用户名: 密码: 验证码:
喷雾图像处理及脉宽调制(PWM)变量喷雾的雾化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国植保机械和农药使用技术严重落后,已严重妨碍了农作物病虫害的防治,带来了诸如农药有效利用率低、农产品中农药残留超标、环境污染、作物药害、操作者中毒等负面影响,造成了不应有的损失以及其它许多不良后果。因此,提高植保施药机械测试设备的测试性能、研究液体从喷嘴喷射出后的雾化特性和提高喷雾沉积率的方法,对于优化农用化学制品的应用技术、控制有害物质的飘移、提高农药有效利用率、减小环境污染都有极其深远的意义。作者做了一些相关领域的研究工作,现将本研究中所做的工作和研究结论归纳如下:
     1.建立了雾化喷头试验台;设计并建立了基于脉宽调制(PWM)控制技术的脉动间歇式和连续式两套喷雾流量控制装置。①用频率在20Hz以内可调、占空比可调的方波电信号驱动开关式电磁阀,实现了基于脉宽调制(PWM)技术的间歇式变量喷雾。②用频率为24KHz、占空比可调的脉冲方波电信号驱动电磁比例调节阀,实现了基于脉宽调制(PWM)技术的连续式变量喷雾。试验结果表明,这两套喷雾流量控制装置达到了预期设想,与传统基于压力式流量控制方法相比,喷雾流量调节范围都有一定程度的提高。PWM间歇式喷雾流量控制范围为:平口扇形喷嘴、中空锥形喷嘴、实心锥形喷嘴的流量调节范围分别为4.17、4.00、2.70;PWM连续式喷雾流量控制范围为:平口扇形、中空锥形、实心锥形喷嘴的流量调节范围分别为7.14、3.57、3.7 0。
     2.针对以往喷雾角测定方法误差较大等局限性,提出了一种基于图像处理的喷雾角测定方法。对同一次喷雾连续拍摄两次,得到一次喷雾的两张图像,对其进行图像配准、图像融合,以得到图像质量较高的图像,并用EM算法评价估计图像质量之后,提取喷雾图像射流边界,利用MATLAB工具箱中的最小二乘直线拟合函数,对不规则的喷雾图像边界进行最小二乘线性拟合,得到了最接近实际射流边界的两条相交直线,二直线的夹角即为喷雾角。根据最小二乘拟合的定义和原理,用此方法求得的喷雾夹角误差平方和最小。
     3.提出一种基于EM算法的图像融合质量评价方法。用混合瑞利概率密度函数对边缘强度分布建模,用EM算法迭代估算出混合瑞利密度函数中各项的参数和权重。混合模型中最小参数项对应于弱边缘,或是低频背景波动;最大参数项对应于强边界。可用混合项中的最小参数项估计噪声,用最大参数项度量图像的模糊度。与其它方法相比,该方法的优点是,不需要知道图像构造等细节信息,且对较小噪声也能较精确地估计出。
     4.实现了基于ActiveX技术的无VBA组态软件和MATLAB间的通信。在喷头测试试验台的控制系统中,工控组态软件因其良好的人机界面等诸多优点被选为主控界面,运行在前台,为了弥补组态计算能力差的不足,选用具有强大工程计算和图像图形处理能力的MATLAB软件作为计算处理工具,运行在后台,以实现优势互补。因工程造价问题,选用了无VBA的组态软件“世纪星”,因此无VBA组态软件和MATLAB间的通信问题成为关键。提出了无VBA组态软件如何利用ActiveX技术与MATLAB通信的新思路和方法,即以Excel宏的VBA编辑器作为桥梁。并探讨比较了四种方法:Act iveX技术、DDE技术、MATLAB引擎技术、MATLAB编译器技术,根据这四种方法的优缺点,在实际开发中可根据实际情况选用不同的方法。在喷头测试试验台的控制系统中对M文件的可移植性要求不是很高,ActiveX技术因使用时简单、开发周期短、调用MATLAB前后不必开启MATLAB、占用内存少等优点而被选用。
     5。研究了基于PWM控制技术的间歇式变量喷雾的雾化特性。对于PWM间歇式喷雾,用现阶段最先进的、精度较高的粒子动态测量分析仪(PDA)测量了喷雾流场中液滴的速度和粒径,用自行编写的软件和MATLAB科学计算统计方法,研究并分析了间歇式变量喷雾控制对喷雾特性的影响。研究结果表明,随着流量的减小,雾量分布有集中到中央区域的趋势、喷雾角稍有减小、雾滴粒径稍有增大,但间歇式流量控制对雾量分布方式、喷雾角、雾滴粒径的影响程度都较小,相对而言,对实心锥形喷嘴的影响较严重,对平口扇形喷嘴的影响较轻。与传统的基于压力的流量控制方法相比,基本可以认为间歇式流量控制对平口扇形喷嘴的雾量分布方式、喷雾角、粒径谱的影响可忽略不计。对于间歇式流量控制,当流量减小时,喷雾液滴速度和比能也稍有减小。动能中值直径(KEMD)与喷雾液滴粒径变化趋势相同,说明间歇喷雾动能中值直径与喷雾液滴粒径紧密相关,而与液滴速度无关。
     6.研究了基于PWM控制技术的连续式变量喷雾的雾化特性。以同样的方法,测量、计算并分析了PWM连续式变量喷雾的雾化特性参数。研究结果表明,雾量分布方式和喷雾角受PWM连续式流量控制的影响较严重,随着流量的减小,所测试的所有喷嘴的雾量分布方式都显著集中到中央区域,喷雾角显著减小,雾滴粒径稍有减小。PWM连续流量控制对喷雾液滴粒径的影响较小,一般可以忽略不计。随着喷雾流量的减小,液滴速度和比动能都会减小,尤其是在占空比在75%以后,液滴速度减小的幅度较大。流量减小时,喷雾云动能中值直径(KEMD)减小,与体积中值直径(VMD)的变化趋势相同,说明喷雾云动能中值直径与粒径相关,与液滴速度无关。
     7.比较了PWM间歇式喷雾、PWM连续式喷雾、基于压力的喷雾方式,发现:基于压力的喷雾方式的喷雾流量调节范围最小,对喷雾特性的影响程度最大,当增大压力以提高流量时,雾量分布方式及分散度严重变形,粒径谱向小粒径方向移动幅度很大,但系统对能量的利用率很低。相比较而言,PWM脉动间歇式喷雾流量控制对喷雾特性的影响最小,对于平口扇形喷嘴,一般可以忽略间歇喷雾对喷雾分布方式、喷雾角、粒径谱的影响,喷雾云动态性能可稍被改善。因此对于以纵向调节为目的农业变量喷施而言,基于PWM控制技术的间歇式变量喷雾应该是首选。然而,PWM连续式喷雾流量控制方法的流量调节范围最大,对于平口扇形喷嘴,其流量调节范围可达7:1。虽然此种流量控制方法对喷雾分散特性(即喷雾角和分布方式)有一定的影响,但对喷雾液滴粒径谱的影响较小。若考虑喷施时的横向宽度变化要求时,PWM连续式流量控制不失为一种可供选择的方法。
     8.探讨了一种基于PWM间歇式喷雾技术的、提高喷雾沉积率的方法。四组比较试验结果表明,使较大喷嘴在提高工作压力的情况下间歇喷雾,系统调节喷雾占空比、压力和喷嘴大小,可在保证流量得到控制的同时,产生合适的粒径谱,雾滴速度也可得到提高,这样可以提高喷施沉积率。因为提高喷施沉积性能的根本出发点是保持合适的较小粒径谱和提高雾滴速度。
The serious lag in plant protection machinery and agricultural chemical application skills in our country has hindered the effective control of crop pests,and caused many negative effects,such as low utilization rate of agricultural chemicals,excess pesticide residue,environmental pollution,pesticide hazard,operator toxicosis.All of these have resulted in many bonehead damages and other bad effects.In order to optimize application technology of agricultural chemicals,control pesticide drift,improve effective utility rate of pesticides,and diminish environmental pollution,it is extremely far-reaching significant to improve the test performance of instrumentation of plant protection machinery for spraying application,and study the atomization characteristic after the liquid sprayed out of nozzles. So some researches were carried on in this area by the author.The main achievements and conclusions in this study were presented here:
     1.An atomization nozzle test-bed was built up,and two sets of spray flow control devices, intermittent and continuous spray flow control system based on Pulse-width Modulation (PWM),were designed and developed.①A switching-mode solenoid valve was actuated by a square electrical signal with tunable duty cycle and tunable frequency within 20 Hz.The intermittent variable spray flow based on PWM was achieved.②An electromagnetic proportional regulating valve was driven by a square electrical signal with 24kHz frequency and adjustable duty cycle,then the continuous variable spray flow based on PWM technology was achieved.The results showed that the expected assumptions about these two sets of spray flow control systems were reached. Compared with the conventional spray flow control method based on pressure,the flow regulating ranges of these two spray flow control methods based on PWM technology were all widen.The flow regulating ranges of intermittent spray based on PWM were 4.17,4.00 and 2.70 for the flat-fan nozzle,hollow-cone nozzle,and solid-cone nozzle, respectively;and those of continuous spray based on PWM were 7.14,3.57 and 3.70 for the flat-fan nozzle,hollow-cone nozzle and solid-cone nozzle,respectively.
     2.A measurement method of spray angle based on image processing was put forward, aiming at the limitation of the former measurement methods,which often cause big errors of spray angle detection.The same spray was shot twice,then two images of the spray were obtained.After these two images were registered,fused,a sharp and high quality image was achieved.When the quality of the resulting image was evaluated with Expectation Maximum algorithm(EM),the spray image edges were extracted. Then the irregular edges of atomization image were fitted to regression lines using the least square fitting function in MATLAB toolbox.Two intersected straight lines most approximative to the edges were obtained.The angle between these two fitted lines was just the wanted atomization angle.According to the definition and the principle of least square fit,the error sum of squares is the least.
     3.A method based on EM algorithm to evaluate the quality of the fused image quantitatively was developed.The image edge intensity was modeled using a mixture Rayleigh probability density functions(pdfs).The parameters and weights of mixture terms in the mixture model can be calculated using the EM iterative algorithm.The term with the smallest parameter corresponds to the weak edges,or the low-frequency background fluctuation.The term with the largest parameter corresponds to the strong edges.Then the smallest variance parameter can be used to estimate the variance of the image noise,and the largest parameter can be used to measure the image blurring. Compared with other image quality evaluation methods,the advantages of this method are that the detail information about the formation of the image needn't be used and the smaller noise can also be estimated exactly.
     4.The communication between configuration software without VBA and MATLAB was solved.In the control system of the nozzle measurement test-bed,because of the good man-machine interface and many other merits,the configuration software used in industrial control was selected to be the master control interface and run on the stage.In order to make up the deficiencies of the configuration on computation abilities, MATLAB with the powerful abilities of engineering calculation and image processing was selected as the calculating and processing tool,and run background.Thus it had complementary advantages.The configuration software "Centurystar" without VBA was selected in system development because of the project costs.So the communication between configuration without VBA and MATLAB became the key issue.A new method was proposed,by which the configuration without VBA can communicate with MATLAB taking advantage of ActiveⅩtechnology,namely taking the VBA editor in Excel macro as a bridge.Four solutions for the communication were compared: ActiveⅩtechnology,DDE technology,MATLAB engine technology,and MATLAB compiler technology.Based on the advantages and disadvantages of the four methods, different method can be selected in the actual development according to the practical situation.In the nozzle test control system,the requested portability is not so high. ActiveⅩtechnology was selected because of its simplicity,short developing cycle,and before or after MATLAB was invoked,it shouldn't be open.So comparatively,less computer memory is needed.
     5.The characteristics of intermittent spray based on PWM technology were studied.For the PWM intermittent spray,the diameter and the velocity of spray droplets were measured using Particle Dynamical Analyzer(PDA),the most advanced and high precision method currently.Using of the software developed by the author and statistical method in MATLAB,the effects of the pulse intermittent variable spray control on spray characteristics were studied in this part.The results indicated that the spray distribution centralized a little bit toward center area,the spray angle became smaller slightly,and the spray droplet diameter became bigger slightly.All these effects are very small.Comparatively,the effects of intermittent spray flow control on spray distribution,spray angle,and spray droplet size spectra were the serious for solid-cone nozzle,but were minor for flat-fan nozzle.Compared with conventional spray flow control method based on pressure,the influences of intermittent flow control on spray distribution,spray angle and spray droplet size spectra for flat-fan nozzle could be neglected.Under the intermittent spray flow control manner,the droplet velocity and the spray kinetic energy were decreased with decreasing flow slightly.The trends of kinetic energy median diameter(KEMD) and volume median diameter appeared similar. It indicated that KEMD was related to spray droplet size,rather than velocity.
     6.The characteristics of continuous spray based on PWM technology were studied.In the same way,the spray characteristic parameters of PWM continuous spray control were measured,calculated and analyzed.The results showed that the spray distributions and angles of all the nozzles tested in the experiments were influenced greatly by PWM continuous spray flow control.When the flow rate decreased,the spray distribution centralized toward the center area seriously,and the spray angle became smaller significantly,but the spray droplet diameter became smaller slightly.The effect of PWM continuous spray flow control on spray droplet size was very slight,it almost could be neglected.The spray droplet velocity and the spray kinetic energy both decreased with the decreasing flow.Especially when the duty cycle was less than 75%, the decrement of spray droplet velocity is significant.Same as the volume median diameter(VMD) trend,spray cloud kinetic energy median diameter(KEMD) decreased as the flow decreased.It indicated that the spray cloud KEMD was related to spray droplet size,rather than velocity.
     7.Comparing among PWM pulse intermittent spray,PWM continuous spray,and pressure-based spray manner,it could be found that the flow regulating range of pressure-based spray was the most narrow,the effects of the pressure-based spray on spray characteristics was the most significant.When the pressure was raised to increase spray flow,the spray distribution and dispersion deformed seriously,the spray droplet size spectra moved toward small droplets heavily.But the utility efficiency of the system energy was very low.Relatively,the influence of PWM intermittent spray flow control on spray characteristic was minor.For flat-fan nozzle,the influences of PWM intermittent spray on spray distribution,spray angle,and spray droplet size spectra could even been ignored.The spray cloud dynamic property could be improved slightly. Therefore,in terms of agricultural application aiming at improving chemical coverage and deposition rate,the intermittent variable spray method based on PWM control technology should be the first choice.However,the flow regulating range of PWM continuous spray flow control is the widest.It could reach the range of 7:1.Although PWM continuous spray flow control has some effects on spray angle and dispersion, this kind variable spray wouldn't make the droplet size spectra changed.So when the transverse width needs to be considered in spatially variable application,PWM continuous flow control can be the alternative method.
     8.A method based on PWM intermittent spray technology to improve spray deposition was investigated.The results of four group comparative experiments showed that pulsed intermittent sprays from enlarged nozzles operating at elevated liquid pressure could make the flow rate controlled,and produce suitable smaller droplets diameter spectra,and meanwhile the speed of spray droplets could be increased.Therefore,the spray deposition can be improved.Because the basic approach to improve spray deposition is keeping the suitable smaller spray droplet spectra and improving spray droplet speed.
引文
[1]何雄奎.改变我国植保机械和施药技术严重落后的现状[J].农业工程学报,2004,20(1):13-15.
    [2]王荣.植保机械理论与设计[M].长春:吉林人民出版社,2002.
    [3]Naiqian Zhang,Maohua Wang,Ning Wang.Precision agriculture--a worldwide overview[J].Computer and Electronics in Agriculture,2002,36:113-132.
    [4]Schueller J K.A review and integrating analysis of spatially-variable control of crop production[J].Fertilizer Research,33:1-34.
    [5]侯少丽.智能化是农机发展的趋势[J].现代农业装备,2005,(8):76.
    [6]D K Giles.Energy Conversion and Distribution in Pressure Atomization[J].Transactions of the ASAE,1988,31(6):1668-1673.
    [7]Pitts M J,J W Hummel,B J Butler.Transient behavior of by-pass flow nozzles[J].Transactions of ASAE,1986,29(3):718-722.
    [8]Kirk I W.Measurement and prediction of helicopter spray nozzle atomization[J].Transactions of the ASAE,2002,45(1):27-37.
    [9]朱金文,吴慧明,孙立峰,等.叶片倾角、雾滴大小与施药液量对毒死稗在水稻植株沉积的影响[J].植物保护学报,2004,31(3):259-263.
    [10]《温室园艺》编辑部.数字农业与农村信息化发展战略学术研讨会在京召开[J].农村实用工程技术.温室园艺,2005,(3):68.
    [11]胡宏祥,洪天求,马友华.农业非点源污染及其防治篇策略研究[J].中国农学通报,2005,21(4):315-317.
    [12]戴奋奋.简论我国施药技术的发展趋势[J].植物保护2004,30(4):5-8.
    [13]王忠群,胡桧.国内外植保机械质量标准管理模式浅析[J].农业质量标准,2005,(4):41-43.
    [14]方如明,许俐,蔡健荣,等.计算机图像处理技术及其在农业工程中的应用[M].清华大学出版社,1999.
    [15]苏金明,王永利.MATLAB图形图像处理[M].北京机械工业出版社,2006.
    [16]胡涛,汪强,张志刚.基于MATLAB的图像融合方法[J].计算机工程,2003,29(14):177-178.
    [17]覃征,鲍复民,李爱国,等.多传感器图像融合及其应用综述[J].微电子学与计算机,2004,21(2):1-5
    [18]夏明革,何友,黄晓冬.多传感器图像融合效果评价方法研究[J].电光与控制,2003,10(2):31-35
    [19]陶冰洁,王敬儒.采用小波分析的图像融合方法评述[J].计算机工程与应用,2005,(25):16-19
    [20]贾厚林.Matlab环境下基于小波变换的图像压缩研究[J].无锡商业职业技术学院学报,2005,5(1):5-6,8
    [21]王超,叶中付.基于相似性的图像融合质量的客观评估方法[J].软件学报,2006,17(7):1580-1587.
    [22]陈海洋,田沛,黄华,等.基于引入反馈后的小波变换的图像融合[J].华北电力大学学报,2005,32(5):101-103.
    [23]覃征,鲍复民,李爱国,等.多传感器图像融合及其应用综述[J].微电子学与计算机,2004,21(2):1-5.
    [24]陈熙.环形出口截面的离心喷嘴的简单分析[J].力学学报,1979,(4):332-339
    [25]胡传胜,熊洪亮,虞先煌.喷嘴液滴雾化细度和喷雾角测量装置的研究[J].能源研究与信息,2001,17(4):225-231.
    [26]中华人民共和国机械行业标准(JB).植保机械通用试验方法,JB/T9782-1999.
    [27]孙兆林.MATLAB6.x图像处理[M].北京:清华大学出版社,2002
    [28]余斌,陈维克.基于组态软件RSView32与matlab的通信[J].微计算机信息,2005,21(4):42-43
    [29]王颖,胡宗军,邹介棠.ActiveX:从Visual Basic 6.0调用MATlAB的实现方法[J].机电工程,1999,(5):172-174
    [30]徐江华,孙荣,邵惠鹤.基于组态王、Excel和Matlab的PID自整定仿真软件[J].计算机工程,2003,29(3):27-29.
    [31]Wilson B J,P.Brain.Long-term stability of distribution of Alopecurus myosuroides huds within cereal fields.Weed Res.1991,31(3):367-373.
    [32]Thornton P K,R H Fawcett,J B Dent,and T J Perkins.Spatial weed distribution and economic thresholds for weed control.Crop Protection,1990,9(5):337-342.
    [33]陈勇,郑加强,周宏平,等.精确农业管理系统可变量技术研究现状与发展[J].农业机械学报,2003,34(6):156-159.
    [34]陈宏金,马广,梅淑芳.精确农业的支持技术及应用进展[J].农业与技术,2005,25(5):54-56,61.
    [35]李会芳,邱白晶,刘保玲,等.对精确农业中变量喷雾控制的研究[J].中国农机化,2004,(3):25-27.
    [36]邱白晶,李会芳,吴春笃,等.变量喷雾装备及关键技术的探讨[J].江苏大学学报(自然科学版),2004,25(2):97-101.
    [37]陈勇郑加强精确施药可变量喷雾控制系统的研究[J]农业工程学报,2005,21(5):69-72.
    [38]王俊,祁力钧.SSM中可变量喷雾技术的现状和发展趋势[J].农机化研究,2005,(6):9-13.
    [39]陈勇,郑加强,周宏平,等.精确农业管理系统可变理技术研究现状与发展[J].农业机械学报,2003,34(6):156-159.
    [40]Herbst A,H.Ganzelmeier.Classification of sprayers according to drift risk:A German approach[J]. Aspects of Applied Biology--Pesticide Application,2000,57:35-40.
    [41]Walklate P J,and P C H Miller.Drift classification of boom sprayers based on single nozzle measurements in a wind tunnel[J].Aspects of Applied Biology--Pesticide Application,2000,57:49-56.
    [42]Paice M E,Miller P C H,Bodle J D.An experimental sprayer for the spatially selective application of herbicides[J].Journal of Agricultural Engineering Research,1995,60(2):107-116.
    [43]Tompkins F D,Howard K D,Mote C R,et al.Boom flow characteristics with direct chemical injection[J].Transactions of ASAE,1990,33(3):737-743.
    [44]Bode L E,Langley T E,Butler B J.Performance characteristics of by-pass nozzles[J].Transactions of the ASAE,1979,22(5):1016-1022.
    [45]Giles D K.Energy conversion and distribution in pressure atomization[J].Transactions of the ASAE,1988 31(6):1668-1673.
    [46]曹建明,马志义.喷雾中液滴破裂机理的研究[J].车用发动机,1997,(4):11-14.
    [47]Miller P C H,and D J Hadfield.A simulation model of the spray drift from hydraulic nozzles[J].J.Agric.Eng.Res.,1989,42(2):135-147.
    [48]Yates W E,R E Cowden,and N B Akesson.Drop size spectra from nozzles in high-speed air-stream[J].Transactions of the ASAE,1985,26(2):405-410,414.
    [49]Zhu H,D L Reichard,R D Fox,R D Brazee,and H E Ozkan.Simulation of drift of discrete sizes of water droplets from field sprayers.Transactions of the ASAE,1994,37(5):1401-1407.
    [50]屠予钦.农药喷撒技术和喷撒质量与药效的关系[J].植物保护,1982,(2):43-44.
    [51]陈明.国外农药施用技术的若干进展[J].甘肃农业科技,1984,(4):15-16.
    [52]易齐.瑞士农药施用技术介绍[J].农药,1982,(4):52-54.
    [53]赵善欢.植物化学保护(三版)[M].中国农业出版社,2003.
    [54]Zhu H,D L Reichard,R D Fox,H E Ozkan,R D Brazee.DRIFTSIM:Aprogram to estimate drift distances of spray droplets[J].Applied Eng.in Agric.,1995,11(3):365-369.
    [55]May K R,R Clifford.The impaction of aerosol particles on cylinders,ribbons,and discs[J].Annals of Occupational Hygiene,1967,10(1):83-95.
    [56]Derken R.C,Jiang C.Automated detection of fluorescent spray deposits with a computer vision system[J].Transactions of the ASAE,1995,38(6):1647-1653.
    [57]史春建.植保机械雾化性能的图像检测方法研究[D].镇江江苏大学,2005.
    [58]Sudheera K P,Pandab R K.Digital image processing for determining drop sizes from irrigation spray nozzle[J].Agricultural Water Management,2000,(45):159-167。
    [59]Willert C E,Gharib M.Digital particle image velocimetry[J].Experiments Fluid,1991,10:181-193.
    [60]Prasad A K,Adrain R J.Stereoscopic particle image velocimetry applied to liquid flows[J].Experiments fluids,1993,15:49-60.
    [61]黄银娣.应用激光全息术对柴油雾化机理和喷雾特性的研究[J].南京林业大学学报,1997,21(4):21-25.
    [62]段树林.应用激光显微摄影对柴油机喷雾粒度分布的测量研究[J].大连铁道学院学报,1997,18(3):61-64.
    [63]许峰,齐国荣,周经纬,等.用高速摄影对比分析伞喷与HL喷雾特性[J].大连理工大学学报,1998,38(5):562-566.
    [64]王廷颋,张永明,廖光煊,等.数字粒子图像速度测量原理与实现方法[J].中国科学技术大学学报,2000,30(3):302-306.
    [65]王喜世,伍小平,廖光煊,等.基于数字粒子图像的细水雾全场速度测量[J].实验力学,2003,18(1):6-11.
    [66]P Meer,J Jolion,A Rosenfeld.A fast parallel algorithm for blind estimation of noise variance[J].IEEE Trans.Pattern Anal.Mach.Intelligence,1990,12(2):216-223
    [67]Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81:425-455
    [68]R.A.Redner,H F Walker.Mixture densities maximum likelihood and the EM algorithm[J].Society for Industrial and Applied Mathematics,1984,26(2):195-239
    [69]Olsen S I.Estimation of noise in images:an evaluation.CVGIP:Graphic Models and Image Processing,1993,55(4):319-323
    [70]A.P.Dempster,N.M.Laird,D.B.Rubin.Maximum likelihood from incomplete data via the EM algorithm[J].J.of the Royal Statistical Soc.,vol.39,no.1 pp.1-38,1977
    [71]黄晓峰,周子民,彭伟,等.图像处理在发动机喷嘴性能检测中的应用[J].计算机测量与控制,2006,14(7):861-863
    [72]刘巍然,葛宝臻,张晓辉,等.工业喷嘴喷雾角度测量系统的研究[J].中国粉体技术,2001,7(4):15-17
    [73]许伯彦,齐运亮.基于数字图像处理的LPG喷雾特性试验研究[J].内燃机学报,2007,25(1):60-65
    [74]汪懋华.“精确农业”发展与工程技术创新[J].农业工程学报,1999,15(1):1-8.
    [75]董美对,何勇,赵云飞.精确农业--21世纪的农业工程技术[J].浙江大学学报,2000,6(4):433-436.
    [76]王俊红,傅泽田,王秀,等.基于AT89C52单片机的变量喷雾控制器设计[J].微计算机信息,2006,22(8):8-10.
    [77]Alvin R W,Quy D B.Development of a variable flow rate fan spray nozzle for precision chemical application[R].Sancramento,California,USA:ASAE:Annual International Meeting,2001.
    [78]Ahmad S I,Bode L E,Buffer B J.A variable-rate pesticide spraying system[J].Transactions of the ASAE,1981,24(3):584-598.
    [79]刘忠.液压脉冲宽度调制技术的应用研究[J].机械与电子,2006,(4):38-40.
    [80]Giles D K,Henderson G W,Funk K.Digital control of flow rate and spray droplet size form agricultural nozzles for precision chemical application.In:Precision Agriculture,Proc.3# Int.Conference,Minneapolis,Minn.,Madison,Wis.:ASA/CSSA/SSSA,1996,729-738.
    [81]Tian L,Zheng J Q.Dynamic deposition pattern simulation of modulated spraying[J].Trans.of the ASAE,2000,43(1):5-10.
    [82]King B A,Wall R W.Distributed instrumentation for optimum control of variable speed electric pumping plants with center pivots.Trans.of the ASAE,2000,16(1):45-50.
    [83]刘忠,等.基于高速开关电磁阀技术的压力控制系统设计[J].液压与气动,2003,(3):13-15.
    [84]赵四海,吕兴军,方佳雨.磁流变阀脉宽调制(PWM)流量控制的研究[J].液压与气动,2005,(1):57-58.
    [85]Ahmad S I,Bode L E.Droplet size characteristics of by-pass nozzles.American Society of Agricultual Engineers Paper No.80,1058,1980.ASAE,St Joseph,MI.
    [86]Pitts M J,Hummed J W,Butler B J.Transient behavior of by-pass flow nozzles.Transactions of the ASAE,1986,29(3):718-722.
    [87]Hart Y J,Bode L E,Hummel J W.Controlling chemical application rate with by-pass nozzles[J].Transactions of the ASAE,1986,29(5):1221-1227.
    [88]王俊,祁力钧.SSM中可变量喷雾技术的现状和发展趋势[J].农机化研究,2005,(11):9-13.
    [89]Sudduth K A,S C Borgelt,J Hou.Performance of a chemical injection sprayer system[J].Applied Engineering in Agriculture,1995,11(3):343-348.
    [90]史岩,祁力钧,傅泽田.压力式变量喷雾系统建模与仿真[J].农业工程学报,2004,20(5):118-121.
    [91]E Franz,L F Bouse,J B Carlton,et al.Aerial spray deposit relations with plant-canopy and weather parameters[J].Transaction of the ASAE,1998,41(4):959-966.
    [92]C P Gupta,T X Duc.Deposition studies of a hand-held air-asisted electrostatic sprayer[J].Transaction of the ASAE,1996,39(5):1633-1639.
    [93]R Holownicki,G Doruchowski,A.Godyu,et al.Variation of spray deposit and loss with air-jet direction applied in orchards[J].Agric.Engng.Res.2000,(2)129-136.
    [94]M Salyani.Optimization of deposition efficiency for airblast sprayers[J].Transaction of the ASAE,2000,43(1):247-253.
    [95]Butler Ellis,M C,C R Tuck,and P C H Miller.The Effect of some adjuvants on sprays produced by agricultural flat fan nozzles[J].Crop Protection,1997,16(1):41-45.
    [96]Butler Ellis,M C,C R Tuck.How adjuvants influence spray formation with different hydraulic nozzles[J].Crop Protection,1999,18,101-109.
    [97]Khdair A I,Carpenter T G,Reichard D.L.Effects of air-jets on deposition of charged spray in plant canopies[J].Transactions of the ASAE,1994,37(5):1423-1427.
    [98]周浩生,等.组合电极双流体式静电喷雾技术[J].农业机械学报,1996,27(2):50-54.
    [99]任惠芳.感应充电气力式静电头研究[D].山西农业大学,2003.
    [100]傅泽田,祈力钧.风洞实验喷雾飘移试验[J].农业工程学报,1999,15(1):109-112.
    [101]祈力钧,傅泽田.风助式喷雾器雾滴在果树上的分布[J].农业工程学报,1998,14(3):135-139.
    [102]王新彦,曹正清,张红,等.基于二相流理论的喷雾器气液混合阀的研究[J].农业工程学报,1999,15(4):126-129.
    [103]祈力钧.影响农药施药效果的因素分析[J].中国农业大学学报,1998,2(3):80-84.
    [104]Lake J R,Marchart J A.The use of dimensional analysis in a study of drop retention on barley[J].Pestic.Sci.1983,14:638-644.
    [105]Miller P C H.Engineering aspects of spray drift control[J].Asp.Appl.Biol.1988,17:377-384.
    [106]程前.柴油机与LPG/柴油双燃料混合喷射发动机的特性对比研究[D].2003.
    [107]曹建明.喷雾学[M].机械工业出版社,2005.
    [108]曹建明.喷雾学研究的国际进展[J].长安大学学报(自然科学版),2005,25(1):82-87.
    [109]BSA flow software v2.11 users guide[M].Dantec Dynamics,2003.
    [1]王兆安,黄俊.电力电子技术[M].机械工业出版社,2000.
    [2]Product specification:PWM Solenoid/Valve Driver,DRV101[M].Texas Instruments Incorporated,2003.
    [3]Tayali N E,Bates C J.Particle sizing techniques in multiphase flows:A review[J].Flow Measurement Instruments,1990,1(1):77-105.
    [4]Sidahmed M M,Yates W E.Measuring spray droplets with PMS-FSSP probes[J].Trans.of ASAE,1997,40(5):1237-1242.
    [5]Dodge Lee G.Comparison of performance of droplet sizing instruments[J].Applied Optics,1987,26(7):1328-1341.
    [6]祝俊丽,俞晓梅,王良华.化工流场中的局部液体速度测量技术[J].河北化工,2005,(1):57-59.61.
    [7]L.E.Drain.激光多普勒技术[M].北京:清华大学出版社,1985.
    [8]张仁惠,乔信起,黄震.柴油机喷雾速度场的激光相位多普勒测试[J].现代车用动力,2002,(1):30-31,44.
    [9]何旭.基于喷雾撞壁的TR燃烧系统机理研究[D].大连理工大学,2005.
    [10]李彦,闫德中.三维激光颗粒动态分析仪在多相流测量中应注意的问题[J].实验技术与管理,2003,20(5):9-12,17.
    [11]Bachalo,W.D.Experimental methods in multiphase flow[J].Int.J.Multiphase Flow,1994,20(Suppl):261-295.
    [12]BSA flow software v2.11 users guide[M].Dantec Dynamics,2003.
    [13]中华人民共和国机械行业标准(JB),植保机械通用试验方法,JB/T 9782-1999.
    [14]王玫,李鳌,李志涛.运用高速动态分析系统研究喷雾雾化特性[J].火箭推进,2004,30(2):6-10.
    [15]张恒敢,杨四军,顾克军,等.应用数字图像处理获取小麦子粒外观特征参数的方法及其MATLAB实现[J].江苏农业科学,2005,(1):28-30.
    [1]常学义,孙秋冬,任煜,等.基于MATLAB的图像配准方法[J].上海第二工业大学学报,2006,23(4):303-308.
    [2]陈武凡.小波分析及其在图像处理中的应用[M].北京:科学出版社,2002.
    [3]陈海洋,田沛,黄华,等.基于引入反馈后的小波变换的图像融合[J].华北电力大学学报,2005,32(5):101-103.
    [4]罗军辉,冯平,哈力旦.MATLAB7.0在图像处理中的应用[M].北京:机械工业出版社,2005
    [5]陈木生,狄红卫.多聚集图像融合的最佳小波分解层研究[J].光电工程,2004,31(3):64-67.
    [6]覃征,鲍复民,李爱国,等.多传感器图像融合及其应用综述[J].微电子学与计算机,2004,21(2):1-5
    [7]A.P.Dempster,N.M.Laird,D.B.Rubin.Maximum likelihood from incomplete data via the EM algorithm[J].J.of the Royal Statistical Soc.,vol.39,no.1 pp.1-38,1977.
    [8]张士峰.混合正态分布参数极大似然估计的EM算法[J].飞行器测控学报,2004,23(4):47-52.
    [9]R.A.Redner,H.F.Walker.Mixture densities,maximum likelihood and the Emalgorithm.SIAM Review,1984,26(2):195-239.
    [10]L.A.Liporace.Maximum likelihood estimation for multivariate observations of markov sources[J].IEEE Trans.Information Theory,vol.IT-28,no.5,pp.729-734,Sept.
    [11]林哲民,康学雷,张立明.在小波或中进行图像噪声方差估计的EM方法[J].红外与毫米波学报,2001,20(3):199-202.
    [12]S.I.Olsen.Estimation of noise in images:an Evaluation[J].CVGIP:Graphical Models and Image Processing,1993,55(4):319-323
    [13]K.S.Shanmugan,A.M.Breipohl.Random signals:detection,estimation and data analysis[M].New York:John Wiley & Sons,1988
    [14]龙兴明,周静.基于EM算法的图像小波系数统计研究[J].计算机仿真,2005,22(6):71-74.
    [15]王国峰,张科,李言俊.基于小波多分辨率分析的图像融合方法[J].红外与激光工程,2003,32(5):513-515.
    [16]霍宏涛,游先祥.小波变换在遥感图像融合中的应用研究[J].中国图像图形学报,2003,8A(5):551-556.
    [17]陶观群,李大鹏,陆光华.基于小波变换的不同融合规则的图像融合研究[J].红外与激光工程,2003,32(2):173-176,202.
    [18]孙兆林.MATLAB6.x图像处理[M].北京:清华大学出版社,2002.
    [19]罗成汉,周小山.曲线拟合的MATLAB实现[J].现代电子技术,2003,(20):16-20.
    [20]庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,2002.
    [21]姚敏.数字图像处理[M].北京:机械工业出版社,2006.
    [22]张志涌,等.精通MATLAB6.5版[M].北京:北京航空航天大学出版社.2004
    [23]常青,张卡,张志杰.DDE与COM技术在组态软件开发中的应用[J].计算机应用,2004.(11):11-12
    [24]胡大斌,陈维克.基于组态王与MATLAB的监控软件实现[J].武汉理工大学学报(交通科学与工程版),2005,29(2):234-237
    [25]王颖,胡宗军,邹介棠.ActiveX:从Visual Basic 6.0调用MATLAB的实现方法[J].机电工程,1999,(5):172-174
    [26]张威.MATLAB外部接口编程[M].西安:西安电子科技大学出版社.2004
    [27]余斌,陈维克.基于组态软件RSView32与matlab的通信[J].微计算机信息,2005,21(4):42-43
    [28]石莹,洪悦,钱晓龙.MATLAB与组态软件的数据交换技术[J].仪器仪表学报,2003,24(4):337-340。
    [29]刘颖,唐世钢,于贵江,等.VC与Matlab接口在图像处理中的实现[J].哈尔滨理工大学学报,2003,8(6):51-53
    [30]李晓东,袁伟.VC++和MATLAB混合编程在图像处理中的应用研究[J].临沂师范学院学报,2004,26(6):105-108
    [31]刘明勇,王鑫,栾晓明.VC++与Matlab的混合编程方法及其应用[J].应用科技,2005,32(10):27-29
    [32]谢芳.VC与MATLAB数学库和图形库的混合编程应用[J].武汉工业学院学报,2005,24(1):38-39.
    [1]http://en.wikipedia.org/wiki/specific_energy http://www.gordonengland.co.uk/conversion/specific_energy.htm
    [2]Giles D K.Energy conversion and distribution in pressure atomization[J].Transactions of the ASAE,1988,31(6):1668-1673.
    [3]Giles D K,E Ben-Salem.Spray droplet velocity and energy in intermittent flow from hydraulic nozzles[J].J.Agric.Eng.Research 51(2):101-102.
    [4]Bailey,A.D.Drop parameters.In:Electrostatic spraying of liquids.Taunton,Somerset.Research Studies Press,1988,pp.91-130.
    [5]Frankel H.Pesticide application:technique and efficiency.In:Advisory work in crop pest and disease management 1986.Berlin:Springer-Verlag,pp.132-160.
    [6]Sidahmed M.M.Analytical comparison of force and energy balance nethods for characterizing sprays from hydraulic nozzles[J].Transactions of the ASAE,41(3):531-536.
    [7]杨学军,严荷荣,徐赛章,等.植保机械的研究现状及发展趋势[J].农业机械学报,2002,33(6):129-137.
    [8]Panneton B,R Theriault,B Lacasse.Efficacy evaluation of a new spray-recovery sprayer for orchards[J].Transactions of ASAE,2002,44(3):473-479.
    [9]何雄奎.改变我国植保机械和施药技术严重落后的现状[J].农业工程学报,2004,20(1):13-15.
    [10]屠予钦.农药喷撒技术和喷撒质量与药效的关系[J].植物保护,1982,(2):43-44.
    [11]Zhu H,D L Reichard,R D Fox,R D Brazee,and H E Ozkan.Simulation of drift of discrete si(?)of water droplets from field sprayers[J].Trans.of ASAE,1994,37(5):1401-1407.
    [12]Walklate P J,P C H Miller.Drift classification of boom sprayers based on single(?)le measurements in a wind tunnel[J].Aspects of Applied Biology--Pesticide Application,200(?)7:49-56.
    [13]朱学军,吕芹,叶世银.旋流压力式喷嘴低压喷淋液滴粒径的实验研究[J].化学工业与工(?)技术,2006,27(6):1-3.
    [14]刘乃玲,张旭.压力式螺旋式喷嘴雾化特性实验研究[J].热能动力工程,2006,21(5):505-50(?)
    [15]曹建明.喷雾学[M].北京机械工业出版社,2005.
    [1]Schueller J K.A review and integrating analysis of spatially-variable control of crop production[J].Fertilizer Research,1992,33:1-34.
    [2]Naiqian Zhang,Maohua Wang,Ning Wang.Precision agriculture--a worldwide overview[J].Computers and electronics in agriculture,2002,36:113-132.
    [3]Paice M E R.,P.C.H.Miller,W Day.Control requirements for spatially selective herbicide sprayers[J].Computers & Electronics in Agriculture,1996,14(2/3):163-177.
    [4]Rockwell A D,Ayers P D.A variable rate,direct nozzle injection field sprayer[J].Applied Engineering in Agriculture,1996,12(5):531-538.
    [5]Koo Y M,Sumner H R.Total flow control for a direct injection sprayer[J].Applied Engineering in Agriculture,1998,14(4):363-367.
    [6]Ghate S R,Perry C D.Ground speed control of pesticide application rates in a compressed air direction injection sprayer.Transactions of the ASAE,1994,37(1):33-38.
    [7]Unavut J K,Schueller J K,Mason P A C.Continuous control of a sprayer pinch valve[J].Trans of the ASAE,2000,43(4):829-837.
    [8]范明豪,周华,杨华勇.高压细水雾灭火喷嘴的雾化特性研究[J].机械工程学报,2002,38(9):17-21.
    [9]Ahmad s I;Bode L E;Butler B J.A variable-rate pesticide spraying system[J].Transactions of the ASAE,1981,24(3):584-598.
    [10]于海龙,刘建忠,范晓伟,等.喷嘴结构对水煤浆喷嘴雾化性能影响的试验研究[J].中国电机工程学报,2006,26,(14):80-85.
    [11]Giles D K.Energy conversion and distribution in pressure atomization[J].Transactions of the ASAE,31(6):1668-1673.
    [12]Sadahmed M M.A transport model for near nozzle fan nozzle[J].Transactions of the ASAE,1997,40(3):547-554.
    [13]Sidahmed,M.M.A transport model for near nozzle fan sprays.Transactions of the ASAE,1997,40(3):547-554.
    [14]脱云飞,杨路华,柴春岭,等.喷头射程理论公式与试验研究[J].农业工程学报,2006,22(1):23-26.
    [15]Sidahmed,M.M.Drop-size/velocity correlations at formation of sprays from fan nozzles.Transactions of the ASAE,1999,42(6):1557-1564

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700