用户名: 密码: 验证码:
华北平原地下水质量评价及微量有机污染物淋溶迁移性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北平原是我国北方严重缺水的地区。地下水是本区的主要供水水源,随着人类活动的增加,各种污染造成地下水中有害物质逐年增加,地下水水质逐渐下降,严重危及了饮用水安全。国内外对于无机污染物的迁移转化规律已开展了大量研究工作,并且取得了大量成果。自上世纪70年代后期,地下水有机污染已引起人们的高度重视。到目前为止,华北平原尚未系统开展针对供水安全的地下水污染调查评价工作,对地下水污染(特别是有机污染)总体状况还缺乏了解,对地下水污染的潜在危害认识不足。如何用适当的方法对主要调查点(如地下水水源地)的地下水水质及其饮用适宜性做出评价,如何从有机污染物本身性质来预测它们向地下水的淋溶迁移性,对于系统地评价区域地下水水质和有机污染状况,对有效保护地下水资源及污染防治、保障饮水安全具有重大意义。
     本次研究以“华北平原地下水有机污染调查”项目为依托,在充分收集和分析以往在该区的相关研究成果的基础上,结合本课题组对重点地区进行的实地野外地下水污染调查和采样分析结果,以及计划项目中其它工作项目的野外调查和水样分析资料,通过数理统计和GIS图件分析、模型模拟计算等方法,对研究区的地下水水化学特征进行了综合分析,对区内主要调查点地下水质量、饮用适宜性、有机污染特征进行了评价和分析。本次研究主要进行了以下三方面的研究:
     1、研究简单可行的评价方法或对原有的方法进行改进,对研究区内主要调查点地下水的质量和饮用适宜性进行评价。
     2、对地下水的有机污染进行评价,分析地下水中的主要有机污染物的种类、分布特征及其可能的污染来源。在资料充分的条件下,结合有机污染检测结果和水文地球化学资料,分析有机污染与典型无机指标间的关系,并进行规律性分析。
     3、根据有机污染物的物理化学性质,用适宜的参数和模型,研究调查的有机污染物在水土系统中的淋溶迁移性,以预测有机物对地下水的污染风险(污染物向地下水系统的迁移性能),为今后的污染防治提供科学的依据。
     通过上述研究,得到以下成果:
     1.依据水样测试结果评价了主要调查点地下水的水质,修订了内梅罗指数评价标准。
     分别采用单因子评价法和国标中的综合评价法(内梅罗指数法)对研究区的地下水水质进行了评价。为了使两种评价结果有机地联系起来,以使内梅罗指数法的评价结果物理意义更加明确,对内梅罗指数评价标准进行了修订。修订后,评价结果与单因子评价结果完全一致,同时有利于同一类别的地下水进行质量对比。依据该评价结果,华北平原决定地下水质量的大多为无机指标,如总硬度、总溶解性固体、氟、硝酸盐等。在采集的水样中,只有4.4%的样品的水质类别是由有机指标(苯并[a]芘、挥发性酚类、四氯化碳)决定的。
     2.尝试拟定了适合我国具体情况的饮用水适宜性评价标准,并对研究区水样的饮用适宜性作出了评价。
     结合我国的生活饮用水标准及美国环保局的饮用水标准与健康咨询资料,对水质指标的致癌性分级进行了整理。在此基础上,尝试拟定了生活饮用水适宜性评价标准,并依据水样的测试资料对采样点地下水及部分地表水的饮用适宜性进行了评价。评价结果为:适宜饮用的占42.4%,基本适宜饮用的占18.4%,一般不宜饮用的占4.9%,不宜饮用的占34.2%,其中因为氟化物超标导致不宜饮用的多达19.2%。在此评价基础上,根据当地的具体地质、水文地质条件进行了分析,例如,对于一些地区地下水中的氟离子、铁等的超标,提出了加强水质监测并进行相应的水处理建议。因含砷、铅、苯并(a)芘、四氯化碳四种致癌指标导致评价结果为不宜饮用的水样点占9.0%,应进一步采样监测有关指标随时间的变化趋势、查明水质的成因并采取一定的措施。
     3.分析了华北平原主要调查点地下水中有机物的检出情况。
     依据所采样品的测试数据,在华北平原所采集的245组水样(含地表水3组)中,有93组样品检出了有机污染物。在检测的38种有机指标中,除氯乙烯、1,1-二氯乙烯、二氯甲烷、1,2-二氯乙烯、1,1,1-三氯乙烷、六氯苯六种有机物外,其他项目均有不同程度地检出,占检测有机物总数的84.2%,单点最多检出11种。检出率较高(大于4.5%)的有氯仿、甲苯、四氯乙烯、苯并[a]芘、氯苯、苯和1,2-二氯苯。从超标情况来看,依据目前的地下水质量标准报批稿(中国地质调查局,2007),有四氯化碳和苯并[a]芘、挥发性酚类三项超标,超标率分别为1.22%、2.45%和1.90%。本次研究中,深层地下水样中也检出了微量有机污染物,这可能与取样井的混合开采、止水不佳有关。由于有机样品在时间和空间上差异较大,且易在取样等环节受到污染,建议在今后的工作中,对已发现的异常点进行重复取样测试,通过数据和有关资料的积累,以得到较为可靠的结论。
     从区域上来看,在人类活动相对强烈的城镇地区的地下水中的有物检出率相对较高,特别是在渗透性好的山前地带,污染物较易进入到地下水中。通过分析发现,地下水有机物的高检出率与地下水硬度的升高有一定相关性。
     4.利用地下水污染指数法研究了91种有机污染物的淋溶迁移性,探讨了检出的主要有机物与其淋溶迁移性的关系。
     本文针对我国地下水污染调查规范中所列的91中有机污染物(包括“中国水中优先控制污染物”名单中的58种有机毒物),利用EPI Suite软件进行了有关参数的计算,利用地下水污染指数法研究了91种有机污染物的淋溶迁移性。结果表明,其中多数具有高淋溶和迁移性,当这些污染物进入到环境中时,易对含水层造成较大范围的污染。对于所研究的污染物,它们的地下水污染指数(GUS)与其有机碳分配系数(K_(oc))有着很好的相关性,在土壤中的关系式为:GUS=-1.924*logK_(oc)+7.437,在含水层中的关系式为GUS=-2.578*logK_(oc)+10.050。这为评价地下水中主要有机污染物的污染指数(淋溶迁移性)提供了一个简易方法。GUS与有机化合物的其它性质(如辛醇—水分配系数K_(ow)、溶解度S等)的相关性不明显。对水样中有机物检出情况的统计结果与基于有机污染物本身性质的淋溶迁移性计算表明,华北平原地下水中的有机污染检出率与其淋溶迁移性有较好的相关性。
The North China Plain has been suffering from the water shortage for many years. In this area, groundwater is the main source for water supply. With the development of society and economy, impacts of human activities on the evolution of groundwater are becoming more and more significant. Releasing of hazardous substances into environment, to a great extent, endangers the groundwater quality. This problem is more pronounced in the place where groundwater is used as the only drinking water source in the North China Plain. Since the late 1970s, many studies have been carried out on the inorganic hydrogeochemical aspects of groundwater in this region and great achievements have been made. However, to date, there is no investigation on groundwater organic contamination that has been systematically done in a regional scale. Little information is available on organic contamination of groundwater using as water supply source. Since most of the organic compounds detected in the groundwater are toxic and carcinogenic, there is a need to systematically assess the groundwater quality and its suitability for drinking in the North China Plain. Therefore, it is of great significance to acquire knowledge on the current condition of groundwater quality and contamination, to access the groundwater quality and its suitability by proper methods, and to predict the leachability of target organic compounds detected in groundwater.
     The objectives of this work are (1) to select simple and feasible methods or modify the existing methods for groundwater quality and drinking suitability evaluation; (2) to investigate the organic contamination of groundwater, based on the available data to classify the main classes of organic contaminants and briefly discuss the contamination source and their possible relationship with typical inorganic components (e.g., total hardness) in groundwater; and (3) according to the physical and chemical properties of organic compounds, to predict their leachability from soil s and sediments by suitable model, in order to provide scientific evidence for further risk assessment.
     As a part the project Investigation of Groundwater Organic Contamination in the North China Plain, the author has availability of data for the huge region from collaborating institutions. In the field, the water samples were collected according to the standard sampling procedure issued by China Geological Survey and the relating information about the sampling sites were careful investigated. Based on the analytical data from the nationally qualified laboratories and available hydrogeological data, GIS mapping, multivariate statistics and modeling approaches were applied for data processing. The main works carried out are described as follows:
     1. Groundwater quality assessment
     According to the analyzed results of the water samples, the groundwater quality was assessed by single index method and comprehensive assessing method (i.e., Nemerow index). In order to make the assessment results to be easily interpreted in a practical sense and closely relate to the drinking water standards, in this work, the criteria of Nemerow index classification were adjusted. The assessed results indicated that the groundwater quality in the North China Plain is controlled by the inorganic items, such as total hardness, total dissolved solids (TDS), fluoride, and nitrate. The organic compounds including benzo[a]pyrene, volatile phenols, and carbon tetrachloride determine the quality assessment results of 4% water samples due to their high concentrations.
     2. Assessment of suitability of water for drinking
     According to the actual hydrogeological and economic condition, and the toxicity (e.g., carcinogenicity) of investigated compounds, a more feasible method to assess the suitability of water (including groundwater and surface water) for drinking purpose was put forward. By using this method, the suitability of waters for drinking were evaluated. The results showed that 60.8% of waters are suitable for drinking purpose. Among these, 18.4% waters have certain compound concentrations classified as Class IV, which does not meet the national standard for drinking water. However, these compounds are not quite harmful to human health at this concentration range. A few waters (4.9% of the total samples) need to be simply treated to meet the quality requirement for drinking due to the high concentration of some compounds, even they do not have high risk to human health.
     Analyzed results of 84 samples indicated that necessary treatments are necessary if they are used for drink. Most of these waters have relative high fluoride concentrations. The available hydrogeological data implies that the high fluoride content is mainly caused by the natural geological conditions. This is also the reason for the high content of iron and manganese in some groundwater. Among the samples of this class, there are 22 samples with high content of arsenic, lead, benzo[a]pyrene, and carbon tetrachloride. Because these compounds are considered carcinogenic, further sampling and monitoring work should be carefully conducted for the waters with high concentration of these compounds. Based on the detail information on the origin of these hazardous substances, necessary measures should be taken.
     3. Assessment of groundwater organic contamination
     Thirty-eight organic compounds were chosen as target items for testing in the lab for totally 245 samples, in which there are three surface water samples. The analyzed data indicated that there were organic contaminants detected in 93 samples. Among the target compounds, chloroethylene, 1,1-dichloroethylene, dichloromethane, 1,2-dichloroethylene, 1,1,1 -Trichloroethane, and hexachlorobenzene were not detected in all the water samples. The maximum number of compounds detected in one site is 11. The organic compounds with a detection frequency (ratio of number of samples with organic compound(s) detected to the total number of samples) higher than 4.5% include trichloromethane, toluene, tetrachloroethlyene, benzo[a]pyrene, chlorobenzene, benzene, and 1,2-dichlorobenzene. According to the standards of groundwater quality (China Geological Survey, 2007), the concentrations of carbon tetrachloride, benzo[a]pyrene, and volatile phenols were higher that that for class III, which corresponds to the drinking water standards. It should be noted that there were organic contaminants detected in some deep groundwater samples. This suggests that further monitoring work should be carried out for these sites.
     From the statistic results in the large region, it can be easily found that the groundwater organic contamination is relatively more pronounced in the urban areas. There is a close relationship between the extent of groundwater organic contamination and the increase of total hardness in groundwater.
     4. Classification of leachability of target organic compounds and the relationship between their leachability and detection frequency
     In order to prevent organic contamination of groundwater, to predict the environmental fate of organic contaminants from their quantitative structure is a useful method. This is especially helpful under the condition that there is not enough data or it is difficult to take measurement. In this study, the leachability of 91 target organic contaminants (among them, 58 compounds are China Priority Organic Pollutants) was studied by groundwater ubiquity score (GUS). The half life (DT50) and organic carbon sorption coefficient (Koc) of the chemicals were calculated by the US EPA software EPI Suite (V3.20). The results showed that there is a close relationship between GUS and Koc of the investigated chemicals and their leachability is mainly controlled by Koc. There was no direct relationship of GUS with octanol -water distribution coefficient (Kow) and solubility (S) of the chemicals. The statistic results showed that there is a relatively close relationship between the leachability of organic compounds and their detection frequency in groundwater in the North China Plain.
引文
[1]Barbash,J.and Roberts,P.V.,1986.Volatile organic chemical contamination,of groundwater resources in the U.S..Journal of the Water Pollution Control Federation 58:343-348.
    [2]Barcelona,M.,Wehrmann,A.,Keely,J.F.and Pettyjohn,W.A.,1990.Contamination of ground water:Prevention,assessment,restoration.(Pollution technology review no.184) Noyes Data Corp.,Park Ridge,New Jersey,213 pp.
    [3]Hirata,T.,Nakasugi,O.,Yoshioka,M.and Sumi,K.,1992.Groundwater pollution by volatile organochlorines in Japan and related phenomena in the subsurface environment.Water Science and Technology,25(11):9-16.
    [4]刘丰茂,1999.农药对地下水影响评价标准.世界农药(5):55-58.
    [5]刘兆昌,张兰生,聂永锋,朱锟,1991.地下水系统的污染与控制.中国环境科学出版社,北京.
    [6]戚爱萍,侯继梅,2001.济南地区岩溶地下水有机污染状况调查.预防医学文献信息,7(6).
    [7]周文敏,傅德黔,孙宗光,1990.水中优先控制污染物黑名单.中国环境监测,6(4):1-3.
    [8]汪珊,孙继朝,张宏达,荆继红,陈玺,2005.我国水环境有机污染现状与防治对策.海洋地质动态(10):5-10.
    [9]郭秀红et al.,2006.珠江三角洲地区浅层地下水中有机氯农药的污染特征.环境化学,25(6):798-799.
    [10]田凤领,2003.河北省地下水环境质量评价及治理措施.河北水利水电技术(4):14-15.
    [11]Patrick,R.,Ford,E.,Quarles,J.,1987.Groundwater Contamination in the U.S.A.University of Pennsylvania Press,Philadephia,538 pp.
    [12]姜建军,2005.以人为本切实加强地下水饮用水源的保护.中国环保网.
    [13]王国贤,陈宝林,任桂萍,张学伟,2007.内蒙古东部污灌区土壤重金属迁移规律的研究.农业环境科学学报,26(增刊):30-32.
    [14]杨军et al.,2006.中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险.地理研究,25(3):449-456.
    [15]徐绍辉,朱学愚,1999.地下水石油污染治理的水力截获技术及数值模拟.水利学报(1):71-76.
    [16]王尔海,李广贺,贾道吕,1998.石油污染物在砂砾石层中的迁移与分布.环境科学研究,19(5):18-21.
    [17]王志强et al.,2005.地下水石油污染高效生物降解研究.环境科学,26(6):61-64.
    [18]郑金秀,张甲耀,赵晴,赵磊,傅春堂,2006.高效石油降解菌的选育及其降解特性研究.环境科学与技术,29(3):1-4.
    [19]郭华明,王焰新,陈艳玲,王玉梅,2001.地下水有机污染的水文地球化学标志物探讨--以河南油田为例.地球科学-中国地质大学学报,26(3):304-308.
    [20]郭永海,沈照理,钟佐粲,刘淑芬,1996.河北平原地下水有机氯污染及其防污性能的关系.水文地质工程地质(1):40-42.
    [21]张兰英et al.,1998.垃圾渗沥液中有机污染物的污染及去除.中国环境科学,18(2):184-188.
    [22]张洪凯,1997.小清河水体和沿岸地下水中有机污染物的监测及其毒性分析.中国环境监测,13(2):40-41.
    [23]张达政,陈鸿汉,李海明,2002.浅层地下水卤代烃污染初步研究 中国地质,29(3):326-329.
    [24]王焰新,李义连,付素蓉,2002.武汉市区第四系含水层地下水有机污染敏感性研究.地球科学(中国地质大学学报),27(5):616-620.
    [25]李海明,陈鸿汉,钟佐燊,2002.垃圾堆放场氯代脂肪烃对浅层地下水的污染特征初步分析.地球科学(中国地质大学学报),27(2):227-230.
    [26]张俊,陈家军,王红旗,1999.数值模拟在土壤环境影响评价中的应用.中国环境科学,19(3):234-237.
    [27]李广贺,张旭,黄巍,2000.石油污染包气带中降解微生物的分布特征.环境科学研究,21(4):61-64.
    [28]彭文启,张祥伟,2005.现代水环境质量评价理论与方法.化学工业出版社,北京,237 pp.
    [29]潘乃礼,1995.地下水水质现状和预测的理论与方法.原子能出版社,北京.
    [30]张伟,闫学军,2005.天津市地下水质量评价.水资源保护,21(2):31-35.
    [31]谷朝君,潘颖,潘明杰,2002.内梅罗指数法在地下水水质评价中的应用及存在问题.环境保护科学,28(109):45-47.
    [32]马成有,曹剑锋,姜纪沂,平建华,2006.改进的尼梅罗污染指数法及其应用---以磐石市地下水环境质量评价为例.水资源保护,22(4).
    [33]贺北方,王效宇,贺晓菊,马细霞,刘宜峰,2002.基于灰色聚类决策的水质评价方法.郑州大学学报(工学版),23(1):10-13.
    [34]叶巧文,张新政,2003.基于灰色聚类的水质评价方法.五邑大学学报(自然科学版),17(4):4-7.
    [35]郑建青,2004.水环境质量评价的灰色聚类分析.科技进步与对策(9):40-41.
    [36]张晓宇,张永吉,陈刚,2004.基于灰色聚类法的矿区地下水环境质量评价.有色矿冶(4):62-64.
    [37]张海涛,雷晓东,张芳,赵涛,2005.灰色关联度法地盘锦市曙光地区地下水水质评价中的应用.世界地质,24(1):68-71.
    [38]邓峰,1991.水质评价的一种新方法----模糊综合指数法.中国环境科学,11(1):63-66.
    [39]马建华,季凡,1994.水质评价的模糊概率综合评价法.水文(5):21-24.
    [40]杨维,潘俊,陈曦,王建华,2001.模糊聚类法在地下水质量评价中的应用.沈阳建筑工程学院学报(自然科学版),17(4):279-281.
    [41]邹立芝,魏余广,1997.用模糊综合评判法评价昌宁盆地地下水水质.长春地质学院学报,27(3):337-341.
    [42]郑成德,1997.地下水污染评价模糊综合聚类理论与模式.大连铁道学院学报,18(1):5-9.
    [43]汤洁,李艳梅,卞建民,薛晓丹,2005.物元可拓法在地下水水质评价中的应用.水文地质工程地质(5):1-5.
    [44]毛兴华,2006.常用水质评价方法的选择.水科学与工程技术(1):21-23.
    [45]耿冬青,张洪国,王福刚,2000.改进的BP网络在地下水水质评价中的应用.世界地质,19(4):366-370.
    [46]付永锋,张建,罗光明,赵基花,沈冰,2004.基于改进BP神经网络的地下水水质评价—以新疆和田地区为例.西北农林科技大学学报(自然科学版)32(11):129-132.
    [47]李祚泳,孙丽,丁晶,2002.一个基于GA优化的地下水水质评价的通用公式.水文,22(5):31-34.
    [48]孙涛,潘世兵,李永军,2004.人工神经网络模型在地下水水质评价分类中的应用.水文地质工程地质(3):58-61.
    [49]苏艺,许兆义,鄢贵权,2004.对应分析方法在地下水环境系统分析中的应用.28(4):48-53.
    [50]任若恩,王惠文,1997.多元统计数据分析.国防工业出版社,北京.
    [51]张超,杨秉庚,1993.计量地理学基础.高等教育出版社,北京.
    [52]王晓鹏,2001.河流水质综合评价之主成分分析方法.数理统计与管理,20(4):49-52.
    [53]黎夏,叶嘉安,2001.主成分分析与Cellular A utomata在空间决策与城市模拟中的应用.中国科学(D辑)31(8):683-690.
    [54]陈武,艾俊哲,李凡修,梅平,2002.地下水水质综合评价方法探讨.地下水,24(2):74.
    [55]侯玫君,黄川友,2005.可拓分析法住区域地下水质量评价中的应用.水资源与水工程学报,16(3):72-75.
    [56]李金海,周红饱,2005.关于城市地下水污染评价方法的探讨.黑龙江水利科技,33(5).
    [57]郭笃发,2004.莱州湾东南岸海水入侵区地下水中若干离子的主成分分析.海洋科学,28(9):6-9.
    [58]王嵩峰,周培疆,2003.用主成分分析法研究评价地下水质量-以邯郸市为例.环境科学与技术(12):55-58.
    [59]杨海燕,夏正楷,2005.模糊数学在地下水资源污染评价中的应用.水土保持研究,12(4):107-110.
    [60]汪家权,刘万茹,钱家忠,孙世群,2002.基于单因子污染指数地下水质量评价灰色模型.合肥工业大学学报(自然科学版),25(5):697-702.
    [61]杨云龙,崔建国,1996.灰色关联分析在地下水污染评价中的应用.地下水(2).
    [62]殷淑华,段虹,千玲玲,2006.双权重模糊综合法在浅层地下水有机污染水质评价中的应用.华北水利水电学院学报,27(1):103-106.
    [63]吴东杰,王金生,丁爱中,2006.地下水质量评价中两种确定指标权重方法的比较.工程勘察(8):17-22.
    [64]汤梦玲,谢可翔,李志建,2005.水质评价模型选择综合分析与探讨.资源调查与环境,26(3):221-227.
    [65]王炳华,赵明,2000.美国环境监测一百年历史回顾及其借鉴.环境监测管理与技术,12(6):13-17.
    [66]Bureau of Water,I.E.P.A.,2006.Illinois Integrated Water Quality Report,Section 303(D) List -2006,Illinois Environmental Protection Agency.
    [67]Reghunath,R.,Murthy,T.R.S.,Raghavan,B.R.,2002.The utility of multivariate statistical techniques in hydrogeochemical studies:an example from Karnataka,India.Water Research,36:2437-2442.
    [68]Helena,B.et al.,2000.Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River,Spain) by principal component analysis.Water Research,34(3):807-816.
    [69]Shrestha,S.,Kazama,F.,2007.Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin.Environmental Modelling and Software,22(4):464-475.
    [70]Shankar,M.N.R.,Mohan,G.,2006.Assessment of the groundwater potential and quality in Bhatsa and Kalu river basins of Thane district,western Deccan Volcanic Province of India.Environmental Geology,49:990-998.
    [71]Stambuk-Giljanovic,S.,1999.Water quality evaluation by index in Dalmatia Water Research,33(16):3423-3440
    [72]Sanchez-Martos,F.,Aguilera,P.A.,Garrido-Frenich,A.,Torres,J.A.and Pulido-Bosch,A.,2002.Assessment of groundwater quality by means of self-organizing maps:application in a semiarid area.Environmental management,30(5):716-726.
    [73]Shepherd,K.A.,Ellis,P.A.and Rivett,M.O.,2006.Integrated understanding of urban land,groundwater,baseflow and surface-water quality-The City of Birmingham,UK.Science of the Total Environment 360:180-195.
    [74] Mogheir, Y., de Lima, J.L.M.P. and Singh, V.P., 2003. Assessment of spatial structure of groundwater quality variables based on the entropy theory. Hydrology and Earth System Sciences, 7:707-721.
    [75] Mogheir, Y., Singh, V.P. and de Lima, J.L.M.P., 2006. Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine. Hydrogeology Journal 14: 700-712.
    [76] Belousova, A.P., 2006. Assessment of Groundwater Pollution Risk as a Characteristic of the Stability of Its Quality. Water Resources, 33(2): 219-232.
    [77] Love, D., Hallbauer, D., Amos, A. and Hranova, R., 2004. Factor analysis as a tool in groundwater quality management: two southern African case studies. Physics and Chemistry of the Earth 29 1135-1143.
    [78] Duffy, C.J. and Brandes, D., 2001. Dimension reduction and source identification for multispecies groundwater contamination. Journal of Contaminant Hydrology 48: 151-165.
    [79] Singh, K.P., Malik, A. and Sinh, S., 2005. Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 538: 355-374.
    [80] Datta, P.S., Deb, D.L. and Tyagi, S.K., 1997. Assessment of groundwater contamination from fertilizers in the Delhi area based on ~(18)O, NO_3~- and K~+ composition. Journal of Contaminant Hydrology, 27: 249-262.
    [81] Carsel, R.F., Jones, R.L., Hansen, J.L., Lamb, R.L. and Anderson, M.P., 1988. A simulation procedure for groundwater quality assessments of pesticides. Journal of Contaminant Hydrology, 2: 125-138.
    [82] Posen, P. et al., 2006. Incorporating variations in pesticide catabolic activity into a GIS-based groundwater risk assessment. Science of The Total Environment, 367(2-3): 641-652.
    [83] Chowdary, V.M., Rao, N.H. and Sarma, P.B.S., 2005. Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects. Agricultural Water Management, 75(3): 194-225.
    [84] Alexandra, G., Christos, P., Vassilios, A.T. and Vassilios, P., 2006. Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environmental Geology, V49(5): 653-673.
    [85] Lasserre, F., Razack, M. and Banton, O., 1999. A GIS-linked model for the assessment of nitrate contamination in groundwater. Journal of Hydrology, 224(3-4): 81-90.
    [86] Babikera, I.S., Mohameda, M.A.A., Teraob, H., Katoa, K. and Ohtaa, K., 2004. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environment International, 29: 1009- 1017.
    [87] Thapinta, A. and Hudak, P.F., 2003. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand. Environment International, 29: 87- 93.
    [88] Bradner, A., McPherson, B.F., Miller, R.L., Kish, G. and Bernard, B., 2005. Quality of Ground Water in the Biscayne Aquifer in Miami-Dade, Broward, and Palm Beach Counties, Florida, 1996-1998, with Emphasis on Contaminants, U.S. Geological Survey, Open-File Report 2004-1438.
    [89]Moran,M.J.,Zogorski,J.S.and Rowe,B.L.,2006.Approach to an Assessment of Volatile Organic Compounds in the Nation's Ground Water and Drinking-Water Supply Wells,U.S.Geological Survey Open-File Report 2005-1452.
    [90]Lapham,W.W.,Moran,M.J.and Zogorski,J.S.,2000.Enhancements of non-point source monitoring of volatile organic compounds in ground water.Journal of the American Water Works Association,36(6):1321-1334.
    [91]中国地质科学院水文地质环境地质研究所,2003年12月.华北地下水可持续开发利用前景成果报告.
    [92]Foster,S.S.D.and Chilton,P.J.,2003.Groundwater:the processes and global significance of aquifer degradation.Philosophical transactions of the Royal Society of London.Series B,Biological sciences,358(1440):1957-1972.
    [93]陈望和等,1999.河北地下水.地震出版社,北京.
    [94]张宗祜,张光辉,任福弘,费瑾等著,2006.区域地下水演化过程及其与相邻层圈的相互作用.地质出版社,北京,248 pp.
    [95]张宗祜,施德鸿,沈照理,钟佐粲,薛禹群,1997.人类活动影响下华北平原地下水环境的演化与发展.地球学报,18(4):337-344.
    [96]张宗祜等,2000.华北平原地下水环境演化.地质出版社,北京.
    [97]夏军et al.,2004.华北地区水资源及水安全问题的思考与研究.自然资源学报,19(5):550-560.
    [98]夏军,2002.华北地区水循环与水资源安全:问题与挑战.地球科学进展,21(6):517-527.
    [99]张宗祜et al.,1997.论华北平原第四系地下水系统之演化.中国科学(D),27(2):168-173.
    [100]李文体,1994.河北省地下水水质调查评价方法及成果简介.河北水利水电技术(3):10-13.
    [101]Foster,S.et al.,2004.Quaternary Aquifer of the North China Plain - assessing and achieving groundwater resource sustainability.Hydrogeology Journal(12):81-93.
    [102]Zhang,Z.H.et al.,1997.Evolution of Quaternary groundwater system in North China Plain.Science in China Series D-Earth Sciences,40(3):276-283.
    [103]徐恒力,肖国强,李红,2002.人为活动条件下河北平原第四系地下水系统的演变.地质科技情报,21(3):7-13.
    [104]巩元禄,1995.河北省水文特性.水文地质工程地质(4):55-58.
    [105]刘志国,付建飞,王恩德,席晓风,贾三石,2007.河北省水资源演化分析及预测.安全与环境学报,7(4):72-76.
    [106]梅双斌,1994.浅谈河北省城市地下水污染及防治.环境保护,8(8):45-246
    [107]段永候等编著,1993.中国地质灾害.中国建筑工业出版社.
    [108]河北省环境水文地质总站,1984年.河北省地下水资源调查与评价报告.
    [109]毕二平,高扬,刘昌礼,1999.人类活动影响下石家庄市地下水环境质量现状信趋势研究.勘察科学技术(6):8-12.
    [110]王东胜,沈照理,钟佐粲,1998.氮迁移转化对地下水硬度升高的影响.现代地质(3):138-143.
    [111]蔡绪贻,佘云平,1993.洛阳市浅层地下水硬度升高机理初探.中国地质灾害与防治学报,4(4):29-35.
    [112]丁开宁,郝爱兵,王孟科,1996.石家庄市地下水污染特征及机理.水文地质工程地质(6):29-32.
    [113]姚荣江,杨劲松,刘广明,2006.黄河三角洲地区典型地块地下水特征的空间变异性研究.土壤通报,37(6):1071-1075.
    [114]李保国,白由路,胡克林,黄元仿,陈德立,2001.黄淮海平原浅层地下水中NO_3-N含量的空间变异与分布特征.中国工程科学,3(4):42-46.
    [115]Wang,M.X.,Liu,G.D.,Wu,W.L.,Bao,Y.H.and Liu,W.N.,2006.Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN.Environmental Geology,50(5):637-644.
    [116]刘瑞民 et al.,2004.天津表层土壤PAHs分子标志物参数的空间特征.中国环境科学,24(6):684-687.
    [117]刘瑞民et al.,2006.天津表土PAHs不同组分和土壤理化参数的多尺度空间关系.农业环境科学学报,25(4):929-933.
    [118]郑一et al.,2003.天津地区表层土壤多环芳烃含量的中尺度空间结构特征.环境科学学报,23(3):311-316.
    [119]Ye,B.X.,Zhang,Z.H.and Mao,T.,2006.Pollution sources identification of polycyclic aromatic hydrocarbons of soils in Tianjin area,China.Chemosphere,64(4):525-534.
    [120]Wu,S.P.et al.,2005.Polycyclic aromatic hydrocarbons in dustfall in Tianjin,China.Science of the Total Environment,345(1-3):115-126.
    [121]Wang,X.J.et al.,2003.Medium scale spatial structures of polycyclic aromatic hydrocarbons in the topsoil of Tianjin area.Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes,38(3):327-335.
    [122]陈静et al.,2004.天津地区土壤多环芳烃在剖面中的纵向分布特征.环境科学学报,24(2):286-290.
    [123]张洪凯,周桂芬,张新华,张洪勋,袁东,1998.小清河水体中有机污染物的测定及其扩散迁移初探.环境科学研究,11(1):22-26.
    [124]田家怡et al.,1995]..小清河污灌水质有机化合物污染及对地下水影响的研究.山东环境(1):15-18.
    [125]焦飞et al.,2004.河南省主要城市水源水中微量有毒有害有机污染现状调查与研究.中国环境监测,20(2):5-9.
    [126]多克辛,王玲玲,朱叙超,彭华,申剑,2004.河南省主要城市水源水中微量有毒有害有机污染特性研究.安全与环境学报,4(1):32-35.
    [127]中国地质调查局,2006.地下水污染调查评价规范(1:50000-1:250000),pp.42.
    [128]Puls,R.W.and Barcelona,M.J.,1996.Low-Flow(Minimal Drawdown) Ground Water Sampling Procedures.Publication Number EPA/540/S-95/504,U.S.EPA.
    [129]Wilde,F.D.,Radtke,D.B.,Gibs,J.and Iwatsubo,R.T.,1998.Field measurements,National field manual for the collection of water-quality data:U.S.Geological Survey Techniques of Water Resource Investigations,book 9 pp.3-20.
    [130]陈宗珍,1994.冀东平原浅层地下水水质污染成因初析.河北水利科技,15(3):6-9.
    [131]李海明,陈鸿汉,郑西来,张达政,2006.地下水中苯并[a]芘来源探讨.水文地质工程地质(6):21-24.
    [132]王昭,石建省,费宇红,张兆吉,拟2008年8月发表。.我国“水中优先控制有机物”对地下水污染的预警性研究.水资源保护.
    [133]陈浩,王贵龄,张薇,范琦,蔺文静,2005.河北平原地下水水化学演化.地球与环境,33(增刊):620-623.
    [134]毕二平,母海东,陈宗宇,王昭,2001.人类活动对河北平原地下水水质演化的影响.地球学报,22(4):365-368.
    [135]肖智毅,2003.海淀区地下水硝酸盐污染及其影响因素.环境与健康杂志,20(3):158-160.
    [136]邹胜章et al.,2002.北京西南城近郊浅层地下水盐污染特征及机理分析.水文地质工程地质(1):5-9.
    [137]林健,2002.北京市城近郊区地下水污染演变分析研究.硕士Thesis,吉林大学,长春,66 pp.
    [138]USEPA,2006.2006 Edition of the Drinking Water Standards and Health Advisories(EPA 822-R-06-013),Office of Water,U.S.Environmental Protection Agency,Washington,DC.
    [139]王昭,张翠云,陈玺,2006.地下水有机污染物自然衰减研究概述.地球学报,27(Sup):22-26.
    [140]Bolio,P.A.,1999.Natural attenuation of PAHS and benzene at the Stockton MGP site,Battelle Memorial Institute International In Situ and On-Site Bioreclamation Symposium Proceedings.
    [141]Kao,C.M.and Prosser,J.,2001.Evaluation of natural attenuation rate at a gasoline spill site.Journal of Hazardous Materials,82(3):275-289.
    [142]Eganhouse,R.P.,Cozzarelli,I.M.,Scholl,M.A.and Matthews,L.L.,2001.Natural attenuation of volatile organic compounds(VOCs) in the leachate plume of a municipal landfill:Using alkylbenzenes as process probes.Ground Water,39(2):192-202.
    [143]Grathwohl,P.,Klenk,I.D.,Maier,U.and Reckhom,S.B.F.,2002.Natural attenuation of volatile hydrocarbons in the unsaturated zone and shallow groundwater plumes:Scenario-specific modelling and laboratory experiments.IAHS-AISH Publication(275):141-146.
    [144]Maier,U.,Mayer,U.and Grathwohl,P.,2005.Natural attenuation of volatile hydrocarbons in the unsaturated zone,IAHS-AISH Publication,pp.296-304.
    [145]何江涛,史敬华,崔卫华,刘菲,陈鸿汉,2004.浅层地下水氯代烃污染天然生物降解的判别依据.地球科学-中国地质大学学报,20(3):357-362.
    [146]刘新华,沈照理,傅家谟,1997.地下水油类污染的水文地球化学指标--以山东省淄博市某地下水水源地为例 沉积学报(02):236-240.
    [147]黄俊,余刚,张彭义,2003.中国持久性有机污染物嫌疑物质的计算机辅助筛选研究.环境污染与防治,25(1):16-18.
    [148]Aller,L.,Benett,T.,Lehr,J.,Petty,R.,1987.DRASTIC:A standardized system for evaluating ground water pollution potential using hydrogeologic settings.USEPA,Washington,DC,643 pp.
    [149]Guzzella,L.,Pozzoni,F.and Giuliano,G.,2006.Herbicide contamination of surficial groundwater in Northern Italy.Environmental Pollution,142(2):344-353.
    [150]Close,M.E.and Flintoft,M.J.,2004.National survey of pesticides in groundwater in New Zealand-2002.New Zealand Journal of Marine and Freshwater Research,38:289-299.
    [151]Primi,P.,Surgan,M.H.and Urban,T.,1994.Leaching potential of turf care pesticides:A case sudy of Long Island Golf Courses.Ground Water Monitoring & Remediation,14(3):129-138.
    [152]Zheng,S.Q.and Cooper,J.F.,1996.Adsorption,desorption,and degradation of three pesticides in different soils.Archives of Environmental Contamination and Toxicology,30:15-20.
    [153]USEPA,2007.EPI Suite v3.20,http://www.epa.gov/oppt/exposure/docs/episuite.htm.
    [154]Carlsen,L.,2006.A combined QSAR and partial order ranking approach to risk assessment.SAR QSAR Environ Res.,17(2):133-46.
    [155]Carlsen,L.,Kenesova,O.A.and Batyrbekova,S.E.,2007.A preliminary assessment of the potential environmental and human health impact of unsymmetrical dimethylhydrazine as a result of space activities.Chemosphere,67(6):1108-1116.
    [156]Bryant,D.L.and Abkowitz,M.D.,2007.Development of a terrestrial chemical spill management system.Journal of Hazardous Materials,147(1-2):78-90.
    [157]Kuhne,R.,Ebert,R.-U.and Schuurmann,G.,2007.Estimation of Compartmental Half-lives of Organic Compounds - Structural Similarity versus EPI-Suite.QSAR & Combinatorial Science,26(4):542-549.
    [158]Gouin,T.,Cousins,I.and Mackay,D.,2004.Comparison of two methods for obtaining degradation half-lives.Chemosphere,56(6):531-535.
    [159]Mackay,D.,Guardo,A.D.,Paterson,S.,Kicsi,G.and Cowan,C.E.,1996.Assessing the fate of new and existing chemicals:A five-stage process.Environmental Toxicology and Chemistry,15(9):1618-1626.
    [160]Aronson,D.,Boethling,R.,Howard,P.and Stiteler,W.,2006.Estimating biodegradation half-lives for use in chemical screening.Chemosphere,63(11):1953-1960.
    [161]Voutsas,E.,Vavva,C.,Magoulas,K.and Tassios,D.,2005.Estimation of the volatilization of organic compounds from soil surfaces.Chemosphere,58(6):751-758.
    [162]Meylan,W.,Howard,P.H.and Boethling,R.S.,1992.Molecular topology/fragment contribution method for predicting soil sorption coefficients.Environ.Sci.Technol.,26(8):1560-1567.
    [163]Gustafson,D.I.,1989.Groundwater ubiquity score:a simple method for assessing pesticide leachability.Environmental Toxicology and Chemistry,8:339-357.
    [164]Chen,W.,Song,L.,Gan,N.and Li,L.,2006.Sorption,degradation and mobility of microcystins in Chinese agriculture soils:risk assessment for groundwater protection.Environmental Pollution,144(3):752-758.
    [165]Cranwell,P.A.and Koul,V.K.,1989.Sedimentary record of polycyclic aromatic and aliphatic hydrocarbons in the Windermere catchment.Water Research,23(3):275-283.
    [166]Latimer,J.S.,Hoffman,E.J.,Hoffman,G.,Fasching,J.L.and Quinn,J.G.,1990.Sources of petroleum hydrocarbons in urban runoff.Water,Air and Soil Pollution,52:1-21.
    [167]汤土根,盛国英,傅家谟,闵育顺,张云翼,1996.有机污染源标志物的探讨及其意义.中国环境科学(3):223-227.
    [168]Schmidt,T.C.et al.,2004.Compound-specific stable isotope analysis of organic contaminants in natural environments:A critical review of the state of the art,prospects,and future challenges.Analytical and Bioanalytical Chemistry,378(2):283-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700