用户名: 密码: 验证码:
基于“广枣—冰片”配伍设计的没食子酸冰片酯体内外代谢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中药作为庞大的天然产物数据库吸引了全世界越来越多的关注,也为新药的研究与开发提供了重要来源。并且中药的应用在我国具有悠久的历史,是长期实践经验的总结,具有独特、丰富的理论基础,其安全性与有效性已历经两千多年临床验证,这使得以中药为源泉筛选的活性化合物分子具有更大的优势。中药最大的特点是复方配伍,即按病情需要和药性特点,有选择地将两味或以上药物配合同用。它体现了中医的整体观念和辨证论治的特色思想,可为创新药物的设计提供灵感。本文以广枣-冰片配伍为出发点,全面分析了广枣果肉的化学成分及其在大鼠体内的代谢产物;考察了冰片对广枣的入血活性成分没食子酸在药动学及组织分布上的影响,为冰片与没食子酸的组合提供佐证;在此基础上合成了可体现活血化瘀-芳香开窍“广枣-冰片”配伍特点的活性化合物——没食子酸冰片酯(Bornyl gallate, BG),并对其展开体内外药物代谢研究,拟揭示其在大鼠体内的动态变化规律,为其药理学、毒理学研究以及合理用药的安全性和有效性提供依据。全文共分为六部分,主要研究内容如下:
     1.通过LC/Q-TOF/MS分析方法在广枣药材果肉提取物中检测了42个化学成分,并推测其结构,其中17个是在广枣中新发现的成分。广枣给药后,在大鼠血浆中检测到的成分包括入血原型成分13个;由原型成分转化生成的代谢产物7种,观察到有显著变化的应激成分3个。入血成分以有机酸类成分为主,代谢产物多为酸类的Ⅱ相反应结合产物。实验结果从血清药物化学的角度说明广枣的药效物质基础为有机酸类成分。
     2.采用HPLC-DAD法测定了SD大鼠分别灌胃没食子酸药液和没食子酸加冰片药液后,没食子酸在大鼠血浆和组织样品中的含量,计算了给药后的药物动力学参数,并通过双侧非配对t检验进行统计学分析,研究了配伍冰片前后,没食子酸在大鼠体内的药动学参数和组织分布的显著性差异。结果表明:一方面,冰片可使没食子酸在大鼠体内的部分药代动力学参数发生显著变化,其中α,t1/2α增大,CL/F减小,MRTO-t增大,AUC增加了约1.6倍,各时间点的血药浓度略有增加。另一方面,冰片对没食子酸的组织分布总体上影响不大,但是使心和脑中的没食子酸含量有所增加,使肾中的含量显著减少。提示冰片可以增加没食子酸在体内的含量,增大生物利用度,进一步证明了冰片对没食子酸具有促进吸收,减慢代谢的增效作用。
     3.将没食子酸与冰片组合,合成可体现活血化瘀-芳香开窍的“广枣-冰片”配伍特点的化合物3,4,5-三羟基苯甲酸冰片酯(BG)。对三种合成路线进行了考察,并对获得的产物进行了LC. MS、IR和NMR结构表征,确认所合成的产物均为没食子酸冰片酯,为下一步的体内外代谢研究提供了高纯度、结构确切的原型化合物。
     4.对BG在鼠肝微粒体中的代谢进行了研究。首先通过HPLC-DAD法测定了BG的代谢稳定性并鉴定出参与BG代谢的CYP酶亚型。结果表明BG经过0.25mg/mL鼠肝微粒体代谢,t1/2为14.88±0.22min,内在清除率CLint值为0.932±0.014mL/min/mg;参与代谢肝药酶为CYP2C8酶系;提示BG在肝微粒体中有较好的稳定性,与对CYP2C8酶有抑制或诱导作用的药物合用时会产生相互影响。然后通过LC/Q-TOF/MS法鉴定了BG在鼠肝微粒体中的代谢产物,发现BG生成了5个羟基化代谢产物。
     5.研究了BG在正常大鼠体内的药代动力学过程和组织分布情况。研究发现灌胃给药时BG在大鼠体内的药物代谢过程符合二室模型,静脉注射时为三室模型;t1/2≈3h说明BG属于快速代谢药物,生物利用度为27.3%。组织分布研究结果显示各组织中的药物浓度由高至低依次为肾>肝>脑>心。与没食子酸相比,BG在组织中的含量更高,脑中含量增大尤为显著,这与引入冰片基后,极性降低,亲脂性增强有关,说明BG更容易透过血脑屏障和组织膜,在治疗心脑血管疾病时能直达病所。药动学及组织分布结果表明BG具有继续开发的潜力。
     6.应用HPLC/Q-TOF/MS分析方法检测并鉴定了BG在大鼠血浆和尿液中的9种代谢产物,包括同分异构体在内共18个化合物;初步推测BG在大鼠体内的代谢途径。结果表明BG在体内产生多种Ⅰ相和Ⅱ相代谢产物,包括羟基化、水解、O-甲基化、葡萄糖醛酸化产物,其中相对含量最高的是BG-O-葡萄糖醛酸和O-甲基-BG-O-葡萄糖醛酸,提示O-甲基化和葡萄糖醛酸化是BG最主要的代谢途径。
Traditional Chinese medicine (TCM), which serves as a resource of bioactive compounds for drug discovery, is attracting increasing global attention. Such ample Chinese natural medicinal resources provide valuable materials for the discovery and development of new drugs. More importantly, the clinic medicinal experience of more than2000years made the TCM-derived active compounds better lead compounds for further chemical improvements. As is well-known, multi-herb therapy is one of the most important characteristics of TCM. In TCM theory, compatibility refers to the combination of two or more herbs based on the clinical settings and the properties of herbs. Compatibility not only represents overall concept and differential treatment but also provides inspirations for the molecular design of new drug candidates. With the drug pair "GuangZao-borneol" were chosen as starting point, we comprehensively analyzed the constituents and their metabolites in rat plasma after oral administration of the extract of Choerospondiatis Fructus (Guangzao in Chinese, GZ) by LC/Q-TOF/MS, and then investigated the influence of borneol in the pharmacokinetics and tissue distribution to gallic acid which is the bioactive compound of Choerospondiatis Fructus in rat plasma. Subsequently, bornyl gallate (BG) was synthesized based on those results from previous experiments. BG is designed to promote blood circulation, remove blood stasis and promoting active compounds penetrating the biological barriers, which represents the compatibility characteristic of the drug pair "Guangzao-borneol". In vivo and in vitro metabolisms of BG were investigated to reveal the rules of dynamic changes in rat. It will be helpful for the pharmacology and toxicology studies as well as the clinical security and effectiveness of BG. The full text included six parts listed as follows.
     1. Identification of42constituents in the flushes of dried GZ by LC/Q-TOF/MS. Among them,17constituents are found firstly in GZ. After oral administration of extract of GZ, there are13prototype constituents,7kinds of metabolites and3endogenous response compounds detected in rat plasma. These prototype constituents in plasma are mainly organic acids. The metabolites are mainly Ⅱ phase conjugation products of organic acids. While only catechin and quercetin-O-glucuronide is the flavonoids compounds in plasma. These results indicated, from the perspective of serum pharmacochemistry, that the organic acids are the bioactive material basis of GZ.
     2. Gallic acid, the bioactive compound in GZ, was chosen as leading compound. The concentration of gallic acid in plasma and tissues were determined after oral administration of gallic acid and gallic acid plus borneol. Then the pharmacokinetic parameters of gallic acid were calculated by DAS2.0Software. Finally, the significant differences of pharmacokinetic parameters and tissue distribution of gallic acid between gallic acid group and gallic acid plus borneol group were analyzed with two-sided unpaired t-test. These results showed that on one hand borneol could significantly influence some pharmacokinetic parameters of gallic acid such as decreasing CL/F, increasing a, t1/2a, MRTo-t and AUC. On the other hand, borneol could change tissue distributions of gallic acid to some extent such as increasing slightly the concentration in heart and brain, decreasing significantly the concentration of gallic acid in kidney. All the results demonstrated that borneol could increase the concentration and bioavailability of gallic acid in rat. It also proves the synergistic effect of borneol to enhance the absorption, distribution, permeability, and efficacy of gallic acid.
     3. BG was synthesized by the reaction of two natural products, gallic acid and borneol. Three different synthetic routes were compared in this part. All the products were characterized by LC, MS, IR and NMR to confirm their structures were identical as BG in order to provide high purity prototype compound for the following metabolism experiments.
     4. Investigation of the in vitro metabolism of BG in rat liver microsome (RLM). Firstly, a HPLC-DAD method was established to test the metabolic stability of BG in RLM and to identify the subtype of CYP enzymes involved in metabolism of BG. It showed that BG was metabolized by0.25mg/mL RLM with a t1/2=14.88±0.33min and a CLint=0.186±0.004mL/min/mg. CYP2C8was proved to be the subtype of CYP enzymes involved in metabolism of BG. Then, a LC/Q-TOF/MS method was applied to identify the in vitro metabolites of BG. The results showed BG was metabolized to five isomers of mono-hydroxylated BG.
     5. Study on the in vivo pharmacokinetics and tissue distribution of BG in rat. The results showed the pharmacokinetic profiles of BG after oral administration was fitted to the two compartment model, while the concentration-time curve of BG after intravenous injection was fitted to three compartment model. BG was fast metabolized drug because of its tl/2≈3h. the bioavailability of BG was27.3%. The results of tissue distribution showed that the concentrations of BG in tissues from highness to lowness were kidney, liver, brain and heart. Compared with gallic acid, the concentration of BG in tissues were higher, especially in brain which should be relative to the lower polarity and higher lipophilicity of this molecule after importing the borneol moiety. It indicated BG was easier to pass blood-brain barrier and tissue membrane. All the results from pharmacokinetic and tissue distribution studies suggested BG is worthy of further investigation.
     6. A reliable and sensitive HPLC/Q-TOF/MS method was successfully applied to identify the metabolites of bornyl gallate in rat.9kinds of potential metabolites, altogether18compounds including all isomers, were detected and identified. BG is believed to undergo various phases I and II metabolic pathways including hydroxylation, hydrolysis, O-methylation and glucuronidation. We also proved that BG mainly became products of glucuronidation and O-methylation in vivo, which were identified as BG-O-glucuronide and O-methyl BG-O-glucuronide.
引文
[1]Verpoorte R., Crommelin D., Danhof M., et al. Commentary:"a Systems View On the Future of Medicine:Inspiration From Chinese Medicine?"[J]. Journal of Ethnopharmacology,2009,121(3): 479-481
    [2]郭颖,郭宗儒.浅析2000-2012年FDA批准的新药[J].中国新药杂志,2012,(24):2831-2843
    [3]Xu X. New Concepts and Approaches for Drug Discovery Based On Traditional Chinese Medicine[J]. Drug Discovery Today:Technologies,2006,3(3):247-253
    [4]王普善.天然产物在新药发现中的地位与机会(一)[J].精细与专用化学品,2006,(01):1-5
    [5]Harvey A.L. Natural Products in Drug Discovery[J]. Drug Discovery Today,2008,13(19-20): 894-901
    [6]Harvey A.L., Clark R.L., Mackay S.P., et al. Current Strategies for Drug Discovery through Natural Products[J]. Expert Opin Drug Discov,2010,5(6):559-568
    [7]郭宗儒.天然产物的结构改造[J].药学学报,2012,(02):144-157
    [8]Ganesan A. The Impact of Natural Products upon Modern Drug Discovery[J]. Current Opinion in Chemical Biology,2008,12(3):306-317
    [9]Dent N.J. The Inspection of Drug Metabolism and Pharmacokinetic Studies[J]. Qual Assur,1992, 1(3):230-236
    [10]陈晓光.新药药理学[M]:中国协和医科大学出版社,2004
    [11]Hashida M. In-Silico Prediction of Pharmacokinetic Properties[J]. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan,2005,125(11):853-861
    [12]Wienkers L.C., Heath T.G. Predicting in Vivo Drug Interactions From in Vitro Drug Discovery Data[J]. Nature Reviews Drug Discovery,2005,4(10):825-833
    [13]Beaumont K., Smith D.A. Does Human Pharmacokinetic Prediction Add Significant Value to Compound Selection in Drug Discovery Research?[J]. Current Opinion in Drug Discovery Development,2009,12(1):61-71
    [14]Baxter A., Bennion C., Bent J., et al. Hit-to-Lead Studies:The Discovery of Potent, Orally Bioavailable Triazolethiol CXCR2 Receptor Antagonists[J]. Bioorganic & Medicinal Chemistry Letters,2003,13(16):2625-2628
    [15]Nassar A.F., Talaat R.E. Strategies for Dealing with Metabolite Elucidation in Drug Discovery and Development[J]. Drug Discovery Today,2004,9(7):317-327
    [16]Deng G., Sanyal G. Applications of Mass Spectrometry in Early Stages of Target Based Drug Discovery[J]. Journal of Pharmaceutical and Biomedical Analysis,2006,40(3):528-538
    [17]国家药典委员会.中华人民共和国药典第一部[M]:中国医药科技出版社,2010
    [18]武绍新.蒙医成方选[M]:内蒙古人民出版社,1984
    [19]Doanh N.D., Ham N.N., Tam N.T., et al. The Use of a Water Extract From the Bark of Choerospondias Axillaris in the Treatment of Second Degree Burns[J]. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery,1996,30(2):139-144
    [20]LI Z.X., TIAN F.J., WU X.Y., et al. Anti-Arrhythmic Action of Total Flavones of Choerospondias-Axillaris Fructus[J]. Acta Pharmacologica Sinica,1984,5(4):251-254
    [21]Wang H., Gao X.D., Zhou G.C., et al. In Vitro and in Vivo Antioxidant Activity of Choerospondias Axillaris Aqueous Extract From Fruit[J]. Food Chemistry,2008,106(3):888-895
    [22]Zhao X.F., Zhang W.J., Kong S.S., et al. A Valid Assay for the Pharmacokinetic Study of Gallic Acid From Choerospondiatis Fructus in Rabbit Plasma by Lc/Ms/Ms[J]. Journal of Liquid Chromatography & Related Technologies,2007,30(2):235-244
    [23]KHABIR M., KHATOON F., ANSARI W.H. Kaempferol-5-O-Arabinoside-A New Flavonol Glycoside From the Leaves of Choerospondias-Axillaris[J]. Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry,1987,26(1):85
    [24]王乃利,倪艳,陈英杰等.广枣活血有效成分的研究1.[J].沈阳药学院学报,1987,(03):203
    [25]唐丽.广枣和洋金花化学成分的研究[D]:北京中医药大学,2003
    [26]田景民.广枣化学成分的研究[D]:内蒙古医学院,2007
    [27]刘晓庚,陈优生.南酸枣果实的成分分析[J].中国野生植物资源,2000,(03):35-40
    [28]刘晓庚,陈优生,丁悦琴.南酸枣核仁油成分研究[J].粮食与油脂,2001,(10):32-33
    [29]连珠,张承忠,李冲等.蒙药广枣化学成分的研究[J].中药材,2003,(01):23-24
    [30]邓丽嘉,王月梅,顾维彰等.蒙药广枣的化学成分研究[J].中草药,1989,20(3):8-9
    [31]钱浩,胡巧玲.中药广枣化学成分研究[J].现代应用药学,1992,9(5):212-213
    [32]李长伟,崔承彬,蔡兵等.南酸枣的芳香族化合物及其体外抗肿瘤活性[J].中国药物化学杂志,2005,(03):138-141
    [33]吕永镇,王玉兰,楼朱雄等.南酸枣树皮中柑桔素和南酸枣甙的分离鉴定[J].药学学报,1983,(03):199-202
    [34]王玉兰,吕永镇,楼朱雄等.南酸枣树皮中d-儿茶素的分离与鉴定[J].药学学报,1985,16(2):45
    [35]李胜华,伍贤进,郑尧等.南酸枣树皮化学成分研究[J].中药材,2009,(10):1542-1544
    [36]赵玉英,海平,孙占才等.蒙药广枣中多糖的组分分析和糖含量测定[J].药物分析杂志,2001,(06):440-442
    [37]柳克铃,温俊达,金幼蓝.广枣的氨基酸和无机元素分析[J].湖南中医杂志,1992,(06):48
    [38]唐丽,韩华,杨炳友等.广枣对大鼠急性心肌缺血保护作用的研究[J].中医药学报,2003,(03):50-51
    [39]李增晞,田风居,吴秀英等.复方广枣注射液对动物耐缺氧和急性心肌缺血的保护作用[J].中药通报,1985,(03):44-46
    [40]金桃,杨阿敏,布仁巴图.复方广枣胶囊对实验犬心肌缺血的影响[J].辽宁中医杂志,2005,(05):497-498
    [41]梁卓.冠心舒通胶囊防治大鼠心肌缺血性损伤的疗效及可能机制研究[D]:第四军医大学,2012
    [42]杨玉梅,刘凤鸣,覃建民等.沙棘总黄酮和广枣总黄酮对大鼠缺血心肌组织蛋白质表达的比较[J].中国民族医药杂志,2008,(06):52-54
    [43]汤喜兰,刘建勋,李磊等.广枣模拟总有机酸对心肌缺血再灌注损伤的保护作用[J].中国实验方剂学杂志,2013,19(4):168-172
    [44]杨玉梅,覃建民,徐继辉等.广枣总黄酮对大鼠心室肌细胞ICa、I(to)和细胞[Ca(2+)]i的影响[J].中国药理学通报,2004,(07):784-788
    [45]杨玉梅,许翠英,徐继辉等.广枣总黄酮对离体大鼠心脏cAMP含量和腺苷酸环化酶活性的影响[J].中国民族医药杂志,2001,(01):34-35
    [46]徐继辉,杨玉梅,覃建民等.蒙药广枣总黄酮对大鼠离体心脏的抗心律失常作用[J].中国民族医药杂志,2001,(02):25-26
    [47]石山,李增晞,田凤居等.广枣总黄酯对麻醉犬左室功能和血液动力学的影响[J].中药药理与临床,1985,(00):115-116
    [48]戴汉云,方云祥,肖州生.广枣浸膏对犬心脏血流动力学及心肌缺血的影响[J].中药药理与临床,1996,(03):25-28
    [49]杨玉梅,覃建民,徐继辉等.蒙药复方广枣注射液对麻醉猫血液动力学的影响[J].中国民族医药杂志,1999,(02):41-42
    [50]吴秀英,刘殿英,钮巧玲等.蒙药复方广枣注射液对血小板聚集性和血栓形成的影响[J].中国民族医药杂志,2000,(S1):66-67
    [51]狄建军,昝桂丽,王颖等.蒙药广枣提取物体外抗氧化活性研究[J].安徽农业科学,2010,(34):19325-19326
    [52]郭英,贝玉祥,王雪梅等.广枣提取物体外清除活性氧自由基及抗氧化作用研究[J].微量元素与健康研究,2008,(05):22-24
    [53]乌日娜,张昕原,张维兰等.广枣总黄酮对阿霉素引起大鼠心肌过氧化损伤的保护作用[J].中草药,2001,(06):49-51
    [54]郭华,姚文兵,王华等.广枣及其提取组分对神经细胞的保护作用[J].中国生化药物杂志,2007,(02):87-90
    [55]刘爽.广枣总黄酮对CVB_3病毒引起细胞凋亡的影响[J].中医药导报,2011,(03):87-89
    [56]任慧娟,郝洪军,石永进等.广枣黄酮槲皮素和山萘酚促人白血病HL-60细胞系凋亡及其机制探讨[J].中国实验血液学杂志,2010,(03):629-633
    [57]李嫔,及金华,林娜.广枣总黄酮体外促小鼠胸腺细胞增殖作用的动态观察[J].内蒙古医学杂志,1998,(06):22-24
    [58]王玉珍,任建梅,王若愚等.广枣总黄酮对小鼠免疫功能的影响[J].中国药理学通报,1991,(03):214-217
    [59]杨洁.“广枣—降香”君—使对药体内效应物质的研究[D]:西北大学,2009
    [60]王世祥,兰微,骆凯等.RP-HPLC法研究广枣在家兔体内的药代动力学[J].药物分析杂志,2007,(12):1980-1983
    [61]桑柏,王世祥,兰薇等.RP-HPLC研究冰片对广枣中没食子酸在家兔体内的药动学影响[J].中国药学杂志,2010,(07):548-550
    [62]桑柏.“广枣—檀香”君—使对药的效应物质研究[D]:西北大学,2010
    [63]梁杨静,桑柏,申旭霁等.檀香对广枣中原儿茶酸和没食子酸的药代动力学影响[J].第二军医大学学报,2010,(08):870-873
    [64]梁杨静.三味檀香散药代动力学及体内效应物质研究[D]:西北大学,2011
    [65]兰薇,王世祥,房敏峰等.蒙药广枣中没食子酸在正常和气滞血瘀家兔体内的药代动力学研究[J].中国民族医药杂志,2007,(06):48-49
    [66]聂长明,文松年,李忠海等.南酸枣果实营养成分及开发利用研究[J].中国林副特产,1996,(03):15-19
    [67]陈明哲,姜亚西.复方南酸枣树皮烧伤液的制备与应用[J].中国医院药学杂志,1991,(11):42
    [68]张伯礼,高秀梅,商洪才等.复方丹参方的药效物质及作用机理研究[J].世界科学技术,2003,(05):14-17
    [69]Wang S., Hu Y., Tan W., et al. Compatibility Art of Traditional Chinese Medicine:From the Perspective of Herb Pairs[J]. Journal of Ethnopharmacology,2012,143(2):412-423
    [70]李静,刘亚荣,刘勤社等.丹参素冰片酯对大鼠腹主动脉中TLR4、NF-кB和IL-6 mRNA表达的实验研究[J].陕西医学杂志,2012,(04):392-394
    [71]李静,周洁,刘勤社等.丹参素冰片酯干预TLR4信号通路抗动脉粥样硬化的机制研究[J].陕西中医,2012,(05):627-628
    [72]南叶飞.君—使化合物用于君—使药对体内作用机制研究[D]:西北大学,2010
    [73]申旭霁.原儿茶酸冰片酯的设计、合成及代谢研究[D]:西北大学,2012
    [74]许继文,付春梅.丹参的药理作用研究进展[J].医学综述,2006,12(23):1467-1469
    [75]黄力强.川芎对心脑血管疾病活血化瘀药理作用的探讨[J].辽宁中医杂志,2000,27(10):469
    [76]汤喜兰,刘建勋,李磊.中药有机酸类成分的药理作用及在心血管疾病的应用[J].中国实验方剂学杂志,2012,(5):243-246
    [77]邓科君,张艺,王平等.反相高效液相色谱法同时测定藏药广枣中没食子酸和原儿茶酸的含量[J].色谱,2006,(06):652-653
    [78]Erol-Dayi O., Arda N., Erdem G. Protective Effects of Olive Oil Phenolics and Gallic Acid On Hydrogen Peroxide-Induced Apoptosis[J]. European Journal of Nutrition,2012,51(8):955-960
    [79]Nguyen D., Seo D.J., Lee H.B., et al. Antifungal Activity of Gallic Acid Purified From Terminalia Nigrovenulosa Bark Against Fusarium Solani[J]. Microbial Pathogenesis,2013,56:8-15
    [80]Couto A.G., Kassuya C., Calixto J.B., et al. Anti-Inflammatory, Antiallodynic Effects and Quantitative Analysis of Gallic Acid in Spray Dried Powders From Phyllanthus Niruri Leaves, Stems, Roots and Whole Plant[J]. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY,2013,23(1):124-131
    [81]Hsiang C.Y., Hseu Y.C., Chang Y.C., et al. Toona Sinensis and its Major Bioactive Compound Gallic Acid Inhibit LPS-Induced Inflammation in Nuclear Factor-KB Transgenic Mice as Evaluated by in Vivo Bioluminescence Imaging[J]. Food Chemistry,2013,136(2):426-434
    [82]Ho H.H., Chang C.S., Ho W.C., et al. Gallic Acid Inhibits Gastric Cancer Cells Metastasis and Invasive Growth Via Increased Expression of Rhob, Downregulation of Akt/Small Gtpase Signals and Inhibition of NF-КB Activity[J]. Toxicology and Applied Pharmacology,2013,266(1):76-85
    [83]Russell L.H., Mazzio E., Badisa R.B., et al. Autoxidation of Gallic Acid Induces Ros-Dependant Death in Human Prostate Cancer LNCAP Cells[J]. Anticancer Research,2012,32(5):1595-1602
    [84]Priscilla D.H., Prince P.S.M. Cardioprotective Effect of Gallic Acid On Cardiac Troponin-T, Cardiac Marker Enzymes, Lipid Peroxidation Products and Antioxidants in Experimentally Induced Myocardial Infarction in Wistar Rats[J]. Chemico-Biological Interactions,2009,179(2-3):118-124
    [85]Umadevi S., Gopi V., Simna S.P., et al. Studies On the Cardio Protective Role of Gallic Acid Against Age-Induced Cell Proliferation and Oxidative Stress in H9C2 (2-1) Cells[J]. Cardiovascular toxicology,2012,12(4):304-311
    [86]Gil-Longo J., Gonzalez-Vazquez C. Vascular Pro-Oxidant Effects Secondary to the Autoxidation of Gallic Acid in Rat Aorta[J]. The Journal of Nutritional Biochemistry,2010,21(4):304-309
    [87]Kalita D., Kar R., Handique J.G. A Theoretical Study On the Antioxidant Property of Gallic Acid and its Derivatives[J]. Journal of Theoretical & Computatuional Chemistry,2012,11(2):391-402
    [88]Wacher V.J., Benet L.Z. Use of Gallic Acid Esters to Increase Bioavailability of Orally Administered Pharmaceutical Compounds[J]. Official Gazette of the United States Patent and Trademark Office Patents,2001,1242(5US 6180666)
    [89]Masuoka N., Nihei K., Kubo I. Xanthine Oxidase Inhibitory Activity of Alkyl Gallates[J]. Molecular Nutrition & Food Research,2006,50(8):725-731
    [90]Locatelli C., Filippin-Monteiro F.B., Creczynski-Pasa T.B. Alkyl Esters of Gallic Acid as Anticancer Agents:a Review[J]. European Journal of Medicinal Chemistry,2013,60:233-239
    [91]郑建明,陈晓春,林敏等.赤芍801通过抑制NF-κB抗脑缺血-再灌注损伤的机制[J].药学学报,2011,(02):158-164
    [92]蒋跃绒,殷惠军,陈可冀.赤芍801研究现状[J].中国中西医结合杂志,2004,(08):760-763
    [93]付全良,程全双.通脉酯、脉络宁治疗冠心病心绞痛的疗效比较[J].临床医学,2003,(07):51
    [94]陈文华.注射用通脉酯治疗60例急性脑梗死的临床观察[J].实用全科医学,2007,(06):526
    [95]Kawano Y., Kawaguchi M., Hirota K., et al. Effects of N-Propyl Gallate On Neuronal Survival After Forebrain Ischemia in Rats[J]. Resuscitation,2012,83(2):249-252
    [96]Xie X., Wang S., Xiao L., et al. DBZ Blocks LPS-Induced Monocyte Activation and Foam Cell Formation Via Inhibiting Nuclear Factor-KB[J]. Cellular Physiology and Biochemistry,2011,28(4): 649-662
    [97]施润菊,戴云,房敏峰等.广枣水提物的HPLC-ESI-MSn分析[J].中药材,2007,(03):294-297
    [98]王喜军.中药及中药复方的血清药物化学研究[J].世界科学技术,2002,(2):1-4
    [99]王喜军.中药血清药物化学学科的形成及发展[J].世界科学技术(中医药现代化),2010,(4):632-633
    [100]陈惜贞.高效毛细管电泳法快速测定血清中游离氨基酸[J].检验医学与临床,2007,(6):516-517
    [101]Pfundstein B., El D.S., Hull W.E., et al. Polyphenolic Compounds in the Fruits of Egyptian Medicinal Plants (Terminalia Bellerica, Terminalia Chebula and Terminalia Horrida): Characterization, Quantitation and Determination of Antioxidant Capacities[J]. Phytochemistry,2010, 71(10):1132-1148
    [102]Sun W., Miller J.M. Tandem Mass Spectrometry of the B-Type Procyanidins in Wine and B-Type Dehydrodicatechins in an Autoxidation Mixture of (+)-Catechin and (-)-Epicatechin[J]. Journal of Mass Spectrometry,2003,38(4):438-446
    [103]Slimestad R., Torskangerpoll K., Nateland H.S., et al. Flavonoids From Black Chokeberries, Aronia Melanocarpa[J]. Journal of Food Composition and Analysis,2005,18(1):61-68
    [104]Teixido E., Moyano E., Santos F.J., et al. Liquid Chromatography Multi-Stage Mass Spectrometry for the Analysis of 5-Hydroxymethylfurfural in Foods[J]. Journal of Chromatography A,2008, 1185(1):102-108
    [105]Yan Z., Chen Y., Li T., et al. Identification of Metabolites of Si-Ni-San, a Traditional Chinese Medicine Formula, in Rat Plasma and Urine Using Liquid Chromatography/Diode Array Detection/ Triple-Quadrupole Spectrometry[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2012,885:73-82
    [106]Shahrzad S., Bitsch I. Determination of Gallic Acid and its Metabolites in Human Plasma and Urine by High-Performance Liquid Chromatography[J]. Journal of Chromatography B-Biomed Sci Appl, 1998,705(1):87-95
    [107]庞炜,张栩,李丹等.花生四烯酸代谢组学在动脉粥样硬化发生机制研究中的应用[J].中国医学前沿杂志(电子版),2012,(8):23-27
    [108]王怡,高秀梅,张伯礼.天然冰片在复方丹参滴丸中的作用及量效关系研究[J].中草药,2004,(6):77-78
    [109]肖衍宇,陈志鹏,平其能等.冰片对川芎嗪促吸收作用的研究[J].药学学报,2009,(8):915-921
    [110]Yang H., Xun Y., Li Z., et al. Influence of Borneol On in Vitro Corneal Permeability and On in Vivo and in Vitro Corneal Toxicity[J]. Journal of International Medical Research,2009,37(3):791-802
    [111]Ren J., Zou M., Gao P., et al. Tissue Distribution of Borneol-Modified Ganciclovir-Loaded Solid Lipid Nanoparticles in Mice After Intravenous Administration[J]. European Journal of Pharmaceutics and Biopharmaceutics,2013,83(2):141-148
    [112]Lai X., Zhang L., Li J., et al. Comparative Pharmacokinetic and Bioavailability Studies of Three Salvianolic Acids After the Administration of Salviae Miltiorrhizae Alone Or with Synthetical Borneol in Rats[J]. Fitoterapia,2011,82(6):883-888
    [113]王勇,张忠义,徐峰等.冰片对川芎嗪血药浓度和在脑中分布的影响[J].中国药业,2006,(1):30-31
    [114]田海林,周晓伟,陈明等.丹参素冰片酯的不对称合成研究[J].中国药物化学杂志,2012,(2):113-116
    [115]董晓娜.体内外方法高通量筛选系列化合物药动学性质[D]:沈阳药科大学,2009
    [116]Obach R.S., Baxter J.G., Liston T.E., et al. The Prediction of Human Pharmacokinetic Parameters From Preclinical and in Vitro Metabolism Data[J]. Journal of Pharmacology and Experimental Therapeutics,1997,283(1):46-58
    [117]Williams J.A., Hurst S.I., Bauman J., et al. Reaction Phenotyping in Drug Discovery:Moving Forward with Confidence?[J]. Current Drug Metabolism,2003,4(6):527-534
    [118]Liu D., Zheng X., Tang Y., et al. Metabolism of Tanshinol Borneol Ester in Rat and Human Liver Microsomes[J]. Drug Metabolism and Disposition,2010,38(9):1464-1470
    [119]Nelson D.R. The Cytochrome P450 Homepage[J]. Hum Genomics,2009,4(1):59-65
    [120]Prasad B., Garg A., Takwani H., et al. Metabolite Identification by Liquid Chromatography-Mass Spectrometry[J]. TrAC Trends in Analytical Chemistry,2011,30(2):360-387
    [121]Li J., Chan W. Investigation of the Biotransformation of Osthole by Liquid Chromatography/Tandem Mass Spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2013,74(0):156-161
    [122]Ni S., Qian D., Duan J.A., et al. Uplc-Qtof/Ms-Based Screening and Identification of the Constituents and their Metabolites in Rat Plasma and Urine After Oral Administration of Glechoma Longituba Extract[J]. Journal Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2010,878(28):2741-2750
    [123]Lee S.H., Yang H.O., Kwon H.C., et al. Identification of the Urinary Metabolites of Glionitrin a in Rats Using Ultra-Performance Liquid Chromatography Combined with Quadrupole Time-of-Flight Mass Spectrometry[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2012,906:33-40
    [124]Yasuda T., Inaba A., Ohmori M., et al. Urinary Metabolites of Gallic Acid in Rats and their Radical-Scavenging Effects On 1,1-Diphenyl-2-Picrylhydrazyl Radical[J]. Journal of Natural Products,2000,63(10):1444-1446
    [125]Zong L., Inoue M., Nose M., et al. Metabolic Fate of Gallic Acid Orally Administered to Rats[J]. Biological & Pharmaceutical Bulletin,1999,22(3):326-329
    [126]Lu F., Sun Q., Bai Y., et al. Characterization of Eleutheroside B Metabolites Derived From an Extract of Acanthopanax Senticosus Harms by High-Resolution Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry and Automated Data Analysis[J]. Biomedical Chromatography, 2012,26(10):1269-1275
    [127]Wang D.G., Hang T.J., Wu C.Y., et al. Identification of the Major Metabolites of Resveratrol in Rat Urine by HPLC-MS/MS[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2005,829(1-2):97-106

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700