩占江,吴玉娥,郜庆炉,薛香,肖同建,等.2008.施氮水平对小麦百农矮抗58子粒淀粉积累的影 响[J].湖北农业科学.47(5)15-17
    19.何萍.2004.氮肥用量对高淀粉玉米和普通玉米吸氮特性及品质和产量的影响.第九届中国青年土壤科学工作者学术讨论会暨第四届中国青年植物营养与肥料科学工作者学术讨论会论文集[C]78-79
    20.何秀英,吴东辉,伍时照等.2003.水稻直链淀粉形成积累动态的研究[J].华南农业大学学报.24(3).3-5
    21.黄瑞冬,于泳,肖木楫等.2009.施磷、钾肥对高粱子粒淀粉积累规律的影响[J].作物杂志.(2)29-32
    22.黄绍文,孙桂芳,金继运等.2004.氮、磷和钾营养对优质玉米子粒产量和营养品质的影响[J].植物营养与肥料学报.10(3):225-230
    23.黄智鸿,李秀娟.2008.超高产玉米品种叶片保护酶活性及膜脂过氧化作用研究[J].江苏农业科学(2):29-31
    24.揭厚胜.2004.不同直链淀粉含量的水稻品种籽粒淀粉和蛋白质积累特性的研究[J].四川农业大学.硕士论文
    25.金继运,何萍,刘海龙等.2004.氮肥用量对高淀粉玉米和普通玉米吸氮特性及产量和品质的影响[J].植物营养与肥料学报,10(6)568-571
    26.孔令旗.1995.高粱籽粒直链淀粉和支链淀粉含量的基因效应分析[J].作物学报.21(03)319-321
    27.赖庆旺.1989.红壤土施钾肥对粮食作物品质的影响[J].化肥工业.3:24-26.
    28.李爱军.史红梅,李作一2011.高粱淀粉遗传初探[J].现代农业科技.(3)51-53
    29.李超,肖木楫,周宇飞等.2009.不同播期对高粱子粒淀粉含量的影响[J].沈阳农业大学学报.,40(6):708-711
    30.李春燕等.2007.不同基因型小麦籽粒淡粉形成特性与合成酶的关系研究.中国作物学会栽培专业委员会换届暨学术研讨会论文集[C].55-58
    31.李桂英等.2008.中国甜高粱研究与利用[M].中国农业科技出版社.
    32.李天等.2005.灌浆结实期弱光对水稻子粒淀粉积累及相关酶活性的影响[J].中国水稻科学.19(6):545-550
    33.李伟,左清凡,张建中,张桂权等.2003.水稻不同遗传分化品系(种)杂种籽粒充实度的比较分析[J].杂交水稻.18(1):40-43
    34.李友军.2005.氮、磷、钾对不同类型专用小麦淀粉品质的调控效应.华中农业大学博十研究生 论文
    35.李友军,熊瑛,吕强等.2005.不同类型专用小麦叶、茎、粒可溶性糖变化与淀粉含量的关系[J].中国农业科学.38(11):2219-2226
    36.李友军,熊瑛,陈明灿等.2006.氮、磷、钾对豫麦50旗叶蔗糖和子粒淀粉积累的影响[J].应用生态学报.17(7)548-551
    37.李永庚等.2001.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报.27(5):659-664
    38.李运祥,王忠,顾蕴洁等.2003.施氮处理对稻米淀粉积累的影响[J].南京师大学报(自然科学版):26(3):68-71
    39.林德光.1982.生物统计的数学原理[M].沈阳:辽宁人民出版社.
    40.梁建生,曹显祖,徐生,朱庆森等.1994.水稻子粒库强与其淀粉积累之间关系的研究[J].作物学报.20(6):685-691.
    41.梁晓芳,于振文.2004.施钾时期对冬小麦旗叶光合特性和籽粒淀粉积累的影响.应用生态学报,15(8):1349-1352
    42.刘广田.2000.小麦品质性状的遗传及其遗传改良[J].农业生物技术.8(4):307-314.
    43.刘开昌,胡昌浩,董树亭,李爱琴等.2002.高油、高淀粉玉米子粒主要品质成分积累及其生理生化特性[J].作物学报.28(4):492-498.
    44.刘海英.2007水稻杂种早代籽粒直链淀粉含量遗传变异及选择效果研究.东北农业大学硕士论文
    45.刘洪亮.2009.水稻杂种后代籽粒直链淀粉含量遗传变异及选择效果研究东北农业大学硕士论文
    46.刘进明,王联芳等.1990.水稻糯性的遗传分析[J].杂交水稻 (5)25-27
    47.刘奇华,李天,蔡建,张建军.2006水稻籽粒直链淀粉及蛋白质含量对孕穗期弱光胁迫的响应[J].种子.(11)2-5
    48.刘奇华等.2006b.不同生育期遮光对水稻籽粒直链淀粉及蛋白质含量的影响 中国农学通报.(8)5-860
    49.刘鹏,胡昌浩,董树亭,王空军等.2003.甜质型和普通型玉米子粒发育过程中糖组分比较研究[J].中国农业科学.36(7):764-769
    50.刘文成.2005.高淀粉玉米研究进展[J].作物栽培.8:14-15
    51.刘晓冰,李文雄1996.春小麦子粒灌浆过程中淀粉积累和蛋白质积累规律的初步研究[J].作物学报.(6):736-740
    52.刘晓冰.1998.不同施氮水平对春小麦子粒淀粉、蛋白质积累的影响[J].农业现代化研究.19(03):187-189
    53.刘晓辉,高士杰,李继红等.2007.高淀粉高粱杂交种吉朵97选育报告[J].吉林农业科学.32(1):10-11
    54.刘仲齐,吴兆苏,俞世蓉1992.吲哚乙酸和脱落酸对小麦子粒淀粉积累的影响[J].南京农业大学学报.(1):7-12
    55.陆国权,唐忠厚,黄华宏.2005.不同施钾水平甘薯直链淀粉含量和糊化特性的基因型差异[J].浙江农业学报.17(5):280-283
    56.卢庆善.1999高粱营养品质研究的新进展 世界农业(7)29-30
    57.卢庆善.1999.高粱学[M].中国农业出版社.
    58.卢庆善等.2001.农作物杂种优势[M].中国农业科技出版社.
    59.卢庆善等.2005.杂交高粱遗传改良[M].中国农业科技出版社.
    60.罗毅,姜玉梅,刘海英.2005.不同优质小麦子粒淀粉积累动态及其酶活性变化河南农业大学学报[J].(2)3-5
    61.辽宁省农业科学院情报所.1987.中国高粱研究论文摘编[M].北京:北京科学技术出版社.
    62.马均等.2005.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究[J].中国农业科学,38(2):29-0296
    63.马兴林.2006.不同类型玉米子粒营养组分积累规律与调控机理研究[J].沈阳农业大学学报.(5)21-23
    64.马育华.1982.植物的数量遗传学基础[M].江苏科学技术出版社
    65.马忠良,张淑君,周紫阳,王江红等.2006.优良高粱恢复系南133的选育与利用[J].杂粮作物.26(3):178-179
    66.倪大鹏,刘强,阴卫军等.2007.施钾时期和施钾量对玉米产量形成的影响[J].山东农业科学.(40)26-29
    67.莫惠栋.1984.农业试验统计[M].上海科学技术出版社.
    68.潘晓华等.2000.蔗糖和谷氨酰胺及植物激素对水稻离体培养穗淀粉积累的影响[J].江西农业大学学报.22(1):22-25
    69.裴新澍.1987.数理遗传与育种[M].上海科学技术出版社.
    70.彭泽斌.,田志国.2003.高淀粉玉米的产业化潜力分析[J].作物杂志.(6):10-12
    71.邱献锟.,刘宪虎,许明子等.2010.水稻大粒种质淀粉积累特性研究[J].农业科学与技术.(3)24-27
    72.秦小琼,贾士荣.1997.植物抗氧化逆境的基因工程(综述)[J].农业生物技术学报.5(1):14-24
    73.谭周鎡.1987.水稻结实期温度对米质影响的研究[J].湖南师范大学自然科学学报,(2)11-13
    74.唐启义,冯明光等.1997.实用统计分析及其DPS数据处理系统[M].北京.中国农业出版社.407.
    75.邵庆勤.2006.不同氮肥水平下烯效唑对小麦可溶性糖和淀粉含量的影响[J].安徽科技学院学报.20(4):12-15
    76.孙义伟.1993.水稻灌浆成熟期气温对稻米品质的影响[J].水稻文摘.12(2):6-8
    77.孙云秀,王荣栋,柳霞.2000.不同氮磷配比对新疆春大麦产量和品质的影响[J].新疆农垦科技.(4)14-16
    78.索全义等.2000.氮肥对春玉米子粒建成及品质的影响[J].内蒙古农业大学学报,21(增刊):30-33.
    79.宋占诚.1990.生物统计与田间试验
    80.武际,郭熙盛,王允青等.2007.不同土壤供钾水平下施钾对弱筋小麦产量和品质的调控效应[J].麦类作物学报.27(1):102-106
    81.王伯伦,王术,黄元财,贾宝艳等.2004.水稻优化育种方法的研究[J].沈阳农业大学学报.35(4):298-303
    82.王丰等.2004.从子粒灌浆过程上讨论水稻粒间品质差异形成的生理机制[J].种子.23(1):31-35
    83.王琳.2006.不同环境条件下玉米籽粒的淀粉品质与主要农艺性状的遗传研究.河南农业大学硕士研究生论文
    84.王黎明,张育松,马景升,焦少杰等.2002.高梁高淀粉基础材料的筛选及利用[J].黑龙江农业科学.(2):28-29.
    85.王晨阳等.2004.不同水、氮处理对小麦淀粉组成及特性的影响[J].作物学报.30(8):739-744
    86.王崇义,曹广才.1997.北方旱地主要粮食作物优良品种[J].北京:中国农业科技出版社.
    87.王芳,王宪泽.2004.小麦子粒淀粉合成动态及其相关酶活性的研究[J].麦类作物学报.24(2):57-60
    88.王光利等.2006.小麦淀粉的研究进展.种子(Seed).25(6):51-53
    89.王鼐,刘红新,苏颖,李玉发等.2006.吉林省中矮秆高粱杂交种主要性状分析[J].吉林农业科 学.31(4):21-23
    90.王继安等.2004.大豆品种间叶绿素含量、RUBP活性、希尔反应活力及其与产量间的关系[J].东北农业大学学报.35(2):129-134
    91.王强.2006.氮素用量对春玉米子粒淀粉形成和积累的影响.东北农业大学硕士研究生论文.
    92.王维,蔡一霞等.2006.水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响[J].作物学报,(7)3-6
    93.王麒,王敬国,邹德堂.2006.水稻低直链淀粉含量的遗传研究[J].垦殖与稻作.(4)11-14
    94.王鹏文.1997.玉米灌浆至成熟期四种密度下子粒内含物变化规律是研究[J].吉林农业科学.(3):41-47.
    95.王书丽等.2005.两种筋力型小麦叶、粒可溶性糖含量及与子粒淀粉积累的关系[J].河南农业科学.(4):12-15.
    96.王晓慧等.2007.大豆品种遗传改良过程中叶片可溶性糖含量和比叶重的变化[J].大豆科学.26(6):879-884.
    97.王旭东,于振文,樊广华,潘庆民.2000.钾素对冬小麦品质和产量的影响[J].山东农业科学.(5):16-18
    98.王旭东等.2003.钾对小麦茎和叶鞘碳水化合物含量及子粒淀粉积累的影响[J].植物营养与肥料学报.9(1):57-62
    99.王旭东,于振文,王东等.2003.钾对小麦旗叶蔗糖和籽粒淀粉积累的影响[J].植物生态学报.27(2):196-201
    100.王彦波.1995.小麦全湿法生产淀粉谷朊粉工艺与参数的研究[J].郑州粮食学院学报.16(4):53-58
    101.王艳芳等.2006.春玉米籽粒灌浆期IAA对淀粉积累的作用及其机制的研究[J].化学与生物工程.(3)12-14
    102.王忠孝 杜成贵 王庆成.1990.不同类型玉米灌浆过程中主要品质成分的变化规律[J].植物生理学通讯(1):30-33.
    103.徐正进,陈温福,周洪飞等.1996.直立穗型水稻群体生理生态特性及其利用前景[J].科学通报(12)17-20
    104.徐克章,张治安等.1998.高梁叶片比叶重的变化与产量关系的研究[J].吉林农业大学学报.20(2):11-13.
    105.徐克章,张治安等.1998.高梁叶片比叶重的变化与产量关系的研究[J].吉林农业大学学报.20(2):11-13
    106.徐大勇.2004.氮磷钾肥施用量对稻米直链淀粉含量和淀粉粘滞特性的影响[J].中国农学通报.20(5):99-111
    107.熊飞.2005.主要谷类作物胚乳发育的比较研究.扬州大学.中国学位论文全文数据库.
    108.熊瑛.2005.不同质型小麦淀粉品质的形成及施肥调控河南农业大学硕士研究生论文
    109.熊瑛,李友军.2006.氮、磷、钾对不同筋型小麦产量和品质的影响.河南科技大学学报(自然科学版)26(3):58-61
    110.许崇香,王红霞,左淑珍,王玲苹等.2005.中早熟玉米品种淀粉积累规律的研[J].玉米科学.(4)22-24
    111.许崇香.2003.黑龙江省中早熟玉米淀粉和百粒重积累规律的研究.东北农业大学硕士研究生论文
    112.许振柱,于振文,张永丽.2003.土壤水分对小麦籽粒淀粉合成和积累特性的影响[J].作物学报.(4)595-600
    113.许大全,沈允钢.1992.光合作用与作物产量.作物高产光效生理研究进展[M].北京:科学出版社
    114.许大全.1999.光合速率、光合效率与作物产量[J].生物学通报.34(8):8-10
    115.闫鸿雁,胡国宏等.2007.优良高粱恢复系4219的创制及育种应用[J].安徽农学通报.13(13):122-123
    116.闫素辉.2007.两个直链淀粉含量不同的小麦品种籽粒淀粉合成酶活性与淀粉积累特征的比较[J].作物学报.(1)15-18
    117.杨建昌,彭少兵 顾世梁等.2001.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化[J].作物学报.27(2):157-164
    118.杨国涛等.2009.不同氮、钾配比对杂交水稻灌浆期直链淀粉积累的影响[J].植物营养与肥料学报.(2)9-11
    119.尤小涛,荆奇,姜东等.2006.节水灌溉条件下氮肥对粳稻稻米产量和品质及氮素利用的影响[J].中国水稻科学.20(2):199-204
    120.于泳,黄瑞冬,肖木楫等.2008.不同施氮水平对高粱子粒淀粉积累规律的影响[J].作物杂志.(5):20-24
    121.张军杰等.2007.淀粉含量不同的玉米自交系籽粒淀粉积累及其关键酶活性[J].植物生理与分子生物学学报(2)4-8
    122.张智猛,戴良香,胡昌浩等.2005.玉米灌浆期水分差异供应对籽粒淀粉积累及其酶活性的影响[J].植物生态学报.(4)20-24
    123.张海艳等.2006.植物淀粉研究进展[J]中国粮油学报21(1):41-46
    124.张洪全,齐沛君,连成才等.1994.春玉米子粒灌浆及产量构成因素与追氮量关系研究[J].玉米科学.2(4):56-58
    125.张金财等.2001.高粱杂交种叶向值的初步研究[J]作物学报27(1)22-25
    126.张玲等.2008.氮钾对杂交水稻B优827子粒淀粉含量及淀粉合成酶活性的影响[J]中国水稻科学22(5):551-554
    127.张玉华.2002.稻米直链淀粉含量及其影响因素研究[J]黑龙江农业科学(3):34-36
    128.张智猛,戴良香,胡昌浩等.2005.氮素对玉米淀粉累积及相关酶活性的影响[J].作物学报.31(7):956-962
    129.张治安,陈展宇.2009.植物生理学[M]长春吉林大学出版社
    130.张治安,陈展宇.2008.植物生理学实验技术[M]长春吉林大学出版社
    131.郑殿君,张治安,姜丽艳等.2010.不同产量水平大豆叶片净光合速率的比较[J].东北农业大学学报41(9):1-5.
    132.赵步洪等.2004.水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系.中国农业科学37(8):1123-1129
    133.赵宏伟.2003.不同氮素营养水平下春玉米碳氮代谢机理的研究.东北农业大学博士研究生论文.
    134.赵利梅等.2000.钾肥对春玉米籽粒建成与品质形成影响的研究 内蒙古农业大学学报21(12):11-15
    135.赵延明,王玲等.2000.玉米株型性状的遗传参数研究[J].杂粮作物20(2):1-5.
    136.钟旭华.1994.不同结实温度下稻米直链淀粉含量与千粒重的关系[J]中国水稻科学8(2):126-128.
    137.钟连进等.2003.水稻籽粒灌浆过程直链淀粉的积累及其相关酶的品种类型间差异[J]作物学报29(3):45-2456.
    138.钟连进.2004温度对早籼稻米品质影响的淀粉理化基础与代谢特征研究.浙江大学博士论文.
    139.周国勤等.2008.信阳234的籽粒灌浆特性及蛋白质、淀粉积累动态研究[J]山东农业科学1:51-54
    140.周琴等2002.不同基因型小麦子粒蛋白质和淀粉积累与碳氮转运的关系[J].南京农业大学学报.25(3):1-4
    141.周晓芬,刘宗衡.1997.氮钾肥对夏玉米的增产效应及经济施用量[J]土壤肥料(3):20-22
    142.中华人民共和国农业部.2008.G85514—2008《粮油检验 粮食 油料中淀粉含量测定》[S]
    143.中华人民共和国农牧渔业部.1987.GB7648—87《水稻、玉米、谷子子粒直链淀粉测定法》[S]
    141.邹铁祥等.2008.氮素和钾素对小麦子粒淀粉合成关键酶活性的影响中国农业科学41(11):3858-3864
    145.左清凡等.2002.水稻籽粒不同发育时期灌浆速率的遗传及其与环境互作的分析.中国农业科学.35(5):465-470
    146.左清凡等.2005.水稻稻穗灌浆生长的基因效应全程分析[J].作物学报.31(7):821-826
    147朱保侠.2009.普通玉米籽粒淀粉主要性状的遗传研究.青岛农业大学硕士研究生论文
    148.周紫阳,马英慧,李光华,王江红2008我国高粱品种改良研究杂粮作物(6)18-20
    149.周紫阳,马英慧,李光华,王江红 2009 吉林省高粱生产现状及主要问题 杂粮作物(6)35-36
    150. Borah R.1995. Effect of the light stress on chlorophyll starch,protein content and grain yield in rice.Indian J Plant Physiol,38(4):320-321.
    151.Bowler C C. Van Montagu & D. Inze.1992. Superoxid dismutase and stress tolerance[J].Annual Review of Plant Physiology and Plant Molecular Biology,43:83-116.
    152. Cheng F M,Zhu H J,Zhong L J,et al.2003. Effect of temperature on rice starch biosynthesis metabolism at grain-filling stage of early indica rice.Agric Sci China, (5):473-482.
    153. D.B. Jones, M.L. Peterson, and S. Geng.1979. Association Between Grain Filling Rrae and Duration and Yield Components Rice. Crop Science:(19):641-643
    154..Finazzi-Agroetal, Finazzi-Agro A A. DiGiulio.1986. Photochemolysis of erythr-ocytes enriched with superoxide dismutase, catalase, and glutathione eroxidase[J]. Photochemistry Photobiology,43: 409-412.
    155. Hizukuri S.1986. Polymodal distribution of the chain lengths of amylopectins, and its significance[J]. Carbohydr Res,147(2):342-347.
    156. Hizukuri S.1986. Polymodal distribution of the chain lengths of amylopectins, and its significance[J]. Carb-ohydr Res,147(2):342-347.
    157. James E B.2004. Soybean cultivar differences on light interception and leaf area index during seed filling [J]. Agronomy Journal,96:305-311.
    158. Jenner C F, Ugalde T D, Aspinal D.1991. The physiology of starch and protein deposition in theosperm of wheat[J]. Aust J Plant Physiol.18:211-226
    159. Jianchang Yang, Jianhua Zhang.2003. Postanthesis water deficits enhance grain filling in two-line hybrid rice. Crop Science,43(6):2099-2108
    160. Johningle B D, Hageman R H.1997. Change in composition during development and maturationaize seeds[J]. Plant Physiology.116:835-839
    161. Kouich M, Koji K, Yuji A, Kawasaki T, Shimada H,Baba T.1992. Starch branching enzymes from immature rice seeds[J]. Journal of Biochemistry,112:643-651.
    162. Matsuki J, Yasui T, Kohyama K, et.2003. Effects of environmental temperature on structure and gelatinization properties of wheat starch[J]. Cereal Chemistry,80(4):476-480.
    163. McCord K F, Hanson A D.1990. Drought and salt tolerance:towards understanding and applicationg [J].Trends Biotech, (8):358-362.
    164. Morell M K, Rahman S, Abrahams S L.1995. The biochemistry and molecular biology of starch synthesis in cereal[J]. Aust Plant Physio.22:647-660
    165. Nayak S R.1986.不同光强对水稻成熟过程中光合作用和转运的影响[J].国外农学-水稻.(6):331-332.
    166. Neal F.Jensen.1996. Plant breeding -Methodology. 中国农业出版社
    167. Rijven A.H.G.C.1986. Heat inactivation of starch synthase in wheat endosperm tissue[J]. Plant Physiol,81:448-453.
    168. Singh S P, Lal K B. Ram R S, et al.1993. Photosynthetic efficiency and productivity of pigeonpea[J]. Indian Journal of Pulses Research, (6):212-214.
    169. Singh S P, Lal K B. Ram R S, et al.1993 Photosynthetic efficiency and productivity of pigeonpea[J]. Indian Journal of Pulses Research, (6):212-214.
    170.Thomas M.Little and F. Jackson Hills.1978. Agricultural Experimentation Design and Analyais.中国农业出版社.
    171. Tohru Kobata and Naoya Uemuki 2004. High temperature during the grain-filling period do not reduce the potential grain dry matter increase of rice. Agronomy Journal, (96):406-414
    172. T kobata. and N. Moriwaki.1990. grain growth rate as a function of dry-matter product rate:An experiment with two rice cultivars under different radiation environments. Crop Science,59:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700