用户名: 密码: 验证码:
页岩飞灰重金属赋存形态及熔融制备的微晶玻璃性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石燃料过度利用引起的资源枯竭问题日益严峻,寻找可替代能源已成为世界各国亟待解决的问题。在众多的替代能源中,储量丰富的油页岩资源引起了各国专家的广泛关注。油页岩是一种灰分含量大(约为70wt%~90wt%)的低热值固体燃料。按其灰分含量计算,油页岩可采资源全部利用将产生页岩灰渣1702.8~2189.2亿吨,若油页岩资源全部利用将产生2879.8~6479.5亿吨。随着油页岩的大力开发利用,年产量巨大的页岩废渣带来的环境污染问题已受到人们关注。页岩废渣含有酸性和碱性物质,尤其是重金属,通过地表和地下水体径流、悬浮飘尘污染周围土地、水域和大气,其潜在危害不容忽视。因此,页岩废渣的安全处理是油页岩工业发展亟待解决的问题。
     本研究选取油页岩及其循环流化床燃烧形成的飞灰为研究对象,通过对两者重金属赋存形态及含量分析,发现在燃烧过程中重金属的迁移转化规律;针对飞灰中重金属富集情况,提出飞灰处理注意事项,并采用熔融—烧结方法进行飞灰处理制备成微晶玻璃,其具体内容如下所示:
     (1)采用Tessier五步连续提取法,通过对油页岩和页岩飞灰中重金属Cu、Cr、Ni、Cd、Pb、Zn的不同赋存形态含量的测定,研究重金属在页岩飞灰中的富集程度。采用主成分分析方法,研究循环流化床燃烧前后重金属的形态迁移转化规律,并采用STI模型进行页岩飞灰中重金属毒性评估计算。研究表明:页岩飞灰富集重金属Cu、Cd、Pb、Zn,其中Pb、Zn富集量高达117.02μg g-1、71.06μg g-1;页岩飞灰中铁锰氧化态和可交换态重金属含量显著增加,致使飞灰生态风险性增强。
     (2)采用机械筛分方法,对页岩飞灰样品进行粒度分布分析。在考察页岩飞灰化学组成和传统灰渣处理工艺利弊的基础上,阐明采用熔融工艺处理页岩飞灰的可行性和优越性。在引入氧化钙添加剂的条件下,配制了五种不同碱度的玻璃原料,经熔融后水淬处理使玻璃原料形成玻璃质熔渣,然后经核化和晶化处理将其制备成微晶玻璃。在微晶玻璃熔制过程中,考察碱度和热处理时间对微晶玻璃性能指标的影响,为灰渣微晶玻璃生产提供科学依据。
     (3)物理化学特性分析表明页岩飞灰颗粒细小,富含SiO2、Al2O3、CaO等多种碱金属氧化物,是熔制CaO-Al2O3-SiO2三元相系微晶玻璃的良好原料。在玻璃原料熔融处理过程中,体系中大量金属氧化物破坏了CaO-Al2O3-SiO2三元系统的相间平衡,使维持系统平衡的共熔点降低,产生了多元氧化物的共熔融现象。
     (4)利用德国NETZSCH公司的DSC404 F3型高温差示量热扫描仪研究碱度变化对玻璃质熔渣析晶行为的影响,进而确定玻璃质熔渣热处理过程中的核化温度和晶化温度两个特征参数。结果表明碱度增加有助于基础玻璃的析晶温度降低,其原因在于原料由Fe2O3、K2O、Na2O、Ti2O、MgO等碱金属氧化物能促进基础玻璃析晶,引入的CaO添加剂作为网络改变体能有效地降低晶相转变过程中的能量投入
     (5)借助抗压强度、耐腐蚀性和重金属浸洗测试与X射线衍射、扫描电镜分析技术,研究碱度和热处理时间对微晶玻璃物化特性和微观结构特征的影响。研究表明:随着原料碱度的增加,微晶玻璃主晶相由钙硅石逐渐转变为钙长石,同时伴有方解石、多铝红柱石、透辉石和钙黄长石形成。适宜的碱度和热处理时间有助于微晶玻璃抗压强度、耐腐蚀性和重金属固化效果的提高。当碱度AK3=0.33时,微晶玻璃主晶相钙长石含量较高,且球状晶体颗粒成长饱满、大小均匀、排列紧密。
     (6)采用基于密度泛函理论的第一性原理计算方法,利用Materials Studio分子模拟软件中CASTEP模块,对硅酸盐晶体分子结构和掺杂重金属原子的晶体体系结合能进行模拟计算,探讨硅酸盐晶体固化重金属机理。结果表明:当借助外力使进入晶体空间内的金属原子脱离体系时,必须克服掺杂体系对原子产生的能垒。掺杂体系的结合能越大,使原子脱离体系的能垒越大,晶体对进入其体系内部的原子固化作用越强。
With serious resource depletion caused by over-use of fossil fuel, it is urgent to seek the substitute energy. Among many substitute energies, oil shale resource has caused widespread attention due to huge reserves. Oil shale is a low-heating-value solid fuel with ash content in the range from 70wt% to 90wt%. According to the calculation of ash content, the ash yield will be in the range from 170.28 to 218.92 billion ton when the exploited oil shale is completely utilized and will be in the range between 287.87 and 647.95 billion ton when oil shale resource is completely utilized. With the exploitation and utilization of oil shale, the environmental pollution caused by waste slag with huge annual yield become more and more serious. There are some acid and alkali materials in oil shale waste slag, especially heavy metals. The potential hazard of pollutants can not be ignored due to contaminating surrounding soil, water area and atmosphere through surface runoff and floating dust. Therefore, it is necessary to realize the safe treatment of oil shale waste slag in order to maintain vigorous development of oil shale industry.
     In this paper, oil shale and oil shale fly ash (OSFA) were selected to discover the translocation regularity of heavy metals during circulating fluidized bed combustion through their fraction and content. Considering the enrichment of heavy metals in OSFA, some matters need attention will be put forward in the treatment of OSFA. By melting and sintering methods, nucleated glass-ceramics were produced from OSFA. The specific works are as follows:
     (1) The research on heavy metals with different fractions and content was carried out by Tessier sequential extraction in order to investigate the enrichment level of heavy metals in OSFA. The translocation regularity of heavy metals with different fractions during circulating fluidized bed combustion was studied through principal component analysis. Moreover, the toxicity assessment of heavy metals in OSFA was carried out by STI model.The resluts indicated that there were accumulations of heavy metals such as Cu, Cd, Pb, Zn in fly ash, and the enrichment mass of Pb and Zn added up to 117.02μg g-1 and 71.06μg g-1, respectively. The ecological risk of OSFA was notably intensified due to the high content of heavy metals with iron-manganese and exchangeable fractions.
     (2) The granularity distribution analysis of OSFA was carried out by mechanical grading. The feasibility and advantage of OSFA treatment by melting were expounded on the basis of the chemical compositons analysis of fly ash and the assessment of traditional ash treatment technique. Five glass materials prepared with CaO additive converted to molten-slag like glassiness by melting treatment. Then, the glass ceramics was produced by nucleation and crystallization treatment. The effect of alkalinity and heat treatment time on the performance index of glass ceramics was investigated in order to provide scientific information for commercial run.
     (3) Physicochemical characteristics analysis indicated that OSFA with thin granularity mainly consisted of multi-basic oxides such as SiO2, Al2O3, CaO, which were good raw materials for CaO-Al2O3-SiO2 system glass ceramics. The co-melting phenomenon occurred during the melting process of raw materials because a lot of metal oxides destroyed the interphase balance of CaO-Al2O3-SiO2 system and reduced the co-melting temperature which maintained the system balance.
     (4) The effect of alkalinity on the crystallization behavior of molten-slag like glassiness was investigated by differential scanning calorimeter named DSC404 F3 produced by German NETZSCH Company in order to determine the nucleation temperture and crystallization temperature. The results indicated that the increase of alkalinity conduced to bring down the nucleation temperture and crystallization temperature. Metal oxides such as Fe2O3, K2O, Na2O, Ti2O, MgO can accelerate the crystallization of molten-slag. CaO was considered as network modifier to be effective at reduction of energy input in crystallization transition.
     (5) The effects of alkalinity (AK) and heat treatment time on the physicochemical characterics and microstructure of glass ceramics were investigated by virtue of compressive strength, corrosion resistance, immersion cleaning of heavy metals, XRD and SEM analysis. The results indicated that the increase of alkalinity led to the transition of main crystallization phase in nucleated glass-ceramics from wollastonite to anorthite. Additionally, there were also calcite, mullite, diopside and gehlenite in glass ceramics. When AK3=0.33, the content of anorthite was high in glass ceramics, in which there were a lot of close sphere-shaped crystals with satiation and same size.
     (6) By first principles calculation on the basis of density functional theory, the CASTEP module of Materials Studio molecule simulation software was used to optimize the structure of silicate crystals and calculate the binding energy of crystal system adulterating heavy metal atoms in order to analyse the solidification mechanism of heavy metals in silicate crystals. The results indicated that energy barrier should be destroyed in order to make heavy metals escape from body system by virtue of external force. The body system had better effect on solidification of heavy metals entering into inner space of crystals when the energy barrier was stronger due to higher binding energy.
引文
[1]崔丽文.我国能源形势相当严峻[J].国外测井技术,2006,21(5):1.
    [2]张德义.关于中国能源形势的思考[J].当代石油石化,2008,16(2):1-8.
    [3]施国泉.一种现实的石油替代能源—油页岩[J].吉林大学学报,2006,36(6):888-891.
    [4]李丹梅,汤达祯,杨玉凤.油页岩资源的研究、开发与利用进展[J].石油勘探与开发,2006,33(6):657-661.
    [5]杨鸿玺.国际能源形势与中国的发展进程[J].和平与发展,2008,104(2):28-32.
    [6]周喜安.新形势下我国能源发展格局[J].中国党政干部论坛,2009,(5):23-25.
    [7]徐淀明.积极推进我国替代能源发展[J].中国建设动态,2006,1(2):5-7.
    [8]钱家麟,王剑秋,李术元.世界油页岩综述[J].中国能源,2006,28(8):16-19.
    [9]钱家麟,王剑秋,李术元.世界油页岩资源利用和发展趋势[J].吉林大学学报(地球科学版),2006,36(6):877-887.
    [10]Jiang X M, Han X X, Cui Z G. Progress and recent utilization trends in combustion of Chinese oil shale[J]. Progress in Energy and Combustion Science,2007,33 (6):552-579.
    [11]韩向欣.油页岩半焦燃烧机理与循环流化床燃烧利用[D].上海:上海交通大学机械动力学院,2007.
    [12]姜秀民,韩向欣,崔志刚.油页岩综合利用技术的研究[J].自然科学进展,2005,15(11):1342-1345.
    [13]柳蓉,刘招君.国内外油页岩资源现状及综合开发潜力分析[J].吉林大学学报(地球科学版),2006,36(6):892-898.
    [14]刘招君,董清水,叶松青等.中国油页岩资源现状[J].吉林大学学报(地球科学版),2006,36(6):869-876.
    [15]游君君,叶松青,刘招君等.油页岩的综合开发与利用[J].世界地质,2004,23(3):261-265.
    [16]陈洁渝,严春杰,李子冲等.油页岩渣的综合利用[J].矿产保护与利用,2006,(6):41-45.
    [17]张秋民,关珺,何德民.几种典型的油页岩干馏技术[J].吉林大学学报(地球科学版),2006,36(6):1019-1026.
    [18]刘志逊,高健,赵寒冬等.国内油页岩干馏技术现状与发展趋势[J].煤炭加工与综合利用,2007,(1):45-49.
    [19]李术元,岳长涛,王剑秋等.世界油页岩开发利用近况[J].中外能源,2009,14(2):16-24.
    [20]赵剑剑,王春华.油页岩发电利用研究[J].广东电力,2008,21(9):20-22.
    [21]闫澈,姜秀民.中国油页岩的能源利用研究[J].中国能源,2000,(9):22-26.
    [22]周妍,李守义,孙英男.吉林省油页岩特征及开发利用前景[J].矿业快报,2006,456(4):7-9.
    [23]张进忠,刘楠,孔国辉等.两种木本植物光合作用对油页岩废渣污染的响应[J].热带亚热带植物学报,2006,14(2):100-106.
    [24]张丽萍,曾荣树,徐文东等.油页岩综合利用对周围环境的影响[J].中国煤田地质,2006,18(2):46-48.
    [25]张丽萍,曾荣树,徐文东.抚顺西舍场油页岩的淋滤行为及其对周围水体的影响[J].矿物岩石地球化学通报,2007,26(2):160-163.
    [26]邓钊平,李丽华,梁朝.茂名油页岩废渣场土地资源再利用试验研究[J].生态科学,2000,19(4):57-61.
    [27]Jaber J O, Probert S D, Badr O. Energy and environmental issues for Jordan[J]. Applied Energy, 1997,57 (1):45-101.
    [28]Koskela S, Seppala J, Lipp A, et al. Estonian electricity supply scenarios for 2020 and their environmental performance[J]. Energy Policy,2007,35 (7):3571-3582.
    [29]夏汉平,黄娟,孔国辉.油页岩废渣场的生态恢复[J].生态学报,2004,24(12):2887-2893.
    [30]Toomik A, Liblik V. Oil shale mining and processing impact on landscapes in northeast Estonia.[J]. Land scape and Urban Planning,1998,(41):285-292.
    [31]岑可法.中国能源与环境可持续发展的若干问题[J].中国废钢铁,2006,(2):4-13.
    [32]http://www.mycnhightech.com/new/zyyhjjs/gxkf/200808/644.html.
    [33]吴英良.油页岩飞灰及煤矸石制备少熟料胶凝材料的研究[D].北京:北京科技大学土木与环境工程学院,2007.
    [34]Al-Qodah Z. Adsorption of dyes using shale oil ash[J]. Water Research,2000,34 (17):4295-4303.
    [35]陈立军,黄旭光.利用油母页岩渣作水泥混合材的试验分析[J].吉林建筑工程学院学报,2001,(1):19-22.
    [36]牟善彬,孙振亚.烧页岩的水化活性及在水泥混合材中的应用机理[J].非金属矿,2002,25(1):29-30.
    [37]Karagoz Ozturk A, Oguz H. The formation of alite phase by using phosphogypsum and oil shale[J]. Cement and Concrete Research,2004,34 (11):2079-2082.
    [38]Ozturk A, Suyadal Y, Oguz H. The formation of belite phase by using phosphogypsum and oil shale[J]. Cement and Concrete Research,2000,30 (6):967-971.
    [39]Al-Otoom A Y. Utilization of oil shale in the production of Portland clinker[J]. Cement and Concrete Composites,2006,28 (1):3-11.
    [40]Chan S Y, Ji X. Water sorptivity and chloride diffusivity of oil shale ash concrete[J]. Construction and Building Materials,1998,12 (4):177-183.
    [41]王盘成,吴国光,赵娜等.油页岩灰作水泥混合材的研究[J].硅酸盐通报 2009,28(3):580-584.
    [42]习会峰,穆建春,李胜强等.油页岩渣替代粘土制水泥的研究及应用[J].茂名学院学报,2009,19(1):84-86.
    [43]Freidin C. Influence of variability of oil shale fly ash on compressive strength of cementless building compounds[J]. Construction and Building Materials,2005,19 (2):127-133.
    [44]Smadi M M, Haddad R H. The use of oil shale ash in Portland cement concrete[J]. Cement and Concrete Composites,2003,25 (1):43-50.
    [45]Feng N Q, Chan S Y, He Z S, et al. Shale ash concrete[J]. Cement and Concrete Research,1997,27 (2):279-291.
    [46]Feng X P, Niu X L, Bai X, et al. Cementing Properties of Oil Shale Ash[J]. Journal of China University of Mining and Technology,2007,17 (4):498-502.
    [47]钱家麟,王剑秋,李术元.世界油页岩开发利用动态[J].中外能源,2008,(1):11-15.
    [48]郑维宪,邢明,吴卫.页岩砖的性能、特点及施工质量控制[J].施工技术,2006,35(12):267-269.
    [49]沈毅秀.性能优良的烧结页岩砖[J].砖瓦,2005,(5):39-41.
    [50]艾冲.年产1.2亿块烧结页岩砖生产线邓州投产[J].墙材革新与建筑节能,2009,(4):59.
    [51]Al-Qodah Z, Shawaqfeh A T, Lafi W K. Adsorption of pesticides from aqueous solutions using oil shale ash[J]. Desalination,2007,208 (1-3):294-305.
    [52]Shawabkeh R, Al-Harahsheh A, Hami M, et al. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater[J]. Fuel,2004,83 (7-8):981-985.
    [53]Shawabkeh R, Al-Harahsheh A, Al-Otoom A. Copper and zinc sorption by treated oil shale ash[J]. Separation and Purification Technology,2004,40 (3):251-257.
    [54]Shawabkeh R. Equilibrium study and kinetics of Cu2+ removal from water by zeolite prepared from oil shale ash[J]. Process Safety and Environmental Protection,2009,87 (4):261-266.
    [55]李勇,薛向欣,冯宗玉.改性油页岩灰吸附Cu2+的研究[J].材料与冶金学报,2007,6(4):302-305.
    [56]苏瞳,李爱民,栾敬德.改性油页岩灰吸附Ni2+的研究.第五届全国环境化学大会.2009.北京.
    [57]陈益兰,李毅,毛锡双等.页岩陶粒理化性能的研究[J].化学建材,2004,(3):3-4.
    [58]许绍群,杨时元.干法高强页岩陶粒研制与生产[J].建筑砌块与砌块建筑,2003,(2):25-27.
    [59]邓家平,张明华,李泽林等.利用油页岩渣烧制超轻陶粒的研究与工艺方案设计[J].建筑砌块与砌块建筑,2007,(37):37-39.
    [60]邓家平,张明华,李泽林.油页岩渣超轻陶粒的研制[J].应用技术,2007,46(3):33-34.
    [61]肖其海.油页岩灰填充母粒的研制[J].塑料科技,1995,(2):5-8.
    [62]肖其海.油页岩灰填充母粒的研制[J].中国塑料,2000,14(10):48-53.
    [63]蒋鹏,胡珊,陈洁瑜等.油页岩碴超细粉碎及其在天然橡胶中的应用[J].非金属矿,2006,29(6):16-17.
    [64]李青,蒋鹏,戴磊.油页岩渣的改性及其在聚乙烯塑料中的应用[J].河南化工,2007,(4):35-37.
    [65]李子冲,严春杰,陈洁渝等.改性油页岩渣填充橡胶的SEM分析[J].电子显微学报,2006,(25):340-341.
    [66]王学涛.城市生活垃圾焚烧飞灰熔融特性及重金属赋存迁移规律的研究[D].南京:东南大学能源与环境学院,2005.
    [67]李润东.城市垃圾焚烧飞灰熔融过程的机理研究[D].杭州:浙江大学机械与能源工程学院,2002.
    [68]Sakai S, Hiraoka M. Municipal solid waste incinerator residue recycling by thermal processes[J]. Waste Management,2000,20 (2-3):249-258.
    [69]Nishigaki M. Reflecting surface-melt furnace and utilization of the slag[J]. Waste Management, 1996,16 (5):445-452.
    [70]Ishida M. The demonstration test of burner type ash melting system[J]. The Hitachi Zosen Technical Review,1995,56 (3):56-61.
    [71]Katou K, Asou T, Kurauchi Y, et al. Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode[J]. Thin Solid Films,2001,386 (2):183-188.
    [72]Jimbo H. Plasma melting and useful application of molten slag[J]. Waste Management,1996,16 (6):417-422.
    [73]Kinto K. Ash melting system and re-use of products by arc processing[J]. Waste Management, 1996,16 (6):423-430.
    [74]张升晓.工业矿渣制备微晶玻璃[D].济南:山东大学环境科学与工程学院,2007.
    [75]江勤.复合尾矿废渣微晶玻璃的研制[D].南京:南京工业大学材料科学与工程学院,2006.
    [76]别列日诺依.感光玻璃与微晶玻璃[M].北京:中国建筑工业出版社,1972.
    [77]程金树,李宏,汤李缨等.微晶玻璃[M].北京:化学工业出版社,2006.
    [78]西北轻工业学院.玻璃工艺学[M].北京:中国轻工业出版社,1982.
    [79]王仞千.微晶玻璃[M].北京:中国建筑工业出版社,1988.
    [80]侯朝霞,苏春辉.透明玻璃陶瓷材料组成、结构及光学性能[M].沈阳:东北大学出版社,2008.
    [81]邓守强.烧结[M].北京:冶金工业出版社,1982.
    [82]樊先平,洪樟连,翁文剑.无机非金属材料科学基础[M].杭州:浙江大学出版社,2004.
    [83]裘惠广,沈强,王传斌等.微晶玻璃的种类、制备及其应用[J].中国建材科技,2005,26(1):15-19.
    [84]Park Y J, Moon S O, Jong H. Crystalline phase control of glass ceramics obtained from sewage sludge fly ash[J]. Ceramics International,2003,29 (2):223-227.
    [85]Al-Harbi O A. Effect of different nucleation catalysts on the crystallization of Li2O-ZnO-MgO-Al2O3-SiO2 glasses[J]. Ceramics International,2009,35 (3):1121-1128.
    [86]Hajjaji M, Khalfaoui A. Oil shale amended raw clay:Firing transformations and ceramic properties[J]. Construction and Building Materials,2009,23 (2):959-966.
    [87]Yang J, Xiao B, Boccaccini A R. Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash[J]. Fuel,2009,88 (7):1275-1280.
    [88]Chou S Y, Lo S L, Hsieh C H, et al. Sintering of MSWI fly ash by microwave energy[J]. Journal of Hazardous Materials,2009,163 (1):357-362.
    [89]Vasilopoulos K C, Tulyaganov D U, Agathopoulos S, et al. Bulk nucleated fine grained mono-mineral glass-ceramics from low-silica fly ash[J]. Ceramics International,2009,35 (2):555-558.
    [90]Kim J M, Kim H S. Processing and properties of a glass-ceramic from coal fly ash from a thermal power plant through an economic process[J]. Journal of the European Ceramic Society,2004,24 (9):2825-2833.
    [91]Cheng T W, Chen Y S. Characterisation of glass ceramics made from incinerator fly ash[J]. Ceramics International,2004,30 (3):343-349.
    [92]Karamanov A, Pelino M, Salvo M, et al. Sintered glass-ceramics from incinerator fly ashes. Part Ⅱ. The influence of the particle size and heat-treatment on the properties[J]. Journal of the European Ceramic Society,2003,23 (10):1609-1615.
    [93]Toya T, Kameshima Y, Nakajima A, et al. Preparation and properties of glass-ceramics from kaolin clay refining waste (Kira) and paper sludge ash[J]. Ceramics International,2006,32 (7):789-796.
    [94]Karoly Z, Mohai I, Toth M, et al. Production of glass-ceramics from fly ash using arc plasma[J]. Journal of the European Ceramic Society,2007,27 (2-3):1721-1725.
    [95]Furlani E, Bruckner S, Minichelli D, et al. Synthesis and characterization of ceramics from coal fly ash and incinerated paper mill sludge[J]. Ceramics International,2008,34 (8):2137-2142.
    [96]Karamberi A, Orkopoulos K, Moutsatsou A. Synthesis of glass-ceramics using glass cullet and vitrified industrial by-products[J]. Journal of the European Ceramic Society,2007,27 (2-3):629-636.
    [97]Bernardo E, Castellan R, Hreglich S. Sintered glass-ceramics from mixtures of wastes[J]. Ceramics International,2007,33 (1):27-33.
    [98]Garcia-Valles M, Avila G, Martinez S, et al. Heavy metal-rich wastes sequester in mineral phases through a glass-ceramic process[J]. Chemosphere,2007,68 (10):1946-1953.
    [99]Francis A A. Conversion of blast furnace slag into new glass-ceramic material[J]. Journal of the European Ceramic Society,2004,24 (9):2819-2824.
    [100]Merino I, Arevalo L F, Romero F. Preparation and characterization of ceramic products by thermal treatment of sewage sludge ashes mixed with different additives[J]. Waste Management,2007,27 (12):1829-1844.
    [101]Appendino P, Ferraris M, Matekovits 1, et al. Production of glass-ceramic bodies from the bottom ashes of municipal solid waste incinerators[J]. Journal of the European Ceramic Society,2004,24 (5):803-810.
    [102]Ergul S, Ferrante F, Pisciella P, et al. Characterization of basaltic tuffs and their applications for the production of ceramic and glass-ceramic materials[J]. Ceramics International,2009,35 (7):2789-2795.
    [103]Amritphale S S, Anshul A, Chandra N, et al. Development of celsian ceramics from fly ash useful for X-ray radiation-shielding application[J]. Journal of the European Ceramic Society,2007,27 (16):4639-4647.
    [104]Qian G, Song Y, Zhang C, et al. Diopside-based glass-ceramics from MSW fly ash and bottom ash[J]. Waste Management,2006,26 (12):1462-1467.
    [105]Yang J, Zhang D, Hou J, et al. Preparation of glass-ceramics from red mud in the aluminium industries[J]. Ceramics International,2008,34 (1):125-130.
    [106]Aloisi M, Karamanov A, Taglieri G, et al. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes[J]. Journal of Hazardous Materials,2006,137 (1):138-143.
    [107]He Y, Cheng W, Cai H. Characterization of [alpha]-cordierite glass-ceramics from fly ash[J]. Journal of Hazardous Materials,2005,120 (1-3):265-269.
    [108]http://www.xian.cgs.gov.cn/kuangchanziyuan/2009/0113/content_1736.html.
    [109]Peysson S, Pera J, Chabannet M. Immobilization of heavy metals by calcium sulfoaluminate cement[J]. Cement and Concrete Research,2005,35 (12):2261-2270.
    [110]Shih P H, Chang J E, Lu H C, et al. Reuse of heavy metal-containing sludges in cement production[J]. Cement and Concrete Research,2005,35 (11):2110-2115.
    [111]Li X D, Poon C S, Sun H, et al. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials[J]. Journal of Hazardous Materials,2001,82 (3):215-230.
    [112]Qian G R, Shi J, Cao Y L, et al. Properties of MSW fly ash-calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals[J]. Journal of Hazardous Materials,2008,152 (1):196-203.
    [113]Yu Q, Nagataki S, Lin J, et al. The leachability of heavy metals in hardened fly ash cement and cement-solidified fly ash[J]. Cement and Concrete Research,2005,35 (6):1056-1063.
    [114]钟学才,何长顺,刘守龙等.株洲清水塘镉污染水塘污泥水泥固化的浸出效果研究[J].中南林业科技大学学报,2009,29(4):150-152.
    [115]Horvat T, Vidakovic-Cifrek Z, Orescanin V, et al. Toxicity assessment of heavy metal mixtures by Lemna minor L[J]. Science of The Total Environment,2007,384 (1-3):229-238.
    [116]任福民,周玉松,牛牧晨等.污泥中的重金属特性分析和生态风险评价[J].北京交通大学学报,2007,31(1):102-105.
    [117]Bose S, Jain A, Rai V, et al. Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil[J]. Journal of Hazardous Materials,2008,160 (1):187-193.
    [118]Zhang J, Liu J, Li C, et al. Comparison of the fixation of heavy metals in raw material, clinker and mortar using a BCR sequential extraction procedure and NEN7341 test[J]. Cement and Concrete Research,2008,38 (5):675-680.
    [119]Davidson C M, Duncan A L, Littlejohn D, et al. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land[J]. Analytica Chimica Acta,1998,363 (1):45-55.
    [120]Wong J W C, Li K, Fang M, et al. Toxicity evaluation of sewage sludges in Hong Kong[J]. Environment International,2001,27 (5):373-380.
    [121]Zhao Y, Song L, Li G. Chemical stabilization of MSW incinerator fly ashes[J]. Journal of Hazardous Materials,2002,95 (1-2):47-63.
    [122]Luan J, Li A, Su T, et al. Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China[J]. Journal of Hazardous Materials, 2009,166 (6):1109-1114.
    [123]Angulo E. The Tomlinson Pollution Load Index applied to heavy metal Mussel-Watch data:a useful index to assess coastal polltion[J]. Science of The Total Environment,1996,187 (1):19-56.
    [124]Buat-Menard P, Chesselet R. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter[J]. Earth Planet SciLett,1979,(42):399-411.
    [125]Muller G. Index of geoaccumulation in sediment s of the Rhine River[J]. Geojournal, 1969,(2):108-118.
    [126]丁喜桂,叶思源,高宗军.近海沉积物重金属污染评价方法[J].海洋地质动态,2005,21(8):31-36.
    [127]An Y J, Kim Y M, Kwon T 1, et al. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation[J]. Science of The Total Environment,2004,326 (1-3):85-93.
    [128]Hakanson L. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research,1980,14 (8):975-1001.
    [129]何孟常.水体沉积物重金属生物有效性及评价方法[J].环境科学进展,1998,6(5):9-19.
    [130]Fuentes A, Llorens M, Saez J, et al. Simple and sequential extractions of heavy metals from different sewage sludges[J]. Chemosphere,2004,54 (8):1039-1047.
    [131]刘淑静,李爱民,袁维波.温度对污泥焚烧残渣中重金属形态分布及残渣综合毒性的影响[J].安全与环境学报,2008,8(1):43-47.
    [132]Vig K, Megharaj M, Sethunathan N, et al. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review[J]. Advances in Environmental Research, 2003,8 (1):121-135.
    [133]Mbarki S, Labidi N, Mahmoudi H, et al. Contrasting effects of municipal compost on alfalfa growth in clay and in sandy soils:N, P, K, content and heavy metal toxicity[J]. Bioresource Technology,2008,99 (15):6745-6750.
    [134]Cui Y, Zhu Y G, Zhai R, et al. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China[J]. Environment International,2005,31 (6):784-790.
    [135]Castelli M, Rossi B, Corsetti F, et al. Levels of cadmium and lead in blood:an application of validated methods in a group of patients with endocrine/metabolic disorders from the Rome area[J]. Microchemical Journal,2005,79 (1-2):349-355.
    [136]Waisberg M, Joseph P, Hale B, et al. Molecular and cellular mechanisms of cadmium carcinogenesis[J]. Toxicology,2003,192 (2-3):95-117.
    [137]张鉴.冶金熔体和溶液的计算热力学[M].北京:冶金工业出版社,2007.
    [138]高里存,任耘编.无机非金属材料实验技术[M].北京:冶金工业出版社,2007.
    [139]Erol M, Kucukbayrak S, Ersoy-Mericboyu A. Production of glass-ceramics obtained from industrial wastes by means of controlled nucleation and crystallization[J]. Chemical Engineering Journal,2007,132 (1-3):335-343.
    [140]贺蕴秋,王德平,徐振平.无机材料物理化学[M].北京:化学工业出版社,2005.
    [141]马建丽.无机材料科学基础[M].重庆:重庆大学出版社,2008.
    [142]潘群雄,王路明,蔡安兰.无机材料科学基础[M].北京:化学工业出版社,2007.
    [143]关振铎.无机材料物理性能[M].北京:清华大学出版社,1992.
    [144]Claisse F, Blanchette J S.硼酸盐熔融的物理与化学—献给X射线荧光光谱学工作者[M].上海:华东理工大学出版社,2006.
    [145]陆佩文.无机材料科学基础[M].武汉:武汉理工大学出版社,1996.
    [146]宋晓岚,叶昌,于海湖.无机材料工艺学[M].冶金工业出版社,2007.
    [147]李英霞.矿渣微晶玻璃工艺及晶化机理研究[D].唐山:河北理工大学材料学院,2003.
    [148]Andreola F, Barbieri L, Hreglich S, et al. Reuse of incinerator bottom and fly ashes to obtain glassy materials[J]. Journal of Hazardous Materials,2008,153 (3):1270-1274.
    [149]Luan J, Li A, Su T, et al. Synthesis of nucleated glass-ceramics using oil shale fly ash[J]. Journal of Hazardous Materials,2010,173 (1-3):427-432.
    [150]裴光文,钟维烈,岳书彬.单晶、多晶和非晶物质的X射线衍射[M].山东大学出版社,1989.
    [151]田凤仁.无机材料结构基础[M].北京:冶金工业出版社,1993.
    [152]Barbieri L, Karamanov A, Corradi A, et al. Structure, chemical durability and crystallization behavior of incinerator-based glassy systems[J]. Journal of Non-Crystalline Solids,2008,354 (2-9):521-528.
    [153]Peng F, Liang K M, Hu A M. Nano-crystal glass-ceramics obtained from high alumina coal fly ash[J]. Fuel,2005,84 (4):341-346.
    [154]Francis A A, Boccaccini A R, Rawlings R D. Production of glass-ceramics from coal ash and waste glass mixtures[J]. Key Eng Mater,2002,206-213 2049-2052.
    [155]张大勇,史培阳,姜茂发.转炉渣微晶玻璃热处理制度研究[J].硅酸盐通报, 2008,27(6):1096-1099.
    [156]Duan R G, Liang K M, Gu S R. A study on the crystallizaton of CaO-Al2O3-SiO2 system glasses[J]. J Mater Process Technol,1998,75 235-239.
    [157]杜丕一,潘颐.材料科学基础[M].北京:中国建材工业出版社,2002.
    [158]Peng F, Liang K, Hu A, et al. Nano-crystal glass-ceramics obtained by crystallization of vitrified coal fly ash[J]. Fuel,2004,83 (14-15):1973-1977.
    [159]Andreola F, Barbieri L, Corradi A, et al. Glass-ceramics obtained by the recycling of end of life cathode ray tubes glasses[J]. Waste Management,2005,25 (2):183-189.
    [160]王志中,李向东.半经验分子轨道理论与实践[M].北京:科学出版社,1981.
    [161]刘靖疆.基础量子化学与应用[M].北京:高等教育出版社,2004.
    [162]金松寿.量子化学基础及其应用[M].上海:上海科技出版社,1980.
    [163]廖沐真,吴国是.量子化学从头计算方法[M]..北京:清华大学出版社,1984.
    [164]赵成大.固体量子化学—材料化学的理论基础[M].北京:高等教育出版社,1997.
    [165]林梦海.量子化学计算方法与应用[M].北京:科学教育出版社,2004.
    [166]赵成大.固体量子化学—材料化学的理论基础(第二版)[M].北京:高等教育出版社,2003.
    [167]陈光巨,黄元河.量子化学[M].上海:华东理工大学出版社,2008.
    [168]http://www.neotrident.com/newweb/Product_View.asp?ProID=14.
    [169]魏月琳,黄昀昉,范乐庆等.钙钛矿镧钛酸钾电子结构的第一性原理研究[J].矿物学报,2009,29(3):327-333.
    [170]吴代鸣.固体物理学[M].吉林:吉林大学出版社,1986.
    [171]张辉,戚克振,张国英等.元素替代对LiNH2储氢材料释氢能力影响的第一性原理研究[J].物理学报,2009,58(11):8077-8082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700