用户名: 密码: 验证码:
NF-κB炎症信号通路靶向封闭防治急性创伤性肺损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:国内外关于ALI/ARDS的研究大多数集中于探讨细胞因子网络的失衡,尽管使用各种药物针对细胞因子进行了大量的临床防治,但始终没有一种完全有效、可重复、有统计学意义的方法。ALI是一种炎症免疫信号转导紊乱引起的疾患。当机体受到创伤、休克等损伤时,肺是首先被攻击的靶器官和细菌来源之一。而肺泡巨噬细胞是肺组织炎症瀑布效应的激活点。核因子κB (NF-κB)是核转录调节蛋白的一种,具有多向调节的特点;参与多种炎性介质基因和及多种免疫相关基因的转录和调控,是炎症免疫反应中多个信号途径的汇聚点。本课题组前期研究证实NF-κB的核移位是诱导炎症基因表达的关键环节,并在失控性炎症反应(SIRS)和急性肺损伤(ALI)的病理机制中发挥关键作用。但目前拮抗NF-κB活化通路、抑制炎症损伤尚无特效药物和成熟手段。
     目的:为创伤性ALI筛选精确的基因药物靶点,寻求一种高效、副作用小的炎症靶向控制方法和寻求高效合理的治疗方案提供实验基础和理论依据。
     方法:本实验运用已成功建立的家兔ALI模型,选定NF-κB信号通路的关键环节为突破口,利用载体/药物技术,对体内外炎症效应细胞(如肺泡巨噬细胞)的NF-κB核移位识别目的基因κB序列的―瓶颈‖通路进行特异性靶向封闭;并用分子生物学、免疫学和形态学等方法证实靶向封闭炎症信号通路、调控炎症基因表达防治SIRS/ALI的可行性和有效性。
     结果:体外实验:脂质体转染的双链寡聚脱氧核苷酸(dsODNs)能有效降低肺泡巨噬细胞中炎症介质IL-1α、IL-6、IL-10、TNF-α和VCAM的mRNA表达和肺泡巨噬细胞培养液中LDH的含量(P<0.01);dsODNs-decoy/脂质体为1:5时转染效率最高,转染6小时后细胞摄取率最高。为体内试验的顺利进行奠定了基础。
     体内试验:双链寡聚脱氧核苷酸(dsODNs-decoy)能有效减少肺组织的炎症介质IL-1α、IL-6、IL-10、TNF和VCAM的mRNA表达,dsODNs-decoy组与对照组和错配dsODNs-decoy组比较有统计学意义;血清LDH检测实验组明显减少(p<0.01);HE染色显示对照组和错配dsODNs-decoy组中肺泡变形、融合,大小不一;扫描电镜显示对照组和错配dsODNs-decoy组肺泡隔增粗、增厚,肺泡隔不完整、断裂。Western blot显示dsODNs-decoy组中NF-κB p65核移位明显减少。
     结论:体外实验中脂质体转染dsODNs-decoy具有较高的转染效率,脂质体转染的dsODNs-decoy能有效降低对肺泡巨噬细胞的毒性。体内试验雾化吸入脂质体转染的dsODNs-decoy能有效减轻ALI的症状和炎性介质的表达,并且血清LDH明显降低,预示全身性副反应小。
Background Inhibition of NF-κB activity by oligonucleotides, double-strandedoligodeoxynucleotides (dsODN) or CpG-ODN has been show to decrease lunginflammatory, but deleterious effects have been reported when administered in a systemicfashion. The aims of this research are: to find out the effectiveness of lipofectamine2000in transfect dsODNs-decoy into AMs and its cell toxity, and to demonstrate whetheraerosol inhalation of lipofectamine2000transfected dsODNs-decoy is effective inalleviate LPS induced ALI.
     Methods We used RT-PCR to detect the mRNA expression level of IL-1, IL-6, TNFand VCAM, HE staining and scanning electron microscope to examine the histologicalchanges of lungs after dsODN-decoy inhalation.
     Results IL-1, IL-6, IL-10, TNF and VCAM mRNA expressions are all reduced in thetreatment group compared with sham group and mismatching dsODN-decoy group.Alveolar fusion and alveolar septa swell was obviously reduced in the treatment group.
     Conclusion: Lipofectamine2000is effective in transfect dsODNs-decoy into AMs,and it‘s toxity reduced compared with sham group and mismatching group. Aerosolinhalation of double stranded Oligonucleotides-decoy is effective in the inhibition ofNF-κB signaling pathway in rabbit LPS inducedALI.
引文
[1] Alpantaki K, Tsiridis E, Pape HC, Giannoudis PV. Application of clinicalproteomics in diagnosis and management of trauma patients. Injury2007;38:263-71.
    [2] Phua J, Badia JR, Adhikari NK, et al. Has mortality from acute respiratory distresssyndrome decreased over time?: A systematic review. American journal of respiratoryand critical care medicine2009;179:220-7.
    [3] Luh SP, Chiang CH. Acute lung injury/acute respiratory distress syndrome(ALI/ARDS): the mechanism, present strategies and future perspectives of therapies.Journal of Zhejiang University Science B2007;8:60-9.
    [4] Li H, Lin X. Positive and negative signaling components involved inTNFalpha-induced NF-kappaB activation. Cytokine2008;41:1-8.
    [5] Pasparakis M. Regulation of tissue homeostasis by NF-kappaB signalling:implications for inflammatory diseases. Nature reviews Immunology2009;9:778-88.
    [6] Galani V, Tatsaki E, Bai M, et al. The role of apoptosis in the pathophysiology ofAcute Respiratory Distress Syndrome (ARDS): an up-to-date cell-specific review.Pathology, research and practice2010;206:145-50.
    [7] Liu YY, Liao SK, Huang CC, Tsai YH, Quinn DA, Li LF. Role for nuclearfactor-kappaB in augmented lung injury because of interaction between hyperoxia andhigh stretch ventilation. Translational research: the journal of laboratory and clinicalmedicine2009;154:228-40.
    [8] Shen W, Gan J, Xu S, Jiang G, Wu H. Penehyclidine hydrochloride attenuatesLPS-induced acute lung injury involvement of NF-kappaB pathway. Pharmacologicalresearch: the official journal of the Italian Pharmacological Society2009;60:296-302.
    [9] Liu G, Park YJ, Tsuruta Y, Lorne E, Abraham E. p53Attenuateslipopolysaccharide-induced NF-kappaB activation and acute lung injury. J Immunol2009;182:5063-71.
    [10] Raghavendran K, Pryhuber GS, Chess PR, Davidson BA, Knight PR, Notter RH.Pharmacotherapy of acute lung injury and acute respiratory distress syndrome. Currentmedicinal chemistry2008;15:1911-24.
    [11] Ahmed A, Kojicic M, Herasevich V, Gajic O. Early identification of patients withor at risk of acute lung injury. The Netherlands journal of medicine2009;67:268-71.
    [12] Camandola S, Mattson MP. NF-kappa B as a therapeutic target inneurodegenerative diseases. Expert Opinion on Therapeutic Targets2007;11:123-32.
    [13] Li H, Lin X. Positive and negative signaling components involved in TNFalpha-induced NF-kappa B activation. Cytokine2008;41:1-8.
    [14] Nicholas C, Batra S, Vargo MA, et al. Apigenin blocks lipopolysaccharide-inducedlethality in vivo and proinflammatory cytokines expression by inactivating NF-kappa Bthrough the suppression of p65phosphorylation. Journal of Immunology2007;179:7121-7.
    [15]尹文,童卫,熊利泽, et al.失血性休克缺血-再灌注损伤家兔肺泡巨噬细胞中IκK-β/NF-κB改变的实验研究.创伤外科杂志2008;10:3.
    [16]尹文,杨剑虹,虎晓岷,袁静,李月彩.内毒素诱导肺泡巨噬细胞NF-κB信号通路的变化.解放军医学杂志2003;28:2.
    [17] Park GY, Christman JW. Nuclear factor kappa B is a promising therapeutic targetin inflammatory lung disease. Current drug targets2006;7:661-8.
    [18] De Rosa G, De Stefano D, Laguardia V, et al. Novel cationic liposome formulationfor the delivery of an oligonucleotide decoy to NF-kappa B into activated macrophages.Eur J Pharm Biopharm2008;70:7-18.
    [19] Higuchi Y, Kawakami S, Hashida M. Development of cell-selective targetingsystems of NF kappa B decoy for inflammation therapy. Yakugaku Zasshi-Journal of thePharmaceutical Society of Japan2008;128:209-18.
    [20] Bezzerri V, Borgatti M, Nicolis E, et al. Transcription factoroligodeoxynucleotides to NF-kappa B inhibit transcription of IL-8in bronchial cells.American Journal of Respiratory Cell and Molecular Biology2008;39:86-96.
    [21] Bhattacharya R, Osburg B, Fischer D, Bickel U. Targeted delivery of complexes ofbiotin-PEG-polyethylenimine and NF-kappa B decoys to brain-derived endothelial cellsin vitro. Pharmaceutical Research2008;25:605-15.
    [22] Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulinenhancer sequences. Cell1986;46:705-16.
    [23] Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-bindingprotein Nf-kappa B by a posttranslational mechanism. Cell1986;47:921-8.
    [24] Gerondakis S, Strasser A. The role of Rel/NF-kappaB transcription factors in Blymphocyte survival. Seminars in immunology2003;15:159-66.
    [25] Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell2002;109Suppl:S81-96.
    [26] Israel A. The IKK complex, a central regulator of NF-kappaB activation. ColdSpring Harbor perspectives in biology2010;2:a000158.
    [27] Pelzer C, Thome M. IKKalpha takes control of canonical NF-kappaB activation.Nature immunology2011;12:815-6.
    [28] Sun SC. Non-canonical NF-kappaB signaling pathway. Cell research2011;21:71-85.
    [29] Conze DB, Zhao Y, Ashwell JD. Non-canonical NF-kappaB activation andabnormal B cell accumulation in mice expressing ubiquitin protein ligase-inactivec-IAP2. PLoS biology2010;8:e1000518.
    [30] Gagliardo R, Chanez P, Profita M, et al. IkappaB kinase-driven nuclearfactor-kappaB activation in patients with asthma and chronic obstructive pulmonarydisease. The Journal of allergy and clinical immunology2011;128:635-45e1-2.
    [31] Burley SK. Rel revealed: cocrystal structures of the NF-kappa B p50homodimer.Chemistry&biology1995;2:77-81.
    [32] Menetski JP. The structure of the nuclear factor-kappaB protein-DNA complexvaries with DNA-binding site sequence. The Journal of biological chemistry2000;275:7619-25.
    [33] Wan F, Weaver A, Gao X, Bern M, Hardwidge PR, Lenardo MJ. IKKbetaphosphorylation regulates RPS3nuclear translocation and NF-kappaB function duringinfection with Escherichia coli strain O157:H7. Nature immunology2011;12:335-43.
    [34] Luthra P, Sun D, Wolfgang M, He B. AKT1-dependent activation of NF-kappaBby the L protein of parainfluenza virus5. Journal of virology2008;82:10887-95.
    [35] Kwon O, Kim KA, He L, et al. Complex formation of p65/RelA with nuclear Akt1for enhanced transcriptional activation of NF-kappaB. Biochemical and biophysicalresearch communications2008;365:771-6.
    [36] Suna S, Sakata Y, Shimizu M, et al. Lymphotoxin-alpha3mediatesmonocyte-endothelial interaction by TNFR I/NF-kappaB signaling. Biochemical andbiophysical research communications2009;379:374-8.
    [37] Lee SY, Choi Y. TRAF-interacting protein (TRIP): a novel component of thetumor necrosis factor receptor (TNFR)-and CD30-TRAF signaling complexes thatinhibits TRAF2-mediated NF-kappaB activation. The Journal of experimental medicine1997;185:1275-85.
    [38] Skibola CF, Nieters A, Bracci PM, et al. A functional TNFRSF5gene variant isassociated with risk of lymphoma. Blood2008;111:4348-54.
    [39] Silke J, Brink R. Regulation of TNFRSF and innate immune signalling complexesby TRAFs and cIAPs. Cell death and differentiation2010;17:35-45.
    [40] Wright CW, Duckett CS. The aryl hydrocarbon nuclear translocator altersCD30-mediated NF-kappaB-dependent transcription. Science2009;323:251-5.
    [41] Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB: current knowledge, newinsights, and future perspectives. Cell research2010;20:24-33.
    [42] King CC, Sastri M, Chang P, Pennypacker J, Taylor SS. The rate of NF-kappaBnuclear translocation is regulated by PKA and A kinase interacting protein1. PloS one2011;6:e18713.
    [43] Gao N, Asamitsu K, Hibi Y, Ueno T, Okamoto T. AKIP1enhancesNF-kappaB-dependent gene expression by promoting the nuclear retention andphosphorylation of p65. The Journal of biological chemistry2008;283:7834-43.
    [44] Tomita M, Toyota M, Ishikawa C, et al. Overexpression of Aurora A by loss ofCHFR gene expression increases the growth and survival of HTLV-1-infected T cellsthrough enhanced NF-kappaB activity. International journal of cancer Journalinternational du cancer2009;124:2607-15.
    [45] Kashima L, Toyota M, Mita H, et al. CHFR, a potential tumor suppressor,downregulates interleukin-8through the inhibition of NF-kappaB. Oncogene2009;28:2643-53.
    [46] Sarkar D, Park ES, Emdad L, Lee SG, Su ZZ, Fisher PB. Molecular basis ofnuclear factor-kappaB activation by astrocyte elevated gene-1. Cancer research2008;68:1478-84.
    [47] Coles AH, Gannon H, Cerny A, Kurt-Jones E, Jones SN. Inhibitor of growth-4promotes IkappaB promoter activation to suppress NF-kappaB signaling and innateimmunity. Proceedings of the National Academy of Sciences of the United States ofAmerica2010;107:11423-8.
    [48] Nozell S, Laver T, Moseley D, et al. The ING4tumor suppressor attenuatesNF-kappaB activity at the promoters of target genes. Molecular and cellular biology2008;28:6632-45.
    [49] Diego VP, Curran JE, Charlesworth J, et al. Systems genetics of the nuclearfactor-kappaB signal transduction network. I. Detection of several quantitative trait locipotentially relevant to aging. Mechanisms of ageing and development2012;133:11-9.
    [50] Kawahara TL, Michishita E, Adler AS, et al. SIRT6links histone H3lysine9deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell2009;136:62-74.
    [51] Csiszar A, Wang M, Lakatta EG, Ungvari Z. Inflammation and endothelialdysfunction during aging: role of NF-kappaB. J Appl Physiol2008;105:1333-41.
    [52] Tsai HH, Lee WR, Wang PH, Cheng KT, Chen YC, Shen SC. Propionibacteriumacnes-induced iNOS and COX-2protein expression via ROS-dependent NF-kappaB andAP-1activation in macrophages. Journal of dermatological science2013;69:122-31.
    [53] Liu S, Shi X, Bauer I, Gunther J, Seyfert HM. Lingual antimicrobial peptide andIL-8expression are oppositely regulated by the antagonistic effects of NF-kappaB p65and C/EBPbeta in mammary epithelial cells. Molecular immunology2011;48:895-908.
    [54] Sow FB, Alvarez GR, Gross RP, et al. Role of STAT1, NF-kappaB, andC/EBPbeta in the macrophage transcriptional regulation of hepcidin by mycobacterialinfection and IFN-gamma. Journal of leukocyte biology2009;86:1247-58.
    [55] Kageyama K, Kagaya S, Takayasu S, Hanada K, Iwasaki Y, Suda T. Cytokinesinduce NF-kappaB, Nurr1and corticotropin-releasing factor gene transcription inhypothalamic4B cells. Neuroimmunomodulation2010;17:305-13.
    [56] Nenci A, Becker C, Wullaert A, et al. Epithelial NEMO links innate immunity tochronic intestinal inflammation. Nature2007;446:557-61.
    [57] Doffinger R, Smahi A, Bessia C, et al. X-linked anhidrotic ectodermal dysplasiawith immunodeficiency is caused by impaired NF-kappaB signaling. Nature genetics2001;27:277-85.
    [58] Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB actionregulated by reversible acetylation. Science2001;293:1653-7.
    [59] Ashburner BP, Westerheide SD, Baldwin AS, Jr. The p65(RelA) subunit ofNF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1andHDAC2to negatively regulate gene expression. Molecular and cellular biology2001;21:7065-77.
    [60] Sun R, Xiao L, Duan S. High expression of ubiquitin conjugates and NF-kappaBin unstable human intracranial atherosclerotic plaques. Journal of cellular physiology2012;227:784-8.
    [61] Rodrigues L, Filipe J, Seldon MP, et al. Termination of NF-kappaB activitythrough a gammaherpesvirus protein that assembles an EC5S ubiquitin-ligase. TheEMBO journal2009;28:1283-95.
    [62] Berger F, Buchsler I, Munz B. The effect of the NF-kappa B inhibitors curcuminand lactacystin on myogenic differentiation of rhabdomyosarcoma cells. Differentiation;research in biological diversity2012;83:271-81.
    [63] Ruocco MG, Maeda S, Park JM, et al. I{kappa}B kinase (IKK){beta}, but notIKK{alpha}, is a critical mediator of osteoclast survival and is required forinflammation-induced bone loss. The Journal of experimental medicine2005;201:1677-87.
    [64] Mochizuki A, Takami M, Miyamoto Y, et al. Cell adhesion signaling regulatesRANK expression in osteoclast precursors. PloS one2012;7:e48795.
    [65] Theilgaard-Monch K, Jacobsen LC, Borup R, et al. The transcriptional program ofterminal granulocytic differentiation. Blood2005;105:1785-96.
    [66] Beg AA, Sha WC, Bronson RT, Baltimore D. Constitutive NF-kappa B activation,enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes&development1995;9:2736-46.
    [67] Francois S, El Benna J, Dang PM, Pedruzzi E, Gougerot-Pocidalo MA, Elbim C.Inhibition of neutrophil apoptosis by TLR agonists in whole blood: involvement of thephosphoinositide3-kinase/Akt and NF-kappaB signaling pathways, leading to increasedlevels of Mcl-1, A1, and phosphorylated Bad. J Immunol2005;174:3633-42.
    [68] McDonald PP, Bald A, Cassatella MA. Activation of the NF-kappaB pathway byinflammatory stimuli in human neutrophils. Blood1997;89:3421-33.
    [69] Siebenlist U, Brown K, Claudio E. Control of lymphocyte development by nuclearfactor-kappaB. Nature reviews Immunology2005;5:435-45.
    [70] Alcamo E, Mizgerd JP, Horwitz BH, et al. Targeted mutation of TNF receptor Irescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyterecruitment. J Immunol2001;167:1592-600.
    [71] Nelson JE, Kowdley KV. IkappaB kinase epsilon: a potential therapeutic target forobesity (and nonalcoholic fatty liver disease)? Hepatology2010;51:336-8.
    [72] Nakhaei P, Sun Q, Solis M, et al. IkappaB kinase epsilon-dependentphosphorylation and degradation of X-linked inhibitor of apoptosis sensitizes cells tovirus-induced apoptosis. Journal of virology2012;86:726-37.
    [73] Courtine E, Pene F, Cagnard N, et al. Critical role of cRel subunit of NF-kappaBin sepsis survival. Infection and immunity2011;79:1848-54.
    [74] Brand K, Page S, Rogler G, et al. Activated transcription factor nuclearfactor-kappa B is present in the atherosclerotic lesion. The Journal of clinicalinvestigation1996;97:1715-22.
    [75] Senftleben U, Karin M. The IKK/NF-kappaB pathway. Critical care medicine2002;30:S18-S26.
    [76] Arcaroli J, Silva E, Maloney JP, et al. Variant IRAK-1haplotype is associated withincreased nuclear factor-kappaB activation and worse outcomes in sepsis. Americanjournal of respiratory and critical care medicine2006;173:1335-41.
    [77] Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein,interleukin6, and risk of developing type2diabetes mellitus. JAMA: the journal of theAmerican Medical Association2001;286:327-34.
    [78] Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resultingfrom hepatic activation of IKK-beta and NF-kappaB. Nature medicine2005;11:183-90.
    [79] Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation toobesity-induced insulin resistance. Nature medicine2005;11:191-8.
    [80] Courtois G, Gilmore TD. Mutations in the NF-kappaB signaling pathway:implications for human disease. Oncogene2006;25:6831-43.
    [81] Li Q, Withoff S, Verma IM. Inflammation-associated cancer: NF-kappaB is thelynchpin. Trends in immunology2005;26:318-25.
    [82] Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-kappaB activationby small molecules as a therapeutic strategy. Biochimica et biophysica acta2010;1799:775-87.
    [83] Karin M, Yamamoto Y, Wang QM. The IKK NF-kappa B system: a treasure trovefor drug development. Nature reviews Drug discovery2004;3:17-26.
    [84] Gilmore TD, Herscovitch M. Inhibitors of NF-kappaB signaling:785and counting.Oncogene2006;25:6887-99.
    [85] Molinero LL, Fuertes MB, Girart MV, et al. NF-kappa B regulates expression ofthe MHC class I-related chain A gene in activated T lymphocytes. J Immunol2004;173:5583-90.
    [86. Gerondakis S, Grumont R, Gugasyan R, et al. Unravelling the complexities of theNF-kappaB signalling pathway using mouse knockout and transgenic models. Oncogene2006;25:6781-99.
    [87] Garcia-Pineres AJ, Lindenmeyer MT, Merfort I. Role of cysteine residues ofp65/NF-kappaB on the inhibition by the sesquiterpene lactone parthenolide and N-ethylmaleimide, and on its transactivating potential. Life sciences2004;75:841-56.
    [88] Zhang S, Won YK, Ong CN, Shen HM. Anti-cancer potential of sesquiterpenelactones: bioactivity and molecular mechanisms. Current medicinal chemistryAnti-cancer agents2005;5:239-49.
    [89] Isomura I, Morita A. Regulation of NF-kappaB signaling by decoyoligodeoxynucleotides. Microbiology and immunology2006;50:559-63.
    [90] Weissmann G, Montesinos MC, Pillinger M, Cronstein BN. Non-prostaglandineffects of aspirin III and salicylate: inhibition of integrin-dependent human neutrophilaggregation and inflammation in COX2-and NF kappa B (P105)-knockout mice.Advances in experimental medicine and biology2002;507:571-7.
    [91] Baker RG, Hayden MS, Ghosh S. NF-kappaB, inflammation, and metabolicdisease. Cell metabolism2011;13:11-22.
    [92] May MJ, D'Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S. Selectiveinhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMOwith the IkappaB kinase complex. Science2000;289:1550-4.
    [93] Cao Y, Bonizzi G, Seagroves TN, et al. IKKalpha provides an essential linkbetween RANK signaling and cyclin D1expression during mammary gland development.Cell2001;107:763-75.
    [94] Nagashima K, Sasseville VG, Wen D, et al. Rapid TNFR1-dependent lymphocytedepletion in vivo with a selective chemical inhibitor of IKKbeta. Blood2006;107:4266-73.
    [95] Senftleben U, Li ZW, Baud V, Karin M. IKKbeta is essential for protecting T cellsfrom TNFalpha-induced apoptosis. Immunity2001;14:217-30.
    [96] Horwitz BH, Scott ML, Cherry SR, Bronson RT, Baltimore D. Failure oflymphopoiesis after adoptive transfer of NF-kappaB-deficient fetal liver cells. Immunity1997;6:765-72.
    [97] Ziegelbauer K, Gantner F, Lukacs NW, et al. A selective novellow-molecular-weight inhibitor of IkappaB kinase-beta (IKK-beta) prevents pulmonaryinflammation and shows broad anti-inflammatory activity. British journal ofpharmacology2005;145:178-92.
    [98] Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancerdevelopment and progression. Nature reviews Immunology2005;5:749-59.
    [99] Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene2006;25:6758-80.
    [100] Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. TheJournal of clinical investigation2001;107:7-11.
    [101] Courtois G, Smahi A. NF-kappaB-related genetic diseases. Cell death anddifferentiation2006;13:843-51.
    [102] Courtois G. The NF-kappaB signaling pathway in human genetic diseases.Cellular and molecular life sciences: CMLS2005;62:1682-91.
    [103] Smale ST. Dimer-specific regulatory mechanisms within the NF-kappaB familyof transcription factors. Immunological reviews2012;246:193-204.
    [104] Sebban H, Courtois G. NF-kappaB and inflammation in genetic disease.Biochemical pharmacology2006;72:1153-60.
    [105] Erdman S, Fox JG, Dangler CA, Feldman D, Horwitz BH. Typhlocolitis inNF-kappa B-deficient mice. J Immunol2001;166:1443-7.
    [106] Zaph C, Troy AE, Taylor BC, et al. Epithelial-cell-intrinsic IKK-beta expressionregulates intestinal immune homeostasis. Nature2007;446:552-6.
    [107] Liu YJ, Soumelis V, Watanabe N, et al. TSLP: an epithelial cell cytokine thatregulates T cell differentiation by conditioning dendritic cell maturation. Annual reviewof immunology2007;25:193-219.
    [108] Uwe S. Anti-inflammatory interventions of NF-kappaB signaling: potentialapplications and risks. Biochemical pharmacology2008;75:1567-79.
    [109] Tas SW, Vervoordeldonk MJ, Hajji N, May MJ, Ghosh S, Tak PP. Localtreatment with the selective IkappaB kinase beta inhibitor NEMO-binding domainpeptide ameliorates synovial inflammation. Arthritis research&therapy2006;8:R86.
    [110] Pennington KN, Taylor JA, Bren GD, Paya CV. IkappaB kinase-dependentchronic activation of NF-kappaB is necessary for p21(WAF1/Cip1) inhibition ofdifferentiation-induced apoptosis of monocytes. Molecular and cellular biology2001;21:1930-41.
    [111] Groesdonk HV, Schlottmann S, Richter F, Georgieff M, Senftleben U.Escherichia coli prevents phagocytosis-induced death of macrophages via classicalNF-kappaB signaling, a link to T-cell activation. Infection and immunity2006;74:5989-6000.
    [112] Hayden MS. A less-canonical, canonical NF-kappaB pathway in DCs. Natureimmunology2012;13:1139-41.
    [113] Lawrence T, Bebien M, Liu GY, Nizet V, Karin M. IKKalpha limits macrophageNF-kappaB activation and contributes to the resolution of inflammation. Nature2005;434:1138-43.
    [114] Sadikot RT, Han W, Everhart MB, et al. Selective I kappa B kinase expression inairway epithelium generates neutrophilic lung inflammation. J Immunol2003;170:1091-8.
    [115] Gray KD, Simovic MO, Blackwell TS, et al. Activation of nuclear factor kappa Band severe hepatic necrosis may mediate systemic inflammation incholine-deficient/ethionine-supplemented diet-induced pancreatitis. Pancreas2006;33:260-7.
    [116] Yull FE, Han W, Jansen ED, et al. Bioluminescent detection of endotoxin effectson HIV-1LTR-driven transcription in vivo. The journal of histochemistry andcytochemistry: official journal of the Histochemistry Society2003;51:741-9.
    [117] Haudek SB, Spencer E, Bryant DD, et al. Overexpression of cardiacI-kappaBalpha prevents endotoxin-induced myocardial dysfunction. American journal ofphysiology Heart and circulatory physiology2001;280:H962-8.
    [118] Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. Possible new rolefor NF-kappaB in the resolution of inflammation. Nature medicine2001;7:1291-7.
    [119] Chen LW, Egan L, Li ZW, Greten FR, Kagnoff MF, Karin M. The two faces ofIKK and NF-kappaB inhibition: prevention of systemic inflammation but increased localinjury following intestinal ischemia-reperfusion. Nature medicine2003;9:575-81.
    [120] Okazaki Y, Matsukawa A. Pathophysiology of sepsis and recent patents on thediagnosis, treatment and prophylaxis for sepsis. Recent patents on inflammation&allergy drug discovery2009;3:26-32.
    [121] Senftleben U. NF-kappaB in critical diseases: a bad guy? Intensive care medicine2003;29:1873-6.
    [122] Chopra M, Reuben JS, Sharma AC. Acute lung injury:apoptosis and signalingmechanisms. Exp Biol Med (Maywood)2009;234:361-71.
    [123] Monick MM, Carter AB, Hunninghake GW. Human alveolar macrophages aremarkedly deficient in REF-1and AP-1DNA binding activity. The Journal of biologicalchemistry1999;274:18075-80.
    [124] Bingisser R, Stey C, Weller M, Groscurth P, Russi E, Frei K. Apoptosis in humanalveolar macrophages is induced by endotoxin and is modulated by cytokines. Americanjournal of respiratory cell and molecular biology1996;15:64-70.
    [125] Blackwell TS, Blackwell TR, Christman JW. Impaired activation of nuclearfactor-kappaB in endotoxin-tolerant rats is associated with down-regulation ofchemokine gene expression and inhibition of neutrophilic lung inflammation. J Immunol1997;158:5934-40.
    [126] Desmet C, Gosset P, Pajak B, et al. Selective blockade of NF-kappa B activity inairway immune cells inhibits the effector phase of experimental asthma. J Immunol2004;173:5766-75.
    [127] Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer immunityand immunotherapy. Immunological reviews2004;202:275-93.
    [128] Shenkar R, Abraham E. Hemorrhage induces rapid in vivo activation of CREBand NF-kappaB in murine intraparenchymal lung mononuclear cells. American journal ofrespiratory cell and molecular biology1997;16:145-52.
    [129] Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors.Oncogene1999;18:6853-66.
    [130] Nakashima H, Aoki M, Miyake T, et al. Inhibition of experimental abdominalaortic aneurysm in the rat by use of decoy oligodeoxynucleotides suppressing activity ofnuclear factor kappaB and ets transcription factors. Circulation2004;109:132-8.
    [131] Yeh CB, Hsieh MJ, Hsieh YH, Chien MH, Chiou HL, Yang SF. Antimetastaticeffects of norcantharidin on hepatocellular carcinoma by transcriptional inhibition ofMMP-9through modulation of NF-kB activity. PloS one2012;7:e31055.
    [132] Cheng X, Wang J, Xia N, et al. A guanidine-rich regulatory oligodeoxynucleotideimproves type-2diabetes in obese mice by blocking T-cell differentiation. EMBOmolecular medicine2012;4:1112-25.
    [133] Fang M, Wan M, Guo S, et al. An oligodeoxynucleotide capable of lesseningacute lung inflammatory injury in mice infected by influenza virus. Biochemical andbiophysical research communications2011;415:342-7.
    [134]] Higuchi Y, Kawakami S, Nishikawa M, Yamashita F, Hashida M. Intracellulardistribution of NFkappaB decoy and its inhibitory effect on TNFalpha production by LPSstimulated RAW264.7cells. Journal of controlled release: official journal of theControlled Release Society2005;107:373-82.
    [135] Weiner GJ. CpG oligodeoxynucleotide-based therapy of lymphoid malignancies.Advanced drug delivery reviews2009;61:263-7.
    [136] Sethi G, Tergaonkar V. Potential pharmacological control of the NF-kappaBpathway. Trends in pharmacological sciences2009;30:313-21.
    [137] Kawamura I, Morishita R, Tomita N, et al. Intratumoral injection ofoligonucleotides to the NF kappa B binding site inhibits cachexia in a mouse tumormodel. Gene therapy1999;6:91-7.
    [138] Gambari R, Borgatti M, Bezzerri V, et al. Decoy oligodeoxyribonucleotides andpeptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa.Biochemical pharmacology2010;80:1887-94.
    [139] Giannoukakis N, Bonham CA, Qian S, et al. Prolongation of cardiac allograftsurvival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides.Molecular therapy: the journal of the American Society of Gene Therapy2000;1:430-7.
    [140] Ferguson ND, Frutos-Vivar F, Esteban A, et al. Acute respiratory distresssyndrome: underrecognition by clinicians and diagnostic accuracy of three clinicaldefinitions. Critical care medicine2005;33:2228-34.
    [141] Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distresssyndrome: a clinical review. Lancet2007;369:1553-64.
    [142] Olivier S, Robe P, Bours V. Can NF-kappaB be a target for novel and efficientanti-cancer agents? Biochemical pharmacology2006;72:1054-68.
    [143] Means TK, Pavlovich RP, Roca D, Vermeulen MW, Fenton MJ. Activation ofTNF-alpha transcription utilizes distinct MAP kinase pathways in different macrophagepopulations. Journal of leukocyte biology2000;67:885-93.
    [144] Altavilla D, Saitta A, Guarini S, et al. Oxidative stress causes nuclearfactor-kappaB activation in acute hypovolemic hemorrhagic shock. Free radical biology&medicine2001;30:1055-66.
    [145] Altavilla D, Cainazzo MM, Squadrito F, Guarini S, Bertolini A, Bazzani C.Tumour necrosis factor-alpha as a target of melanocortins in haemorrhagic shock, in theanaesthetized rat. British journal of pharmacology1998;124:1587-90.
    [146] Beutler B, Milsark IW, Cerami AC. Passive immunization againstcachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science1985;229:869-71.
    [147] Lomas-Neira J, Chung CS, Perl M, Gregory S, Biffl W, Ayala A. Role of alveolarmacrophage and migrating neutrophils in hemorrhage-induced priming for ALIsubsequent to septic challenge. American journal of physiology Lung cellular andmolecular physiology2006;290:L51-8.
    [148] Lu MC, Liu TA, Lee MR, Lin L, Chang WC. Apoptosis contributes to thedecrement in numbers of alveolar macrophages from rats with polymicrobial sepsis.Journal of microbiology, immunology, and infection=Wei mian yu gan ran za zhi2002;35:71-7.
    [149] Le Tulzo Y, Shenkar R, Kaneko D, et al. Hemorrhage increases cytokineexpression in lung mononuclear cells in mice: involvement of catecholamines in nuclearfactor-kappaB regulation and cytokine expression. The Journal of clinical investigation1997;99:1516-24.
    [150] Ward PA. Acute lung injury: how the lung inflammatory response works. TheEuropean respiratory journal Supplement2003;44:22s-3s.
    [151] Inhibition of NF-kB1(NF-kBp50) by RNA interference in chicken macrophageHD11cell line challenged with Salmonellaenteritidis. Genetics and molecular biology2009507–15.
    [152] Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNAinterference in the clinic: challenges and future directions. Nature reviews Cancer2011;11:59-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700