用户名: 密码: 验证码:
农药雾滴雾化与在玉米植株上的沉积特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米已是我国第一大粮食作物,但在防治玉米螟、玉米粘虫等虫害时施药方法不规范,极易发生农药过量使用,药液流失、环境污染等负面问题。由此本文针对如何提高农药在玉米植株上农药有效利用率问题,通过借鉴国内外研究理论对药液雾化过程及雾滴在玉米植株上的沉积行为进行探究,主要结论如下:
     首先通过分析室内试验数据,以错分样本个数最小为目标,得到判断雾滴粘附-破碎临界点的数学函数,此数学函数以速度为自变量,雾滴粒径大小为因变量确定分割曲线。结合动能定律,建立雾滴粘附-破碎能量模型。
     其次通过研究农药雾滴雾化特性及雾滴分布特性探究如何提高表药雾滴在玉米植株上的沉积率,结果显示:乳油溶液使液力式喷头液膜显著减小,边缘破碎加剧,穿孔破碎明显增加,雾滴粒径显著增大,而水分散粒剂溶液与水溶液的雾化过程相似。助剂浓度增大,液膜区长度先减小后增大,雾滴粒径先增加后减小,雾化区发生不同程度的形态变化。助剂对于水分散性粒剂溶液的影响程度更为显著。乳油溶液与助剂可以使射流喷头产生液包气结构的雾滴。喷杆喷雾条件下雾滴体积中径呈现波浪型分布,峰高出现在测试区域的中心。雾滴运动角度分为三类:>90°,=90°,<90°。与水平放置靶标相比,50。靶标放置沉积量减少三分之一。靶标50°放置时测试点之间的沉积量差异显著(P<0.05)。表明靶标角度是雾滴分布特性引起药液沉积分布差异性明显的主要诱导因素。高速摄影研究发现模拟靶标的表面性质、放置角度、雾滴分布特性及其运动轨迹对雾滴沉积状态相互影响雾滴沉积行为。
     然后利用扫描电镜研究影响雾滴沉积行为的玉米叶片及叶鞘表面的微观结构,发现玉米叶片正反面具有相似的结构单元。叶片背面无针织状条带,无钩毛,气孔带间距较小,气孔密度较大。玉米叶鞘由钩毛带与气孔带组成,钩毛带约占叶鞘表皮面积的二分之一。与叶片相比,气孔密度较小,钩毛较长,数量较大。实验结果为研究雾滴在玉米叶片上沉积特性提供一定理论基础。
     最后根据上述试验得出的科学结论,研究雾滴在玉米叶片上的沉积特性,并于生产实际过程中找到提高农药有效利用的有效途径。
     室内高速摄影技术研究玉米叶片上雾滴沉积特性,通过分析高速摄影拍摄视频,发现ST系列喷头产生雾滴易于粘附于玉米叶片表面;玉米叶片的不同部位、雾滴的运动方向对雾滴的沉积状态均有显著影响。经数据统计得到不同运动轨迹雾滴撞击水平放置于50°放置玉米叶片上雾滴粘附-破碎临界临界能量模型,此模型可准确计算雾滴在玉米叶片上粘附-破碎的临界能量范围。通过对各影响因素进行比较,发现无论喷施药液中是否添加助剂、无论雾滴撞击靶标的角度如何,雾滴所具有的能量越高,越容易破碎;雾滴粘附-破碎的临界能量值并不是单一数值,而是存在一定范围:加助剂后,雾滴易于破碎与玉米叶片表面;雾滴运动轨迹及靶标角度对同一雾滴沉积行为的影响取决于其雾滴大小及速度。
     室内试验发现助剂加快雾滴铺展,但其铺展速率取决于靶标性质。无论药液中是否添加助剂,靶标的放置角度、喷头类型对沉积率、雾滴覆盖率均有显著的影响。喷头流量增加,靶标和水平面之间夹角增大,药液沉积率降低。助剂可降低叶片表面的药液沉积率。综合药液有效成分含量比较,得出小容量小粒径喷雾过程不仅有利于玉米叶片上药液有效沉积,而且利于农药有效成分在玉米叶片的有效沉积。这与雾滴沉积特性所得结论一致。
     田间试验药液沉积率表明:大容量喷雾后上中下层叶片中部药液沉积率与低于小容量喷务;上层叶片沉积率大于中下层。叶片中部药液沉积率大于叶片基部与叶鞘。对于叶片中部,药液沉积率小粒径喷头药液沉积率大都高于大粒径喷头。对于叶片基部及叶鞘,未添加助剂时,药液沉积率并未呈现小粒径喷头药液沉积率低于或者高于大粒径喷头的规律;添加助剂后,药液沉积率小粒径喷头药液沉积率大都低于大粒径喷头。助剂有助于提高叶片基部及叶鞘表面药液沉积率,降低叶片表面农药有效沉积。
     为确定玉米冠层中农药有效沉积及有效利用途径,实验对玉米叶片中氯虫苯甲酰胺有效成分的含量进行测试。结果表明农药有效成分含量与玉米植株的高度成正比。无论是否添加助剂,ST110-02喷头的农药有效成分含量高于其他喷头,且添加助剂后高于未添加助剂组。综合室内与田间试验得出,叶片最终有效成分含量不仅与小容量喷雾过程中药液流失较少有关外,与喷施药液中农药有效成分含量有密切关系;虽然助剂降低叶片表面药液沉积率,但在玉米冠层中可通过增加叶片基部及叶鞘表面药液沉积率增加药液在玉米植株内含量。最终确定小容量喷雾、小粒径喷雾及药液中添加助剂更有利于氯虫苯甲酰胺在玉米冠层中有效利用。
Corn is China's first large crops, but its applications are not standardized for prevention and control of corn borer, corn armyworms and other pests, so it is easy to bring chemica loss, excessive pesticide residues, environmental pollution and other negative issues. Thus this paper, focused on how to improve the effective utilization of pesticide in corn, explored spray atomization process and deposition behavior of droplet on corn by learning from existing research.The main conclusions are as follows:
     Firstly, mathematical model of droplet adhesion-broken critical point with minimum wrong number of samples was presented by analyzing a large number of laboratory test data. Combination of kinetic laws, droplet adhesion-broken energy model was built
     Secondly, atomization characteristics of pesticide and droplets distribution properties were studied to search theory basis for improvement of effective pesticide utilization. The results showed that missible oil solution could make the length of spray film reduced significantly, the edge of spray film broken aggravated, the number of perforation broken increased obviously and the droplets size enlarged significantly compared with tap water and water dispersible granule solution. With the increase of adjuvant concentration, the length of spray film area were all decreased first and then increased; the structure of atomization sheet occurred morphological changes to varying degrees; the droplet size were all increased first and then decreased. Adjuvant had more effect on atomization progress of water dispersible granule solution. Missible oil and adjuvant solution allowed air induction nozzle to produce liquid droplets entertaining gas. The diameters of droplet changed wavily along with boom sprayer, and peak appeared in the center of the test area for ST and IDK serie nozzles. The impact angle between droplets and the target fell into three types:<90°,=90°,>90°. Compared with horizontal target, the deposition of50°target was decreased by one third that was determined by movement of droplet. By variance analysis, it was found that when the target was placed at an angle of50°, the deposition amounts changed significantly between the seven test points. Thus it indicated that the target angle was main induction factor for droplet distribution characteristics causing distinct differences on liquid deposition. The study with high-speed camera found that droplet deposition state significantly affected by simulation target surface properties, placement angle, and movement direction of droplet.
     Thirdly, microscopic surface structure of maize leaves and leaf sheaths affecting droplet deposition behavior was studied by scanning electron microscopy. It was found that the corn leaves sides have similar structural units. The back of the blade had no knitting bands and hook hair, and the space of stomata bands was smaller, the stomatal density was larger. The structure of corn leaf sheath was composed of epidermal hook hair bands and stomata bands. Compared with leaves, it had smaller stomatal density, and longer hook hair with larger number. The results supplied a certain theoretic basis for droplet deposition behavior.
     Finally, according to the above scientific conclusion from experimental study, the verification of correctness for above theory in production process was performed to find an effective way to improve effective pesticide utilization of actual production.
     By laboratory test to study the factors affecting droplet deposition behavior deposited on corn leaves, the result displayed that nozzle type, different parts of the corn leaves and the movement direction of the droplet significantly affected the state of droplet deposition. After statistical analysis, droplet adhesion-broken critical curves were got for different trajectories droplet impacting with corn leaves horizontally and50°degree placed. According to droplet adheres-broken critical energy model, the droplet adheres-broken critical energy range on the corn leaf were could accurately displayed. After analysis for all factor affecting droplet deposition,it was found that droplet with higher energy was more easily broken regardless of whether adding spray additives and angle of target; critical energy value of droplet adhesion-broken was not a single value, but possessing certain range. Critical energy range of the same droplet affected by ajuvant, droplet trajectory and target angle depended on its droplet size and speed.
     Adjuvant could speed up the rate of pesticide spread on maize leaves and leaf sheathes, but the rate ultimately depended on the properties of target. The angle of targets placed, nozzle types had significant effect on the deposition rate and droplet coverage. For the same serie nozzles, the bigger the nozzle type was, the lower the deposition rate was; the bigger the angle of targets placed was, the lower the deposition rate was. After adding assistant reagent, the deposition quantity reduced significantly on the horizontal surface of the leaves, and the droplet coverage mostly increased in a certain degree on the surface of the leaves, while on the surface of the leaf sheath was just the opposite. Integrated comparison of liquid deposition rate, spray process with small flow rate and small particle size was not only conducive to the effective deposition of pesticide on corn leaves, and conducive to effective deposition of pesticide active ingredients on the leaves. This was consistent with conclusion from drolet deposition behavior.
     After field trials, deposition rate and droplets coverage varied with the size of the droplets and the flow of nozzles, and the overall trend of deposition was:the bigger the nozzle type was, the lower the deposition rate was; the deposition rate decreased from the upper layers to to lower layers; the deposition rate was bigger on the central region of the leaves than on the base regions of leaf, than on the leaf sheathes; adjuvant could significantly decrease deposition rate on the central region of the leaves and increase deposition rate on the base regions of leaf and leaf sheathes, the increment was proportion to the flow rate of nozzle and the droplet size. Small flow rate with small dropletsize spray should be applied for improvement of the pesticide deposit and total effective deposition of pesticide active ingredients on the central part of leaves; small flow rate with big droplet size spray should be applied for improvement of the pesticide deposit and total effective deposition of pesticide active ingredients on base regions of leaf and sheath.
     In order to determine the acess of effective pesticide depositon and utilization, active ingredient content of chlorantraniliprole in corn leaves was tested, and the results revealed that active ingredient content of pesticide was proportional to the height of corn plant. Whether adding adjuvant, active ingredient content of pesticide sprayed by ST110-02nozzle was more than other nozzles. And it was also higher than that without additives groups. In conclusion, final active ingredient content of leaves was not only related to liquid loss of small spray, but also to closely related to the concentration of pesticide active ingredient of spray liquid; adjvant decreased deposition rate of on the central part of leaves, but active ingredient content of leaves could be improved by increasement of deposition rate on on base regions of leaf and sheath. Thus spray with a small capacity and smaller droplet was the effective access for pesticide utility.
引文
[1]高希武.我国害虫化学防治现状与发展策略.植物保护,2010,36(4):19-22
    [2]高焕文,问盈,李洪文.我国农业机械化的跨世纪展望.农业工程学报,2000,16(2):9-12
    [3]李煊,何雄奎,曾爱军等.农药施用过程对施药者体表农药沉积污染的研究.农业环境科学学报,2005,24(5):957-961
    [4]Elliot. J. G. et al..The influence of weather on the efficiency and safety of pesticide application. BCPC Publications, Croydon,1983, P98-109
    [5]郑加强,周宏平等.21世纪精确农药使用方法展望.21世纪植物保护发展战略研讨会.北京:科学技术出版社,2001,415-419
    [6]祁力钧,傅泽田,史岩.化学农药施用技术与粮食安全.农业工程学报,2002,18(6):203-206
    [7]陆永平.植保机械技术现状与发展趋势.湖南农机,2001,5:9-11
    [8]Combellack J H. Herbicide application:a review of ground application techniques. Crop Protection,1984,3(1):9-34
    [9]Cross J V, Berrie A M, Murray R A. Effect of drop size and spray volume on deposits and efficacy of strawberry spraying Pesticide application. Aspects of Applied Biology,2000,57:313-320
    [10]Cunningham G P, Harden J. Reducing spray volumes applied to mature citrus trees. Crop Protection,1998,17(4):289-292
    [11]Gohlich H. Assessment of spray drift in sloping vineyards. Crop Protection,1983,2(1):37-49
    [12]Knoche M. Effect of droplet size and carrier volume on performance of foliage-applied herbicides. Crop Protection,1994,13(3):163-178
    [13]Miller D R, Stoughton T E. Atmospheric stability effects on pesticide drift from an irrigated orchard. Transactions of the ASAE,2000,43(5):1057-1066
    [14]Murphy S D.The effect of boom section and nozzle configuration on the risk of spray drift. J. agric. Engng Res,2000,75:127-137
    [15]Tucker T A. Absorption and translocation of 14 CImazapyr and 14 C-glyphosate in alligator weed (Alternanthera philoxeroides). Weed Technology,1994,8:32-36
    [16]Young B W. Studies on theretention and deposite characteristics of pesticide sprays on foliage. Proc.9th CIGR congress, East Lansing, MT,1979
    [17]袁会珠,何雄奎.手动喷雾器摆动喷施除草剂药剂分布均匀性探讨.植物保护,1998,3:18-22
    [18]钱玉琴.国内外农业施药技术研究进展.福建农机,2006,(3):26-29
    [19]Carolien Zijlstra,var Lund. Combining novel monitoring tools and precision application technologies for integrated high-tech crop protection in the future (a discussion document).Pest Management Science,2011,616-625
    [20]Franklin C A, Worgan J P, Lewis R. Residential Post-Application Pesticide Exposure Monitoring.2005
    [21]Legnik M, Pintar C, Lobnik A et al. Comparison of the effectiveness of standard and drift-reducing nozzles for control of some pests of apple. Crop Protection,2005,24:93-100
    [22]Maski D, Divaker D. Effects of charging voltage, application speed, target height and orientation upon charged spray deposition on leaf abaxial and adaxial surfaces. Crop Protection,2010, 29:134-141
    [23]Gaunt L F, Hughes J F, Harrison N M. Electrostatic deposition of charged insecticide sprays on electrically isolated insects. Journal of Electrostatics,2003,57:35-47
    [24]宋坚利.“Π”循环喷雾机及其药液循环利用与飘失的研究[D].北京:中国农业大学,2007.
    [25]徐汉红.植物化学保护学.北京:中国农业出版社,2007
    [26]邵振润,赵清.更新药械改进技术努力提高农药利用率.中国植保导刊,2004,24(1):36-37
    [27]夏敬源.公共植保、绿色植保的发展与展望.中国植保导,2010,30(1):5-9
    [28]ASABE (American Society of Agricultural & Biological Engineers) Standard 572
    [29]杨希娃.农药雾滴在典型作物上的沉积特性研究[D].北京:中国农业大学,2012.
    [30]曾爱军,何雄奎,陈青云等.典型液力喷头在风洞环境中的漂移特性试验与评价农业工程学报,2005,21(10):78-81
    [31]屠予钦.《农药使用技术图解》.化学工业出版社,2001
    [32]何雄奎,吴罗罗,李秉礼.喷雾机液力搅拌理论与运用研究.耕作机械学会论文集,1996,120-124
    [33]摩泽尔.《植保机械化》农业部教育局外籍学者讲学材料.1982
    [34]陈宗懋等.《瑞士的农药施用技术》.世界农业出版社
    [35]顾宝根,姜辉.我国生物农药的现状及问题微生物农药及产业化.北京:科学出版社,2000,11:13-20
    [36]Wolf R E. Strategies to reduce spray drift.2004,05-21
    [37]Combellack J.H., Western N.M., Richardson R.G..A comparison of the drift potential of a novel twin fluid nozzle with conventional low volume flat fan nozzles when using a range of adjuvants. Crop Protection,1996,15(2):147-152
    [38]Miller P C H, Merritt C R, Kempson A. A twin-fluid nozzle spraying system:A review of research concerned with spray characteristics, retention and drift. Proceedings, Crop Protection,1990, 243-250
    [39]John C. W, Paul E. J, Annemiek MC S et al. Sprayer type and water volume influence pesticide deposition and control of insect pests and diseases in juice grapes. Crop Protection,2010,29: 378-385
    [40]Frank R, Ripley BD. Comparative spray drift studies of aerial and ground applications 1983-1985. Environ. Monit. Assess,1994,29:167-181.
    [41]D. Nuyttens M. De Schampheleire, Dekeyser D. et al. Deposition of spray drift behind border structures. Crop Protection,2009,28:1061-1075
    [42]Jianzhong Lin, Lijuan Qian, Hongbin Xiong. Effects of operating conditions on droplet deposition onto surface of atomization impinging spray. Tat Leung Chan Surface & Coatings Technology,2009,203:1733-1740
    [43]朱金文,李洁,吴志毅等.有机硅喷雾助剂对草甘膦在空心莲子草上的沉积和生物活性的影响.农药学学报,2011,13(2):192-196
    [44]石伶俐,陈福良,郑斐能等.喷雾助剂对三唑磷在水稻叶片上沉积量的影响.中国农业科学,2009,42(12):4228-4233
    [45]Sybrand A. van Zyl, Jan-Cor Brink, Frikkie J. Calitz, Paul H. Fourie. Effects of adjuvants on deposition efficiency of fenhex amid sprays applied to Chardonnay grapevine foliage. Crop Protection, 2010,29:843-852
    [46]Gary Dorr, Jim Hanan, Nicholas Woods, et al. Combining Spray Drift and Plant Architecture Modelling. Poster Articles,297-301
    [47]赵辉.喷液表面张力及气象因子对雾滴沉积的影响[D].北京:中国农业大学,2009.
    [48]Butler Ellis M C, Tuck C R, Miller P C H. The effect of some adjuvants on sprays produced by agricultural flat fan nozzles.Crop Protection,1997, 1(16):41-50
    [49]Lin J Z, QianL J, Xiong H B.2009. Relationship between deposition properties and operating parameters for droplet onto surface in the atomization impinging spray.Powder Technology,191, 340-348.
    [50]Deng W, Meng Z J, Chen L P et al. Measurement Methods of Spray Droplet Size and Velocity. Journal of Agricultural Mechanization Research,2011,26-30.
    [51]Nuyttensa D, Baetensb K, Schampheleirec M. D et al..Research Paper:PM-Power and Machinery Effect of nozzle type, size and pressure on spray droplet characteristics. BIOSYSTEMS ENGINEERING,2007,97:333-345
    [52]Miller P C H, Butler E M C, Tuck C R. Entrained air and droplet velocities produced by agricultural flat fan nozzle. Atomization and Sprays,1996,6:693-707
    [53]Lu X L, He X K, Song J L et al. Analysis of spray process produced by agriculture flatfannozzles.Transactions of the CSAE,2007,1:95-100
    [54]Song J L, Liu Y J, Z J et al.Drift mechanism of flat fan nozzle.Transactions of the Chinese Society of Agricultural Machinery,2011,42:63-69
    [55]Zhang J, SongJ L, HeXK et al.Droplets Movement Characteristics in Atomization Process of Flat Fan Nozzle. Transactions of the Chinese Society of Agricultural Machinery,2011,42:66-70
    [56]谢晨,宋坚利,何雄奎等.两类扇形雾喷头雾化过程比较研究.农业工程学报,2013,29(5):25-30
    [57]Hermansky C G, Krause G F. Relevant physical property measurements for adjuvants. In: Proceedings of 4th International Symposium on Adjuvants for Agrochemicals (ISAA 1995), Melbourne, Australia,1995, pp.20-26.
    [58]Hazen J L. Spray drift experiments with ADSEE ethyl hydroxyethyl cellulose as a tank mix adjuvant part one:viscosity and atomization. In:Proceedings of 7th International Symposium on Adjuvants for Agrochemicals (IS A A 2004), Cape Town, South Africa,2004, pp.105-114.
    [59]Reichard D L, Zhu H, Downer R A et al. A system to evaluate shear effects on spray drift retardant performance. Trans. ASAE,1993,36:1993-1999.
    [60]Downer R A, Wolf T M, Chapple A C et al. Characterizing the impact of drift management adjuvants on the dose transfer process. In:Proceedings of 4th International Symposium on Adjuvants for Agrochemicals (ISAA 1995). Melbourne, Australia,1995, pp.138-143.
    [61]Zhu H, Dexter R. W, Fox R D et al. Effects of polymer composition and viscosity on droplet size of recirculated spray solutions. J. Agric. Engineering Res.1997,67:35-45.
    [62]Qin K, Tank H, Wilson S et al. Controlling droplet size distribution using oil emulsions in agricultural sprays. Atomization Spray,2010,20:227-239
    [63]De Ruiter H, Holterman H. J, Kempenaar C. et al. Influence of Adjuvants and Formulations on the Emission of Pesticides to the Atmosphere. In:A Literature Study for the Dutch Research Programme Pesticides and the Environment (DWK) Theme C-2. Plant Research International B.V., Wageningen.2003, Report 59.
    [64]Miller P C H, Butler Ellis M C. Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers.Crop Protection,2000,19(8-10):609-615
    [65]Butler Ellis M C, Tuck C R. How adjuvants influence spray formation with different hydraulic nozzles.Crop Protection,1999,18:101-109
    [66]Hewitt A J. The effects of tank mix and adjuvants on spray drift. In:Proceedings of 5th International Symposium on Adjuvants for Agrochemicals (ISAA 1998), Memphis, Tennessee,1998, pp. 451-462.
    [67]Butler Ellis M. C, Tuck C. R, Miller P C H. How surface tension of surfactant solutions influences the characteristics of sprays produced by hydraulic nozzles used for pesticide application. Colloid SurfA,2001,180:267-276
    [68]CropLife International. Catalogue of Pesticide Formulation Types and Inter-national Coding System.sixthed. In:Technical Monograph n2. Brussels:2008
    [69]Butler Ellis MC, Tuck CR, Miller PCH. Dilute emulsions and their effect on the breakup of the liquid sheet produced by flat-fan nozzles. Atomization Spray,1999,9:385-397.
    [70]Dexter R W. The effect offluid properties on the spray quality from a flat fan nozzle. In: Pesticide Formulations and Application Systems. ASTM STP 1400,2001,20:pp.27-43
    [71]Hilz E, Vermeer AVP. Effect of formulation on spray drift:a case study for commercial imidacloprid products. Asp. Appl. Biol.,2012,114:445-450.
    [72]Downer R A, Hall F R, Thompson R S. Temperature effects on atomization by flat-fan nozzles: implications for drift management and evidence for surfactant concentration gradients. Atomization Spray,1998,8:241-254.
    [73]Stainier C, Destain M F, Schiffers B et al. Droplet size spectra and drift effect of two phenmedipham formulations and four adjuvants mixtures. Crop Prot,2006,25:1238-1243.
    [74]Franz E, Bouse L F, Carlton J B, et al. Aerial spray deposition relations with plant canopy and weather parameters. T. ASAE,1998,41(4):959-966.
    [75]Bache D H. Agric Meteorol.1975,15:379-384
    [76]商庆清,张沂泉.雾滴在树冠中的沉积和穿透研究.南京林业大学学报(自然科学版).2004,28(5):45-48
    [77]宋淑然.水稻田农药喷雾上层植株截留影响的实验研究.农业工程学报,2003,19(6):114-117
    [78]谢晨.农药雾滴雾化及在棉花叶片上的沉积特性研究[D].北京:中国农业大学,2013.
    [79]朱金文,吴慧明,孙立峰等.叶片倾角/雾滴大小与施药液量对毒死蜱在水稻植株沉积的影响.植物保护学报,2004,31(03):259-262
    [80]Duncanny A Webb, Peter J Holloway, et al. Effects of some surfactants on foliar impaction an retention of monoxide water droplets, Pestic Scil.1999,55:319-389
    [81]Wolfgang Wirth. Mechanisms controlling leaf retention of agriculture spray solution. Pesticide Science.1991,33:411-420
    [82]Anderson N H D J, Hall D. Seaman. Spray retention:effects of surfactants and plant species. Aspects Appl. Biol.,1987,14:233-243
    [83]Hans D R, Ander J M, Influence of surfactants and plant species on leaf retention of spray solution. Weed Science,1990,38:567-572
    [84]Eastoe J, Daltion J S. Dynamic surface tension and adsorption mechanisms of surfactants at air-water interface. Advance in Colloid and Interfaces Science,2000,85:103-144
    [85]Jeffree C E. Structure and ontogeny of plant cuticles, in plant cuticle, an integrated functional approach. Environmental Plant Biology Series. BIOS Scientific Publishes Ltd, Oxford,1996,33-82
    [86]杨晓东,尚广瑞,李雨田等.植物叶表的润湿性能与其表面微观形貌的关系.东北师大学报(自然科学版),2006,38(3):55-61
    [87]许小龙,徐广春,徐德进等.植物表面特性与农药雾滴行为关系的研究进展.江苏农业学报,2011,27(1):214-218
    [88]屠豫钦,高洪荣,林志明.水稻田农药使用技术研究:雾滴在水稻叶片的沉积特性-叶尖优势.植物保护学报,1984,11(3):189-198.
    [89]石辉,王会霞,李秧秧.植物叶表面的润湿性及其生态学意义.生态学报,2011,31(15):4287-4298
    [90]Wetanabe T, Yamaguchi L. Studies on wetting phenomena on plant leaf surfaces 3:A retention model for droplets on solid surfaces. Pestic Sci.1992,24:273-279
    [91]Stecens P J G, Kimberley M O. Adhesion of droplets to foliage:The role of dynamic surface tension and advantages of organ silicone surfactants. Pestic Sci.1993,38:237-245
    [92]韩志武,邱兆美,王淑杰.植物表面非光滑形态与润湿性的关系.吉林大学学报(工学版),2008,38(1):42-48
    [93]陈雪华,邓穗生.番荔枝属不同品种叶表面微形态的电镜观察.电子显微学报,2006, 25(2):162-166
    [94]孙同兴,陈新芳,杨秉耀等.中国番荔枝科8属植物叶的扫描电镜观察.电子显微学报,2002,21(2):146-151
    [95]王淑杰,任露泉,韩志武等.典型植物叶表面非光滑形态的疏水防黏效应.农业工程学报,2005,21(9):16-19
    [96]张文绪,赵云云.水稻叶鞘表面的扫描电镜.中国农业大学学报,1996,1(3):59-63
    [97]YU Y, ZHU H, FRANTZ J M et al.. Evaporation and coverage area of pesticide droplets on hairy and waxy leaves, Biosystems Engineering,2009,104:324-334
    [98]刘勇,陈巨莲,程登发.不同小麦品种(系)叶片表面蜡质对两种麦蚜取食的影响.应用生态学报,2007,18(8):1785-1788
    [99]WEN M, AU J, FRANKA G. Very-long-chain secondary alcohols and alkanediols in cuticular waxes of Pisum sativum leaves. Phytochemistry,2006,67:2494-2502
    [100]MATTHEW A J, PATRICK J B, DAVID R, et al. Leaf sheath cuticuar waxes on bloomless and sparse-bloom mutants of Sorghum bicolor. Phytochemistry,2000,54:577-584
    [101]王波.水稻叶片上农药雾滴沉积可视化研究与试验分析[D].北京:中国农业大学,2012.
    [102]Brewer C A, Smith W K. Influence of simulated dewfall on photosynthesis and yield in soybean isolines with different trichome densities. International Journal of Plant Science,1994,155(4): 460-466
    [103]Neinhuis C, Barthlott W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals of Botany,1997,79(6):667-677
    [104]Holder C D. Leaf water repellency of species in USA and its significance to forest hydrology studies. Journal of Hydrology,2007,336(1/2):147-154
    [105]Pandey S, Nagar P K. Patterns of leaf surface wetness in some important medicinal and aromatic plants of Western Himalaya. Flora,2003,198(5):349-357
    [106]Hall D M, Burke W. Wettabilith of leaves of a selection of New Zealand plants. New Zealand Journal of Botany,1974,12:283-298
    [107]Brewer C A, Nunez C I. Patterns of leaf wettability along an extreme moisture gradient in western Patagonia, Argentina. International Journal of Plant Sciences,2007,168(5):555-562
    [108]Wang H X, Shi H, Li Y Y. Leaf surface wettability of major plant species for urban greening in Xi'an and related affecting factors. Chinese Journal of Ecology,2010,29(4):630-636.
    [109]Juniper B E, Jdffree C E. Plant Surfaces. London:Edward Arnold,1983
    [110]Neinhuis C, Barthlott W. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytologist,1998,138(1):91-98
    [111]Wang H X, Shi H, Li Y Y. Relationships between leaf surface characteristics and dust-capability of urban greening plant species. Chinese Journal of Applied Ecology,2010,21(12): 3077-3082
    [112]Elagoz V, Han S S, Manning W J. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans indicate phenotypic plasticity. Environmental Pollution,2006,140(3):395-405
    [113]Cape J N, Paterson I S, Wolfenden J. Regional variation in surface properties of Norway spruce and scots pine needles in relation to forest decline. Environmental Pollution,1989,58(4): 325-342
    [114]Kumear N, Pandey S, Bhattacharya A et al. Do leaf surface characteristics affect Agrobacterium infection in tea. Journal of Biosciences,2004,29(3):309-317
    [115]Koch K, Hartmann K D, Schreiber Let al. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environmental and Experimental Botany,2006,56(1):1-9
    [116]Li J J, Huang J H, Xie S C. Plant wax and its response to environmental conditions:an overview. Acta Ecologica Sinica,2011,31(2):565-574
    [117]Barthlott W, Neinhuis C, Cutler D. Classification and terminology of plant epicutiicular waxes. Botanical Journal of the Linnean Society,1998,126(3):237-260.
    [118]李燕.液滴撞击加热固体平壁变形过程的数值模拟[D].大连:大连理工大学,2008
    [119]WorthinGton A.On the forms assumed by drops of liquids falling vertieally on a horizontal Plate. ProeRsoe London,1876,25:261-271
    [120]WorthinGton A.A second paver on the forms assumed by drops of liquids falling vertieally on a horizontal Plate. ProeRSoe London,1877,25:498-503
    [121]成晓北,黄荣华,邓元望等.柴油机喷雾撞壁的研究.车用发动机,2001,136(6):1-7
    [122]汪淼,王建昕,沈义涛等.汽油喷雾碰壁和油膜形成的可视化试验与数值模拟.车用发动机,2006,166(6):24-28
    [123]Lee SH, Ryou HS. Development of a new spray/wall interaction model. International Journal of Multiphase Flow,2000,26(7):1209-1234
    [124]Mundo C, Tropea M. Sommerfeld C. Droplet-wall collisions:Experimental studies of the deformation and breakup process. International Journal of Multiphase Flow,1995,21(2):151-173
    [125]Andreassi L, S. Ubertini L. Allocca.Experimental and numerical analysis of high pressure diesel spray-wall interaction. International Journal of Multiphase Flow,2007,33(7):742-765
    [126]Egermann J, M. Taschek, Leipertz A. Spray/wall interaction influences on the diesel engine mixture formation process investigated by spontaneous Raman scattering. Proceedings of the Combustion Institute,2002,29(1):617-623
    [127]Weiss C.The liquid deposition fraction of sprays impinging vertical walls and flowing films. International Journal of Multiphase Flow,2005,31(1):115-140
    [128]Kalantari D, Tropea C. Spray impact onto flat and rigid walls:Empirical characterization and modeling. International Journal of Multiphase Flow,2007,33(5):525-544
    [129]蒋勇,范维澄,廖光煊等.喷雾碰壁混合三维数值模拟.中国科学技术大学学报,2000,30(3):334-339
    [130]Bai C, Gossman A D. Development of methodology for spray impingement simulation. America:SAE Paper,1995,85-93
    [131]Xu H, Liu Y, He P, et al.The TAR model for calculation of droplet/wall impingement. America:Journals of Fluids Engineering, Trans. of the ASME,1998,120(3):593-597
    [132]覃群,张群生.单液滴碰壁理论模型.武汉理工大学学报(信息与管理工程版),2007,29(10):73-76
    [133]Mercer GN, Seatman WL, Forster WA. A model for crop spray adhesion, bounce and shatter at a leaf surface, poster
    [134]Peters K, Eiden R. Modelling the dry deposition velocity of aerosol particles to a spruce foresee, Atmospheric Environment,1992,26A:2555-2564
    [135]Schwartz LW, Roux D, Cooper-White JJ. On the shapes of droplets that are sliding on a vertical wall. Physica D:Nonlinear Phenomena,2005,209(1-4):236-244
    [136]Pierce E, Carmona FJ, Amirfazli A. Understanding of sliding and contact angle results in tilted plate experiments. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007, doi:10.1016/j.colsurfa.2007.09.032
    [137]林志勇,彭晓峰,王晓东.固体表面液滴在吹风作用下的振荡特性.热科学与技术,2005,4(1):24-28
    [138]林志勇,彭晓峰,王晓东.固体表面振荡液滴接触角演化.热科学与技术,2005,4(2):141-145
    [139]Range K, Feuillebois F. Influence of Surface Roughness on Liquid Drop Impact. J Colloid Interf Sci,1998,203:16-30
    [140]Zhang X, Basaran OA. Dynamic surface tension effects in impact of a drop with a solid surface. J Colloid Interface Sci,187:166-178
    [141]施明恒.单个液滴碰击表面时的流体动力学特性.力学学报,1985,17(5):419-425
    [142]朱卫英.液滴撞击固体表面的可视化实验研究[D].大连:大连理工大学,2007
    [143]Sikalo, Marengo M, Tropea C. Analysis of Impact of Droplet on Horizontal Surface. Experimental Thermal and Fluid Science,2002,25(7):503-510
    [144]Slkalo, Tropea C, GaniE N. Impact of Droplet onto Inclined Surface, Journal of Coloid and Interface Science,2005,286:661-669
    [145]Sikalo, Topea C, GaniE N. Dynamic Wetting Angle of a Spreading Droplet.Experimental Thermal and Fluid Science.2005,29 (7):795-802
    [146]Sikalo, GanicE N. Phenomena of Droplet Surface Interactions. Experimental Thermal and Fluid Science,2006,31(2):97-110
    [147]施红辉.高速液体撞击下固体材料内的应力波传播.中国科学G辑,2004,34(5):577-590
    [148]Chen R H, Wang H W. Effects of Tangential Speed on Low-Normal-Speed Liquid Drop Impact on a Non-Wettable Solid Surface. Expriments in Fluids,2005,39:754-760
    [149]陆军军,陈雪莉,曹显奎等.液滴撞击平板的铺展特性.化学反应工程与工艺,2007,23(6):505-511
    [150]张荻,谢永慧,周屈兰.液滴与弹性固体表面撞击过程的研究.机械工程学报,2003, 39(6):5-79
    [151]毛靖儒,施红辉,俞茂铮等.液滴撞击固体表面时的流体动力特性实验研究.力学与实践,1995,17(3):52-54
    [152]崔洁,陈雪莉,王辅臣等.撞击液滴形成的液膜边缘特性.华东理工大学学报(自然科学版),2009,35(6):819-824
    [153]Reichard DL. A system to evaluate shear effects on spray drift retardant performance. Trans. ASAE,1996,39(6):1993-1999
    [154]MAO T, KUHN DCS, TRAN H. Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J,1997,43:2169-2179
    [155]Mao T, Kuhn DCS, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces. American Institute of Chemical Engineers Journal,1997,43(9):2169-2179.
    [156]宋坚利,王波,曾爱军等.雾滴在水稻叶片上的沉积部位分析与显微研究.农业机械学报,2013,44(4):54-58+76.
    [157]Anderson N H, Hall D J. The role of dynamic surface tension in the retention of surfactant sprays on pea plants. In:Foy CL, editor. Adjuvants in Agrochemical, vol.Ⅱ. CRC Press; 1989:51
    [158]Green J H, Green J M. Dynamic surface tension as a predictor of herbicide enhancement by surface activeagents.Brighton Crop Prot Conf Proc 1991,1:323-30.
    [159]De Ruiter H, Uffing AJM, Meinen E et al. Influence of surfactants and plant species on leaf retention of spray solutions. Weed Sci 1990,38:567-72.
    [160]Forster W A, Kimberley M O, Zabkiewicz J A.A universal spray droplet adhesion model. Transactions of the American Society of Agricultural Engineers,2005,348(4):1321-1330.
    [161]于琦.农药雾滴聚并行为研究[D].北京:中国农业大学,2013.
    [162]Zhu J W, Shi J, Zhu G N. Influence of droplet size and spray volume on retention of chhorphrifos on cabbage leaves. China vegetables,2003,67:3-5
    [163]Stephen R L, Werner Jim R Jones, Anthony HJet al. Droplet impact and spreading:Droplet formulation effects. Chemical Engineering Science,2007,62:2336-2345
    [164]Regan C, Justin C W, David V. Boger.The role of dynamic surface tension and elasticity on the dynamics of drop impact. Chemical Engineering Science,2001,56:5575-5592
    [165]Sikalo L, Marengo M, Tropea C. Analysis of impact of droplet on horizontal surfaces. Experimental Thermal and Fluid Science,2002,25:503-510
    [166]Bertola V. Effect of polymer additives on the apparent dynamic contact angle of impacting drops. Colloids and Surfaces A:Physicochem. Eng. Aspects,2010,363:135-140
    [167]Wang M J, Lin F H, Ong J Y et al. Dynamic behaviors of droplet impact and spreading-Water on glass and paraffin. Colloids and Surfaces A:Physicochem. Eng. Aspects,2009,339:224-231
    [168]杨希娃,代美灵,宋坚利等.雾滴大小、叶片表面特性与倾角对农药沉积量的影响.农业工程学报,2012,28(3):70-73
    [169]Hobson, P. A., Miller, P. C. H., Walklate et al. Spray drift from hydraulic spray nozzles:the use of a computer simulation model to examine factors influencing drift. J. Agric. Eng. Res.1993,54: 293-305.
    [170]Holterman HJ. Kinetics and Evaporation of Water Drops in Air.Institute of Agricultural and Environmental Engendering, Wageningen. IMAG Report 2003-2012.2003, pp.229-244.
    [171]Miller P C H.The measurement of spray drift.Pestic Outlook,2003,14:205-209.
    [172]Arnold A C. Comparative study of drop sizing equipment for agricultural fan-spray atomizers. Aerosol Sci. Tech,1990,12:431-445.
    [173]Permin O, Jrgensen L N, Persson K. Deposition characteristics and bio-logical effectiveness of fungicides applied to winter wheat and the hazards of drift when using different types of hydraulic nozzles. Crop Prot,1992,11:541-546.
    [174]顾中言.植物的亲水疏水特性与农药药液行为的分析.江苏农业学报,2009,25(2):276-281
    [175]郭善竹,张丽,张凯等.Silwet系列农用有机硅在水稻害虫防治中的应用.中国农技推广,2008,24(4):41-42
    [176]Sybrand A. van Zyl, Jan-Cor Brink, Frikkie J. Calitz et al.. The use of adjuvants to improve spray deposition and Botrytis cinerea control on Chardonnay grapevine leaves. Crop Protection,2010, 29:58-67
    [177]Cruz Garcera, Enrique Molto, Patricia Chueca.Effect of spray volume of two organ ophosphate pesticid es on coverage and on mortali ty of California red scale Aonidiella aurantii (Mask ell). Crop Protection,2011,30:693-697
    [178]顾中言,许小龙,韩丽娟.不同表面张力的杀虫单微乳剂药滴在水稻叶面的行为特性.中国水稻科学,2004,18(2):176-180
    [179]Emilia Hilz, Arnoldus W P, Vermeer.Spray drift review:The extent to which a formulation can contribute to spray drift reduction. Crop Protection,2013,44:75-83
    [180]Matthews GA.The biological target.Pestic.Sci.,1977,8:96-100.
    [181]Munthali D C. Biological efficiency of small dicofol droplets against Tetra-nychus urticae (Koch) eggs, larvae and protonymphs.Crop Prot,1984,3:327-334.
    [182]Ebert T A, Taylor R A J, Downer R A et al. Deposit structure and efficacy of pesticide application.1:Interactions between deposit size, toxicant concentration and deposit number. Pestic. Sci., 1999,55:783-789
    [183]Hall F R, Chapple A C, Downer R A et al. Pesticide application as affected by spray modifiers. Pestic. Sci,1993,38:123-133
    [184]Zabkiewicz J A. Spray formulation efficacy holistic and futuristic perspectives. Crop Prot, 2007,26:312-319
    [185]Permin O, Jrgensen LN, Persson K. Deposition characteristics and biological effectiveness of fungicides applied to winter wheat and the hazards of drift when using different types of hydraulic nozzles. Crop Prot,1992,11:541-546.
    [186]Jensen P K, Jorgensen L N, Kirknel E. Biological efficacy of herbicides and fungicides applied with low-drift and twin-fluid nozzles. Crop Prot,2001,20:57-64
    [187]Forster W Alison, Zabkiewicz Jerzy A, Riederer Markus. Mechanisms of cuticular uptake of xenobiotics into living plants:1. Influence of xenobiotic dose on the uptake of three model compounds applied in the absence and presence of surfactants into Chenopodium album, Hederahelix and Stephanotis floribunda leaves. Pest Manag. Sci.,2004,60:1105-1113
    [188]Dombrowski N, Johns W.The aerodynamic instability and disintegration of viscous liquid sheets.Chemical Engineering Science,1963,18:203-214.
    [189]Kazuo Matsuuchi.Instability of Thin Liquid Sheet and Its Break-up. Journal of the physical society of Japan,1976,41(4):1410-1416
    [190]Stephen R L, Werner Jim R Jones, Anthony HJ et al. Droplet impact and spreading:Droplet formulation effects [J]. Chemical Engineering Science,2007,62:2336-2345
    [191]Tharakan John T, Ramamuthi K, Balakrishnan M. Nonlinear break up of thin liquid sheets. Acta.Mech,2002,156:29-46.
    [192]Negeed ES R, Hidaka S, Kohno M et al. Experimental and analytical investigation of liquid sheet break up characteristics. International Journal of Heat and Fluid Flow,2011,32:95-106.
    [193]Dandapat B S, Maity S, Kitamura A. Liquid film flow due to an unsteady stretching sheet. International Journal of Non-Linear Mechanics,2008,43:880-886
    [194]Carvalho I S, Heitoy M V, Santos D. Liquid film disintegration regimes and proposed correlations. International Journal of Multi phase Flow,2002,28:773-789.
    [195]J Shinjo, A Umemura. Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects). Proceedings of the Combustion Institute,2011, 33:2089-2097
    [196]毛益进,王秀,马伟.农药喷洒雾滴粒径分布数值分析方法.农业工程学报,2009,25(2):78-82
    [197]张少峰.压力旋流喷头雾化性能的仿真.安徽农业科学,2009,37(17):8098-8100
    [198]Cloeter Michael D, Qin Kuide, Patil Pramod. Planar Laser Induced Fluorescence (PLIF) Flow Visualization applied to Agricultural Spray Nozzles with Sheet Disintegration; Influence of an Oil-in-Water Emulsion. ILASS-Americas 22nd Annual Conference on Liquid Atomization and Spray Systems, Cincinnati, OH, May 2010,1-9
    [199]Melanie Ramiasa, John Ralston, Renate Fetzer et al.The influence of topography on dynamic wetting. Advances in Colloid and Interface Science,2014,206:275-293
    [200]Edward Bormashenko.Progress in understanding wetting transitions on rough surfaces.Advances in Colloid and Interface Science,2014, xxx (xxx):xxx-xxx
    [201]闵敬春,彭晓峰,王晓东.竖壁上液滴的脱落直径.应用基础与工程科学学报,2002,10(1):57-62
    [202]赵东,张晓辉,蔡冬梅等.基于弥雾机风机参数优化的雾滴穿透性和沉积性研究.农业机械学报,2005,36(7):44-49
    [203]王晓东,彭晓峰,张欣欣.水平壁面上液滴吹离的临界风速.应用基础与工程学学报,2006,14(3):403-410
    [204]董祥.植保机械喷头雾滴撞击植物叶面过程试验测试及仿真研究[D].北京:中国农业机械化科学研究院,2013.
    [205]代美灵.农药雾滴在水稻叶片上的沉积行为与效果研究[D].北京:中国农业大学,2011.
    [206]Mundo C H R, Sommerfield M, Tropea C. On the modeling of liquid sprays impinging on surfaces, Atomization and sprays,8,1998,625-652
    [207]G Mereer, W L Sweatman, A Elvin et al. Process driven models for spray retention by plant. In:GC. Wake (ed) Proceedings of the 2006 Mathematics in industry Study Group. Massey University, Albany, New Zealand,2007,57
    [208]Mercer G N, Sweatman W L, Forster W A. A model for spray droplet adhesion, bounce or shatter at a crop leaf surface. In:FittAD, Norbury J, Ockendon H, Wilson E ed. Progress in Industrial Mathematics at EMCI 2008. Mathematics in Industry 15, DOI:10.1007/978-3-642-12110-4_151. Springer-Verlag, Berlin, Heidelberg,2010,pp.937-943.
    [209]Forster W A, Mercer G N, Schou W C. Process driven models for spray droplet shatter adhesion or bounce. In:Baur P, Bonnet M, editors. Proceedings 9th International Symposium on Adjuvants and Agrochemicals. ISAA 978-90-815702-1-3; 2010
    [210]Forster W A, Mercer G N, Schou W C. Spray droplet impaction models and their use within AGDISP software to predict retention. New Zealand Plant Protection,2014,65:85-92.
    [211]NAIRN J J, FORSTER W A, VAN L EEUWEN R M.'Universal'spray droplet adhesion model-accounting for hairy leaves. Weed Research,2013,53:407-41
    [212]Boukhalfa H H, Massinon M, Belhamra M, et al. Contribution of Spray Droplet Pinning Fragmentation to Canopy Retention. Crop Protection,2014,56:91-97.
    [213]贾卫东,张磊江,燕明德等.喷杆喷雾机研究现状及发展趋势.中国农机化学报,2013,4:19-22
    [214]孙文峰,王立君,陈宝昌等.喷杆式喷雾机喷雾质量影响因素分析.农机化研究,2009,11:114-117
    [215]LangenakensJJ, ClijmansL, Ramon H et al.The Effects of Vertical Sprayer Boom Movements on the Uniformity of Spray Distribution.J.agric.Engng Res,1999,74,281-291.
    [216]LardouxY, SinfortC, EnfaltP et al. Test Method for Boom Suspension Influence on Spray Distribution, Part I:Experimental Study of Pesticide Application under a Moving Boom.Biosystems Engineering,2007,96,29-39.
    [217]OomsD, RuterR F, DestainMF. Impact of the horizontal movements of a sprayer boom on the longitudinal spray distribution in field conditions.Crop Protection,2003,22,813-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700