用户名: 密码: 验证码:
渭河杨凌—兴平段表层沉积物中重金属的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渭河杨凌—兴平段位于渭河陕西流域中游,是陕西重要的工农业城镇。近年来随着经济的发展,渭河资源与区位优势愈显突出。由于环保力度的加大,许多高污染、高耗能企业从一线大城市向杨凌、武功、兴平这些中小城镇转移,更加重了这里的环境压力。本文采集了渭河杨凌—兴平段9个采样段面的表层沉积物样品,通过实验得出了该区域表层沉积物的理化特征;运用X-Ray荧光光谱仪分析了沉积物中主要重金属的含量水平;采用修正的BCR四步连续提取法揭示了各重金属的赋存形态;通过机械筛分实验详细研究了沉积物的粒径组成及不同粒径范围内重金属的富集和形态特征差异,并探讨了沉积物理化指标、重金属含量水平、赋存形态之间的相互关系,以此来研究渭河杨凌—兴平段表层沉积物的环境地球化学特征,以期为合理利用渭河资源,有针对性的治理渭河污染提供科学合理的理论依据。本研究的主要结论如下:
     (1)渭河杨凌—兴平段表层沉积物的各项理化指标分别为:pH值为7.972,电导率值为404μs/cm,烧失量平均值为1.96%,低频磁化率、高频磁化率和频率磁化率分别为60.7×10-8m3/kg、59.3×10-8m3/kg和2.45%,粒度分析结果显示,该河段沉积物主要以粉粒、沙粒为主。沉积物常量元素组成与地壳丰度基本一致,这说明了河流沉积物主要来源于地壳岩石的风化作用,反映了地壳原始矿物组成。
     (2)渭河杨凌—兴平段表层沉积物重金属含量均值分别为Cu 17.7 mg/kg, Pb 18.9 mg/kg, Zn 72.7 mg/kg, Cr 100.2 mg/kg, Ni 21.1 mg/kg, Co 33.9 mg/kg, Mn 484 mg/kg。其中Cr、Co和Zn的均值含量明显超出了陕西土壤背景值。从重金属的空间分布特征来看,距离工业密集分布近的断面重金属含量相对偏高,城镇区域断面重金属含量高于偏远乡村地区,以工业为主的区域重金属含量高于新兴高科技农业区域。
     (3)渭河杨凌—兴平段表层沉积物重金属都以残余态为主要存在方式,重金属的直接危害性(主要指弱酸提取态)大小为:Co (42.47%)>Mn(36.09%)>Pb(24.40%)>Ni(11.69%)> Zn(9.35%)>Cu(6.13%)>Cr(2.85%)>Fe(2.25%);重金属的潜在危害性(主要指可氧化态与可还原态之和)大小为:Fe(39.37%)>Pb(38.60%)> Cu(28.66%)> Zn(22.49%)> Ni(21.73%)> Mn(17.66%)>Co(14.57%)>Cr(9.66%);重金属的环境生态风险(主要指弱酸提取态、可还原态与可氧化态之和)大小为:Pb(62.99%)>Co(57.04%)> Mn(53.75%)> Fe(41.62%)> Cu(34.79%) >Ni(33.41%)>Zn(31.84%)>Cr(12.51%)。
     (4)渭河杨凌—兴平段表层沉积物主要集中在<75μm的给范围内,pH值和烧失量随着粒径的减小有略微增大的趋势;电导率值在较大粒径沉积物中含量较高;沉积物较高的磁化率值出现在小粒径<50μm和大粒径>900μm的范围中。沉积物重金属总含量主要集中在<75μm的粒径范围中。Cr在细小沉积物中浓度含量较高,Pb、Mn、Ni、Cu、As、Fe的较大值都分别分布在<50μm、150-300μm和>900μm这三个粒径范围内;Co元素浓度含量在较小粒径和较大粒径范围含量较高,在中等粒径含量较低。
     (5)渭河杨凌—兴平段沉积物重金属形态在不同粒径上的分布差异不明显,Cu、Pb、Cr、Ni和Mn在不同粒径范围内同一形态所占比例基本一致,Zn元素随着粒径的增大“非稳态”含量逐渐减小;Co元素在<75μm的细小颗粒中主要以“稳定态”存在,而在75-150μm和>150μm的较大颗粒中则主要以“非稳态”存在。
     (6)渭河杨凌—兴平段表层沉积物重金属间的相关性表明:Fe、Mn与其它各种重金属都有较好的相关性,Pb、Cu、Zn和Ni之间的相关性较高;Cr和Co与其它元素相关性较弱,而且呈现出负相关趋势。Pb、Cu、Zn、Ni、Mn、Fe、As都与CaO、K2O、MgO、A12O3呈现出显著的相关关系;与Na2O、SiO2和pH多呈现出负相关关系;聚类分析显示:在B1、B2和B3态中,Cu、Pb、Cr、Ni的聚类关系均最近,在B4态中Mn和Zn与其它各重金属分别各为一类。
     (7)通过对比渭河各城市段表层沉积物重金属环境地球化学特征,结果表明Cu、Pb、Ni和Mn元素含量空间分布规律一致,即在杨凌兴平段浓度最低,而在宝鸡、咸阳和西安等区域浓度相对较高。Cr与Zn元素的分布规律相同,即最大值都出现在杨凌兴平段,其它各段含量水平基本一致。渭河不同河段所受重金属危害程度大小顺序为宝鸡段>西安段>咸阳段>杨凌兴平段。总体而言,重金属高含量多出现在工业密集分布、人口众多的大城市河段,但个别重金属元素在偏僻地区的异常含量应引起高度重视。
Yangling-Xingping Section of Wei River Located the Middle reaches of Shaanxi, which is an important industrial and agricultural town . In recent years, With the development of economic, resources and geographical advantages about Wei River are shown more and more prominent. Because of increasing the degree of environmental protection, many high-polluting and high energy-consuming enterprises move from the bigger cities to the smaller ones, such as Yangling、Wugong、Xingping and increase the environment pressure of these Region. This article collected 9 Sampling profile of surface mixed sediments, By experiment shows the physical and chemical characteristics of surface sediments, using X-Ray Fluorescence Spectrometer analyse the levels of main heavy metals in the sediments, making use of a modified four-step BCR sequential extraction method reveals the chemical speciation of heavy metals, adopting mechanical sieving experiments study the size component and the diversity of heavy metals enrichment and morphological characteristics in different size sediments. Discussing the relationship about the physical and chemical indicators, heavy metal concentration levels and the chemical speciation.These provided a scientific basis for making use of resources and targeted treatment pollution about Wei River. The main conclusions of this study are as follows:
     (1) Physical and chemical indicators of Yangling-Xingping section in the surface sediments are that, the average of pH value, conductivity, loss on ignition,_low-frequency magnetic susceptibility, high-frequency magnetic susceptibility and frequency magnetic susceptibility are 7.972,404μs/cm, 60.7×10-8m3/kg,59.3×10-8m3/kg and 2.45%. The results of size analysis show that the main compositions of sediments are silt and sand. Constant element is consistent with crustal abundance. This shows that the river sediments are derived from the weathering of crustal rocks and reflects the original mineral composition of the crust.
     (2) The average content of heavy metals, such as Cu, Pb, Zn,Cr, Ni,Co and Mn are 17.7 mg/kg, 18.9 mg/kg,72.7 mg/kg,100.2 mg/kg,21.1 mg/kg,,33.9 mg/kg and 484 mg/kg. Where Cr, Co and Zn were significantly exceed the mean soil background value in Shaanxi Province. From the view of the spatial distribution about heavy metals, the high content of heavy metals are found in Industrial concentration areas, the heavy metals content of sediments from Urban area were higher than those in remote rural areas, Industrial areas were higher than high-tech agricultural zone.
     (3) The heavy metals mainly exist by residual speciation in the surface sediments from Yangling-Xingping section in Wei River. The direct harmful of heavy metals(Weak acid extraction speciation) are in the following order:Co(42.47%)> Mn (36.09%)>Pb (24.40%)>Ni(11.69%)>Zn(9.35%)>Cu(6.13%)>Cr(2.85%)>Fe(2.25%);The potentially harmful of heavy metals(reducible and oxidable speciation) are in the following order: Fe (39.37%) >Pb(38.60%)>Cu(28.66%)>Zn(22.49%)>Ni(21.73%)>Mn(17.66%)>Co(14.57%)>Cr(9.66%); Environmental and ecological risks of heavy metals(Weak acid, reducible and oxidable speciation) are in the following order: Pb(62.99%)> Co(57.04%)>Mn(53.75%)> Fe(41.62%)>Cu(34.79%)> Ni(33.41%)>Zn(31.84%)>Cr(12.51%).
     (4) Sediments are mainly concentrated in the range of<75μm._pH value and loss on ignition with decreasing particle size has a slightly increasing trend. Higher levels of the conductivity Concentrate in the bigger size. Higher magnetic susceptibility values appear in the small particle size of< 50μm and the large size of>900μm. The total content of heavy metals in sediments concentrate in the size range of< 75μm. High density of Cr focus on the small size, The larger values of Pb, Mn, Ni, Cu, As and Fe are distributed in the size range of<50μm,150-300μm and>900μm.The higher density of Co concentrate on the smaller and larger size range, but the lower density of Co concentrate on the medium size range.
     (5) Heavy metals chemical speciation are no significant difference in different size.The same speciation of Cu, Pb, Cr, Ni and Mn appear the same scale in the different size range. With the increasing size of sediments, the "Non-steady speciation "of Zn becomes decrease. Co mainly exists by "steady speciation"in the size of<75μm, but the "Non-steady speciation " mainly exists in the size range of 75-150μm and>150μm.
     (6) The correlation of heavy metals in the surface sediments show that Fe, Mn and other heavy metals have a good correlation, Pb, Cu, Zn and Ni have a higher correlation, the correlation of Cr, Co and other elements are not only week, but the trend shows a negative correlation. Pb, Cu, Zn, Ni, Mn, Fe, As show a significant correlation with CaO, K2O, MgO, Al2O3 and show a negative correlation with Na2O, SiO2 and pH value. Cluster analysis showed that Cu, Pb, Cr and Ni have a nearest clustering relations in the speciation of B1,B2 and B3. Mn and Zn are different with other heavy metals in the speciation of B4.
     (7) By comparing Environmental geochemistry with different city sections in the surface sediments of Wei River, the results show that there are the same spatial distribution rule with Cu, Pb, Ni and Mn, that means The lowest concentration appear in Yangling- Xingping section while the higher concentration appear in the city of Xi'an, Xianyang and Baoji. There are the same distribution rule with Cr and Zn, that means the maximum level appears in the Yangling-Xingping section and the other sections keep the same level. The Harmful of heavy metals in the different sections of Wei River are in the following order: Baoji> Xi'an> Xianyang>Yangling-Xingping._Overall, high levels of heavy metals always appear in the big cities where the industry is concentrated and the population are numerous. However, the unusual content of individual heavy metals in the remote areas should be high regarded.
引文
[1]刘国成,完颜华.中国城市化进程中水资源与水环境问题研究[J].中国科技信息,2009,10:26-27.
    [2]徐祖信.河流污染治理技术与实践[M].北京:中国水利水电出版社,2003.
    [3]Salomons, W., De Rooij N.M., Kerdijk H., et al. Sediments as a source for contaminants?[J]. Hydrobiologia,1987,149:13-30.
    [4]左玉辉.环境学[M].北京:高等教育出版社,2002.
    [5]戴树桂.环境化学[M].北京:高等教育出版社,2004.
    [6]陈静生.沉积物重金属污染研究中的若干问题[J].环境科学丛刊,1983,4(8):1-2.
    [7]张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究[J].地理学报,1997,52(2):184-192.
    [8]Ankley, G. T., Ditoro, D. M., Hansen, D. J., et al. Technical Basis and Proposal for Deriving Sediment Quality Criteria for Metals Bioavailability in Sediments[J]. Environmental Toxicology and Chemistry,1996,15(12):2056-2066.
    [9]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    [10]Andren, A.W., Harriss, R.C. Methylmercury in estuarine sediments [J]. Nature, 1973,245:256-257.
    [11]Sprague, J. B. Lethal concentrations of copper and zinc for young Atlantic salmon[J]. Journal of the Fisheries Research Board of Canada,1964,21:17-26.
    [12]Klein, D. H., Goldberg, E. D. Mercury in the marine environment[J]. Environmental Science & Technology,1970,4(9):765-768.
    [13]Chow, T. J., Bruland, K. W., Bertine, K., Soutar, A. Lead pollution:Records in Southern California coastal sediments[J]. Science,1973,181:551-552.
    [14]Ajmal, M., Khan, M. A., Nomani, A. A. Distribution of Metals in Water and Sediments of Selected Sites of Yamuna River [J]. Environmental Monitoring and Assessment,1985,5(2):205-214.
    [15]Carter, L.J. Chemical plants leave unexpected legacy for two Virginia rivers. Science[J],1977,198:1015-1020.
    [16]Calmanl.W., Ahlfw, U. Forster. Sediment quality assessment:Chemical and Biological approaches. In:Calmanl, W., U.Forster., eds. Sediment and toxic substance: Environmental effects and ecotoxity. Berlin:springer,1995,1-36.
    [17]Charles, W. Heavy metal storage in near channel sediments of the Lahn River[J], Germany. Geomorphology,2004,61(34):275-285.
    [18]Karageorgis, A. P., Nikolaidis, N. P., Karamanos, H., etc. Water and sediment quality Assessment of the Axios River and its coastal environment. Continental Shelf Research,2003:(17-19):1929-1944.
    [19]Jain, C. K. Metal fractionation study on bed sediments of River Yamuna, India. Water Researeh[J],2004,38(3):569-578.
    [20]Santschi, P. H., Hoehener P., Benoit, G., etc. Chemical Processes at the Sediment water interface. Mar.Chem.,1990,30(1-3):269-315.
    [21]Ramesh, R., Subramanian, V. Heavy Metal Distribution in Sediments of Krishna River Basin, India [J]. Environmental Geology and Water Science,1990,15(3): 207-216.
    [22]Cotter-Howells, J., Thronton, I. Source and Pathways of Environment Lead to Children in a Derbyshire Mining Village [J]. Environmental Geochemistry and Health,1991,13(2):127-135.
    [23]Luoma, S. N. Can we determine the biological availability of sediment bound trace elements? [J]. Hydrobiologia,1989,176/177:379-396.
    [24]Hicks, M. B., Scott, K. J., Hansen, D.J., et al. Toxicity of cadmium in sediments: the role of acid volatile sulfide [J]. Environmental Toxicology and Chemistry,1990, 9(1):1487-1502.
    [25]Quevauviller, P. Requirements for Production and Use of Certified Reference Materials for Speciation Analysis:A European Commission Perspective [J]. Spectrochimica Acta Part B,1998,53:1261.
    [26]Rosa, G., Jean, D. An evaluation of fresh water sediments contamination:the Lachine canal sediments case, Montreal, Canada. Part Ⅱ:heavy metal particulate speciation study[J]. Water, Air, and Soil Pollution,1998,102:281-301.
    [27]Zhou X.D. Experimental study on heavy metals contamination adsorption by sediment[J]. Journal of Water Conservancy,1993,5(7):45-49.
    [28]张丽洁,王贵,姚德,等.近海沉积物重金属研究及环境意义[J].海洋地质动态,2003,19(3):6-9.
    [29]廉雪琼.广西近岸海域沉积物中重金属污染评价[J].海洋环境科学,2002,21(3):39-42.
    [30]王百顺,刘阿成,陈忠阳.984-2000年长江口海域水质重金属浓度分布变化[J].海洋通报,2003,22(2):32-38.
    [31]傅瑞标,孙振斌,何青.长江口重金属的研究现状[J].上海水力,1998,2,35-39.
    [32]孟诩,刘仓字.长江口区沉积地球化学特征的定量研究[J].1996,1,73-84
    [33]蓝先洪.中国主要河口沉积物的重金属地球化学研究[J].海洋地质动态,2004,20(12):1-4.
    [34]黄薇文,张经.黄河河口段沉积物中重金属的地球化学行为.海洋通报(J),1987,6(2):23-28.
    [35]杨宏伟,郭博书,等.黄河水中铅(Ⅱ)与悬浮粒子相互作用的研究.环境科学研究(J),2001,6(1):32-36.
    [36]杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属污染及其风险性评价[J].湖泊科学,2003,15(3):251-256.
    [37]洪继华,王庭健.河流沉积物中的重金属在天然条件下的释放[J].环境化学,1987,6(5):1-7.
    [38]王晓荣,J.戴维·史密斯.提取剂pH对沉积物释放金属的影响[J].环境化学,1989,8(3):1-9.
    [39]陈静生.铜在沉积物各相中分配的实验模拟与数值模拟研究—以鄱阳湖为例[J].环境科学学报,1987,7(2):140-149.
    [40]陈静生,洪松,王立新等.中国东部河流颗粒物的地球化学性质[J].地理学报,2000,55(4):417-425.
    [41]陈静生,王飞跃,宋吉杰,等.中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J].环境化学1996,15(1):8-14.
    [42]陈静生,王飞跃,陈江麟.论小于63μm粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转化模型研究[J].环境科学学报,1994,14(4):419-426.
    [43]张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究—空间自相关与分形方法[J].地理学报,1998,53(1):87-95.
    [44]张朝生,章申,何建邦.长江水系沉积物铜含量空间分布特征研究[J].科学通报,1997,42(3):295-297.
    [45]张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究—地统计学方法,地理学报,1997,52(2):184-192.
    [46]单丽丽,袁旭音,茅昌平,等.长江下游不同源沉积物中重金属特征及生态风险[J].环境科学,2008,29(9):2399-2406.
    [47]沈敏,于红霞,邓西海.长江下游沉积物中重金属污染现状与特征[J].环境监测管理与技术,2006,18(5):15-18.
    [48]杨宏伟,王明仕,徐爱菊,等.黄河(清水河段)沉积物中锰、钴、镍的化学形态研究[J].环境科学研究,2001,14(5):20-22.
    [49]杨宏伟,庄晓娟,乌地,等.黄河(清水河段)沉积物中污染元素的化学形态分析[J].内蒙古石油化工,2001,27(3):12-15.
    [50]黄薇文,张经.黄河河口段沉积物中重金属的地球化学行为[J].海洋通报1987,6(2):23-28.
    [51]王新伟,钟宁宁,李朝生.等.黄河包头段河流沉积物重金属污染的多样性与均匀性分析[J].中国石油大学学报(自然科学版),2007,31(4):14-23.
    [52]Huang, S.L, Wan, Z.H, Wang, L.X. Study on the effect of sediment
    concentration and initial concentration of water phase on heavy metalsads orption by sediment. Acta Scientiae Circumstantiae,1995,15(1):66-75.
    [53]张朝生,章申,王立军,等.长江与黄河沉积物金属元素地球化学特征及其比较[J].地理学报,1998,53(4):315-321.
    [54]杨守业,李从先.长江与黄河现代表层沉积物元素组成及其示踪作用[J].自然科学进展,1999,9(10):930-3-937.
    [55]向勇,缪启龙,丰江帆.太湖底泥中重金属污染及潜在生态危害评价[J].南京气象学院学报.2006,29(5):700-705.
    [56]范成新,朱育新,吉志军,等.太湖宜溧河水系沉积物的重金属污染特征[J].湖泊科学,2002,14(3):235-24.
    [57]唐晓燕,彭渤,余昌训,等.湘江沉积物重金属元素环境地球化学特征[J].2008,20(3):26-31.
    [58]林春野,周豫湘,呼丽娟,等.松花江水体沉积物汞污染及其生态风险[J].环境科学学报,2007,27(3):466-473.
    [59]林春野,何孟常,李艳霞,等.松花江沉积物金属元素含量、污染及地球化学特征[J].环境科学,2008,29(8):2123-2130.
    [60]熊观,易发成.杨柳坪矿区水系沉积物中重金属元素分布特征[J].矿业工程,2009,7(1):50-52.
    [61]张晓军,胡明安.大冶铁山地区河流水体及水系沉积物中重金属元素分布特征[J].地质科技情报,2006(2):89-92.
    [62]唐阵武,岳勇,程家丽,武汉市中小河流沉积物重金属污染特征及其生态风险[J].2009,23(1):132-136.
    [63]刘恩峰,沈吉,杨丽原,等.南四湖及主要入湖河流表层沉积物重金属形态组成及污染研究[J].环境科学,2007,28(6):1377-1383.
    [64]吴光红,朱兆洲,刘二保,等.天津城市排污河道沉积物中重金属含量及分布特征[J].环境科学,2008,29(2):113-420.
    [65]弓晓峰,黄志中,张静.等鄱阳湖湿地重金属形态分布及植物富集研究[J].环境科学研究,2006,19(3):34-40.
    [66]Kot A.,Namiesik J., The Role of Speciation in Analytical Chemistry [J].Trends in Analysis Chemistry,2000,19:69-79.
    [67]Sunda, W.G.., Klaveness, D., Palumbo.V. Complexation of Traee Metals In Natural Waters[J]. Nijhoff/Junk, The Hague,1984,393.
    [68]周怀东,袁浩,王雨春,等.长江水系沉积物中重金属的赋存形态[J].环境化学,2008,27(4):515-519.
    [69]韩春梅,王林山.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502.
    [70]Van Loon, J. C. & Barefoot, R. R. Analytical Methods for Geochemical E xploration[M]. Academic Press, New York,1989.
    [71]Ure, A.M., Single extraction schemes for soil analysis and related applications[J]. The Science of the Total Environment,1996,178:3-10.
    [72]Tessier, A., Cmapbell, P. G. C., Bisson, M. Sequential extraction Procedure for the specification of Particulate trace metals[J], Analytical Chemisity, 1979,844-850.
    [73]隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用[J].海洋湖沼通报2002,3(3):25-35.
    [74]Singh, A.K.,Benerjee, D.K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River-Atributary of the lower Ganga,India[J]. Environmental Geology,1999,39(1):91-98.
    [75]雷鸣,廖柏寒,秦普丰.土壤重金属化学形态的生物可利用性评价[J].生态环境,2007,16(5):1551-1556.
    [76]Gomez-Ariza J.L.,Giraldez I.,Sanchez-Rodas D.,et al.Metal Sequential Extration Procedure Optimized for Heavily Pollution and Iron Oxide Rich Sediments[J]. Analytica Chimica Acta,2000,414(1):151-164.
    [77]] Salomons W., Fornster U., Chemisty and Biology of Solid waste; dredged material and mine tailings[M].Springer Verleg, Berlin,1988,219-237.
    [78]Quveuvailler, P. H., Rauertq, G., Griepink, B. Single and sequential extraction in sediments and soils[J], International Journal of Environmental Analytical Chemistry,1993,51,231-235.
    [79]李非里,刘丛强,宋照亮.土壤中重金属形态的化学分析综述[J].中国环境监测,2005,21(4):21-26.
    [80]苏惠娟,陆维昌,陈晓虹,等.长江口表层底泥中重金属(铅、锡、铜、锌)化学形态的研究[J].1998,7(4):22-30.
    [81]陈磊,徐颖,朱明珠.等.秦淮河沉积物中重金属总量与形态分析[J].农业环境科学学报2008,27(4):1385-1390.
    [82]袁浩,王雨春,顾尚义,等.黄河水系沉积物重金属赋存形态及污染特征[J].生态学杂志,2008,27(11):1966-1971.
    [83]Roussiez, V., Ludwig, W., Probst, J. L., et al. Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean):an approaeh based on,133Cs normalizarion and lead isotope measure means. Environ Pollut,2005,138:67-177.
    [84]Chen Z Y. Saito Y. Kanai Y., et al. Low concentration of heavy metals in the Yangtze estuarine sediments, China a diluting setting. Estuar Coast & Shelf Sci, 2004,60,91-100.
    [85]陈沈良,杨世伦,吴瑞明.杭州湾北岸潮滩沉积物粒度的时间变化及其沉积动力学意义[J],海洋科学进展,2004,22(3):299-305.
    [86]Krumgala, B. S., Hornung, H., Oren, O. H. The study of a natural hypersal-ine lagoon is a desert area (The Bardawil lagoon)[J]. Estuarine, Coastal and Marine Science,1980,10(4):403-415.
    [87]Windom H.L.et al.Environmental Science & Technology.1989,23:314
    [88]冯素萍,温超,沈永.东平湖不同粒径底泥沉积物中汞的形态分布[J].环境检测管理与技术,2008,20(6):22-26.
    [89]刘恩峰,沈吉,朱育新.沉积物金属元素变化的粒度效应—以太湖沉积岩芯为例[J].湖泊科学,2006,18(4):363-368.
    [90]王岩,裴宗平,邓绍坡.城市河流底质粒径与重金属污染状况分析[J].环境科学与管理,2008,33(5):75-77.
    [91]姜月华,殷鸿福.环境磁学理论、方法和研究进展[J].地理学报,2004,25 (3):357-362.
    [92]Thompson R, Oldfield F. Environmental Magnetism[M].London: Allen and Unwin, 1986.
    [93]闫海涛,胡守云,朱育新.磁学方法在环境污染研究中的应用[J].地球科学进展,2004,19(2):230-234.
    [94]Oldfield F. Environmental magnetism-A personal perspective[J].Quaternary Science Reviews,1991,10:73-85.
    [95]Heller F, Strzyszcz Z, Magiera T. Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland [J].Journal of Geophysical Research,1998,103: 17767-17774.
    [96]孙知明.现代湖泊沉积物中磁性矿物的研究及其意义,地球物理学报,1996,39(2):178-187.
    [97]Michael, E., Friedrich Heller. Environmental Magnetism[M].London:Academic Press,2003.
    [98]Beckwith P R, Ellis J B, Revitt D M. Heavy metal and magnetic relationships for urban source sediments[J]. Physics Earth Planet. Int.1986,42:67-75.
    [99]Williams T M. A sedimentary record of the deposition of heavy metals and magnetic oxides in the Loch Dee basin, Galloway, Scotland, since c. AD 1500 Galloway, Scotland, Since.1500[J]. Holocene,1991,1:142-150.
    [100]Scholger R. Heavy metal pollution monitoring by magnetic susceptibility measurements applied to sediments of river Mur (Styria, Austria) [J].European Journal of Environmental and Engineering Geophysics,1998,3:25-37.
    [101]吕达,郑祥民,周立旻.等.上海崇明岛沉积物重金属污染的磁学研究[J].海洋环境科学,2009,28(2):160-163.
    [102]刘志锋,杨涛,韩松.等.武汉市东湖周边近地表土壤磁化率特征及其环境意义[J].2009,28(4):137-142.
    [103]段雪梅,胡守云,闫海涛,等.南京某钢铁公司周边耕作土壤的磁学性质与重金属污染的相关性研究[J].中国科学D辑:地球科学,2009,39(9):1304-1312.
    [104]袁大刚,张甘霖.城市道路区土壤的磁学性质及其发生学意义[J].土壤学报,2008,45(2):216-220.
    [105]依艳丽,谷微微,张大庚,等.葫芦岛市土壤磁化率与重金属元素分布规律及其相关性研究[J].土壤,2008,40(5):806-811.
    [106]董生荣.咸阳市水资源评价及开发利用现状分析[R].咸阳市水政水资源管理办公室,2001.
    [107]陈渝.渭河咸阳段水质分析及污染治理策略[J].水资源与氺工程学报,2005,16(2): 55-58.
    [108]赵景波,蔡晓薇,王长燕.西安高陵渭河近120年来的洪水演变[J].地理科学,2007,27(2):225-230.
    [109]刘子亭,余俊清,张保华,等.烧失量分析在湖泊沉积与环境变化研究中的应用[J].盐湖研究,2006,14(2):67-71.
    [110]曹会聪,王金达,张学林.东北地区污染黑土中重金属与有机质的关联作用[J].环境科学研究,2007,20(1):36-41.
    [111]路永正,阎百兴.重金属在松花江沉积物中的竞争吸附行为及pH的影响[J].环境科学研究,2010,23(1):20-25.
    [112]王凌青.西安市郊农田土壤重金属污染及形态分析[D].西安,陕西师范大学,2007.
    [113]旺罗,刘东生,吕厚远,等.污染土壤的磁化率特征[J].科学通报,2000,45(10):1091-1094.
    [114]Dean, W. E. Jr. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition:Comparison with other methods[J]. J. Sed. Petrol,1974,44:242-248.
    [115]Bengtsson L,Enell.Chemical analysis[A]. In Berglund,B.E. Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester:John Wiley&Sons Ldt., 1986.423-451.
    [116]石建省,石迎春,叶浩,等.黄土堆积序列“高温烧失量”指标对古气候演化的指示意义[J].地理学与国土研究,2002,18(4):104-106.
    [117]Turekian K K, Wedepohl K H. Distribution of the elements in some major units of the earth's curst[J]. Bull. Geol. Soc. America.1961,15 (7):72-75.
    [118]陈静生,李远辉,乐嘉祥,等.我国河流的物理与化学侵蚀作用[J].科学通报,1984,15(29):932-936.
    [119]中国环境监测总站,北京大学,中国科学院沈阳应用生态研究所.中国土壤元素背景值[M].北京:中国环境科学出版社,1990
    [120]乔永民.粤东近岸海域沉积物重金属环境地球化学研究[D].广州:暨南大学,2004.
    [121]李法虎.土壤物理化学[M].北京:化学工业出版社,2006.
    [122]W.H. Zoller, E.S.Gladney,R. A. Duce. Atmospheric Concentrations and Sources of Trace Metals at the South Pole[J].Science,1974,183:198-200.
    [123]R.A.Duce, GL.Hoffman, W.H. Zoller. Atmospheric Trace Metals at Remote Northern and Southern Hemisphere Sites:Pollution or Natural? [J]. Science, 1975,187:59-61.
    [124]张秀芝,鲍征宇,唐俊红.富集因子在环境地球化学重金属污染评价中的应用[J].地质科技情报,2006,25(1):66-71.
    [125]王利军.宝鸡市街尘、土壤及渭河沉积物重金属污染研究[D].西安:陕西师范大学,2008.
    [126]雷凯.渭河西安段水体及水系沉积物重金属环境地球化学研究[D].西安:陕西师范大学,2008.
    [127]翟雨翔.渭河咸阳段沉积物重金属污染研究[D].西安:陕西师范大学,2009.
    [128]卢升高.中国土壤磁性与环境[M].北京:中国高等教育出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700