用户名: 密码: 验证码:
氯苯与硫酸铜在亚临界水中溶解度及乙醇在超临界二氧化碳中溶解度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超/亚临界流体由于其独特的理化性质,被广泛应用于化学合成、萃取分离、环境工程等诸多领域,具有很大的潜在优势。着眼于环保领域应用的超临界水氧化反应(SCWO)是目前研究最多的一类反应过程。运用SCWO处理有机废水是一种高效、环境友好的新兴技术。但在实际应用过程中遇到了盐沉积和管路腐蚀问题,严重阻碍其工业化应用。作为超临界水氧化反应器设计的基础,疏水性有机物和无机盐类在亚临界水中的溶解度研究引起了广泛关注。
     二氧化碳作为一种无毒、临界温度低、价格低廉的绿色溶剂,在超临界流体萃取领域应用最为普遍。而醇类的加入可以改善超临界二氧化碳的溶剂化能力,极大拓宽其应用范围,将会成为热点课题。研究乙醇在超临界二氧化碳中的溶解度对于含醇物质中醇类的提取以及用醇作共溶剂体系的萃取都非常重要。
     实验采用课题组新研发的一套显微原位在线石英毛细管溶解度测定装置,分别测定了氯苯和硫酸铜在亚临界水中的溶解度以及乙醇在超临界二氧化碳中的溶解度。实验结果表明,在温度范围173.3 ~ 266.9℃内,氯苯在水中的溶解度为43.5 ~ 71.4 mg·g~(-1) H_2O,并随着温度的升高而线性增加,通过线性拟合得到氯苯在水中的溶解度方程为S = 0.3069 T ~(-1)0.188。实验还研究了pH及投加物对硫酸铜盐水体系介稳态的影响,测定了硫酸铜在114.2 ~ 157.1℃水中的溶解度为10 ~ 180 mg·g~(-1) H_2O。选用拉乌尔定律结合水的饱和蒸汽压来估算毛细管中盐水体系在析晶点的压力为160333 ~ 571368 Pa。采用经典水合机理溶解模型对硫酸铜在亚临界水中的S-ρ-T数据进行了拟合。
     此外实验测定乙醇在温度为77.6 ~ 183.8℃的超临界二氧化碳中的溶解度为0.085 ~ 0.485 mg·mg~(-1) CO2,并随着温度的升高而指数增加,通过指数拟合得到乙醇在超临界二氧化碳中的溶解度方程为S = 0.0231 e 0.016T。
     实验采用课题组研发的一套显微原位在线石英毛细管溶解度测定装置,分别测定了氯苯和硫酸铜在亚临界水中的溶解度以及乙醇在超临界二氧化碳中的溶解度,补充和丰富了溶解度数据,开创了一种直观、安全、低耗、可逆向验证的测定方法,为该研究领域提供了一条新的思路,也为下一阶段的深入研究奠定基础。
Sup/sub-critical fluids which had been widely used in chemical synthesis, extraction, environmental engineering and many other areas were regarded as one of the most promising and potential solvents. Currently, the supercritical water oxidation (SCWO) that emphasizes on the application of environmental protection had been most studied. It is an environmentally friendly and efficient new technology for hazard-free treatments of toxic and high concentration organic wastewater. However, in the actual application process it was encountered salt-plugging and corrosion which impede its industrial application seriously. As the basis of supercritical water oxidation reactors, the research of the solubilities of hydrophobic organics and inorganic salts in subcritical water had aroused great attention.
     Supercritical carbon dioxide (SC-CO_2) was regarded as one non-toxic, low critical temperature and low price solvent for chemical engineering application. The solubility of SC-CO_2 can be improved and the scope of its application will be widened by the addition of alcohol as a co-solvent. What’s more it will become a hot topic in the research. Determination of ethanol solubility in SC-CO_2 was also very important for the extraction of substances in solution containing alcohol or using alcohol as a co-solvent.
     The solubilities of chlorobenzene and copper sulphate in SBCW and ethanol in SC-CO_2 were described in thesis, using a method which combined fused silica capillary with microscope by capturing the point of dissolution and precipitation. The results indicated that the solubility of chlorobenzene increased from 43.5 to 71.4 mg·g~(-1) in water when temperature rose from 173.3 to 266.9 oC, and the temperature effect could be represented by a linear equation—S =0.3069T ~(-1)0.188. The effects of pH and additives in copper sulfate solution on the metastability were also studied. And the solubility of copper sulphate increased from 10 to 180 mg·g~(-1) in water when temperature rose from 114.2 to 157.1 oC. The pressure calculated by the Raoul’s Law and saturated water vapor pressures is 160333 ~ 571368 Pa. The S-ρ-T curves of brine system derived from solubility data also fit the correlation with the Hydration Reaction Model.
     In addition a set of devices was established, with ethanol and carbon dioxide loaded into a silica capillary, the solubility of ethanol in SC-CO_2 was determinated. The experimental results indicated that the solubility of ethanol increased from 0.085 to 0.485 mg·mg~(-1) in CO_2 when temperature rose from 77.6 to 183.8 oC, and the temperature effect could be represented by an exponential equation—S = 0.0231 e 0.016T.
     In summary, a new method using a silica capillary, in combination with a microscope and a video recorder system, has been applied to determine the solubility of chlorobenzene and copper sulphate in SBCW and ethanol in SC-CO_2. Moreover, it was demonstrated that the silica capillary method used here was low in energy and materials consumptions, safe, repeatable, and efficient. It has a great potential to be applied for the solubility determination of other organics and also inorganic salt crystals in sup/sub-critical fluids.
引文
[1] Ikushima Y, Hatakeda K, Sato O, et al. Noncatalytic organic synthesis using supercritical water: the peculiarity near the critical point[J]. Angewandte Chemie International Edition, 1999, 38(19): 2910-2914.
    [2] Tollba1ck J, Bigata M B, Crescenzi C, et al. Feasibility of analyzing fine particulate matter in air using solid-phase extraction membranes and dynamic subcritical water extraction[J]. Analytical Chemistry, 2008, 80(9): 3159-3167.
    [3] Kamalia H, Ghaziaskarb H S. Pressurized hot water extraction of benzoic acid and phthalic anhydride from petrochemical wastes using a modified supercritical fluid extractor and a central composite design for optimization[J]. The Journal of Supercritical Fluids, 2010, 47: 16-21.
    [4]廖传华,朱跃钊,李永生.超临界水氧化反应器的研究进展[J].环境工程, 2010, 28(2): 7-12.
    [5]中国环境优先监测研究课题组编.环境优先污染物,北京:中国环境科学出版社, 1989.
    [6] Horvath A. Possibilities of combined heat and power-generation (co-generation) on goal basis[J]. Energia Es Atomtechnika, 1982, 35(5): 212-213.
    [7]朱自强.超临界流体技术-原理和应用[M].北京:化学工业出版社, 2000. 20-21.
    [8]黄振仁,廖传华.超临界二氧化碳流体萃取技术[M].北京:化学工业出版社, 2004, 15.
    [9]苏根利,谢洪森,丁东业.超临界水的物理化学性质及意义[J].地质地球化学, 1998, 26(2): 83-89.
    [10]戚朝荣,江焕峰.超临界二氧化碳介质中的有机反应[J].化学进展, 2010, 22(7): 1274-1287.
    [11]周志华,吴涤尘.溶解、溶解度及计算[M].北京:科学普及出版社, 1987.13.
    [12]宋新武,白武明.高温高压实验中重金属在硅酸盐熔体中溶解度研究及进展[J].地球物理学进展, 2009, 24(2): 481-487.
    [13]金振民.我国高温高压实验研究进展和展望[J].地球物理学报, 1997, 40(增): 70-81.
    [14]王绳祖.高温高压岩石力学——历史、现状、展望[J].地球物理学进展, 1995, 10(4): 1-31.
    [15]《化学工程手册》编委会.化学工程手册(第9篇) [M].北京:化学工业出版社, 1985. 111, 122, 150.
    [16]张瑜.几种无机盐和有机化合物水溶液结晶介稳态研究[D].天津大学, 2007.
    [17] Pitzer K S. Thermodynamics of electrolytes. 1. Theoretical basis and general equations[J]. Journal of Physical Chemistry. 1973, 77 (2): 268-277.
    [18] Pitzer K S, Mayorga G. Thermodynamics of electrolytes. 2. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. Journal of Physical Chemistry, 1973, 77 (19): 2300-2308.
    [19] Pitzer K S, Pabalan R T. Thermodynamics of NaCl in steam[J]. Geochimica et Cosmochimica Acta, 1986, 50 (7): 1445-1454.
    [20] Pitzer K S, Wang P M, Rard J A, et al. Thermodynamics of electrolytes. 13. Ionic strength dependence of higher-order terms; Equations for CaCl2 and MgCl2[J]. Journal of Solution Chemistry, 1999, 28(4): 265-282.
    [21] Clegg S L, Pitzer K S. Thermodynamics of multicomponent, mlsclble, ionlc solutions. 2. mlxtures includlng unsymmetrical electrolytes[J]. Journal of Physical Chemistry, 1992, 96(23): 9470-9479.
    [22] Clegg S L, Pitzer K S. Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes[J]. Journal of Physical Chemistry, 1992, 96(8): 3513–3520.
    [23]张军,夏树屏.利用Pitzer电解质溶液模型预测水盐体系的溶解度[R].中国化学会第八届全国应用化学年会, 2003: 148-150.
    [24] Leusbrocka I, Metza S J, Rexwinkel G. Quantitative approaches for the description of solubilities of inorganic compounds in near-critical and supercritical water[J]. The Journal of Supercritical Fluids, 2008, 47: 117-127.
    [25] Higashi H, Iwai Y, Matsumoto K, et al. Measurement and correlation for solubilities of alkali metal chlorides in water vapor at high temperature and pressure[J]. Fluid Phase Equilibria, 2005, 228: 547-551.
    [26]陈敏恒,方图南,丛德滋.化工原理(第二版)[M].北京:化学工业出版社, 1999, 220-228.
    [27]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社, 1985, 90-99.
    [28]施尔畏,陈之战,元如林.水热结晶学[M].北京:科学出版社, 2004, 4-10.
    [29]曾广策,朱云海,叶德隆.晶体光学及光性矿物学[M].武汉:中国地质大学出版社, 1997, 15-33.
    [30]汪相.晶体光学[M].南京:南京大学出版社, 2003, 35-46.
    [31]胡浩彬,雷霁远.偏光显微镜在中药鉴定中的应用[J].南京中医药大学学报, 2007, 23(4):268-269.
    [32] Kawasaki S I, Oe T, Itoh S, et al. Flow characteristics of aqueous salt solutions for applications in supercritical water oxidation[J]. The Journal of Supercritical Fluids, 2007, 42: 241-254.
    [33]马承愚,姜安玺,彭英利,等.钛合金在超临界水氧化含氯废水介质中腐蚀的研究[J].云南大学学报(自然科学版), 2006, 28(S1): 274-276.
    [34] Aage F, Jones R L, Prausnitz J M. Group-contributionestimation of activity coefficients in nonideal liquid mixtures[J]. AIChE Journal, 1975, 21(6): 1086–1099.
    [35]周健,朱宇,汪文川.超临界NaCl水溶液的分子动力学模拟[J].物理化学学报, 2000, 18(3): 202-212.
    [36] Cui S T, Harris J G. Solubility of sodium chloride in supercritical water: A molecular dynamics study[J]. The Journal of Chemistry, 1995, 99(9): 2900-2906.
    [37] Petrenko V E, Antipova M L, Ved O V. Molecular dynamics simulation of sub-and supercritical water with a new interaction potential[J]. Russian Journal of Physical Chemistry A, 2007, 81(12): 2016-2023.
    [38]倪良,王学宝,张莉,等.浊点法研究水-苯酚系统的临界溶解温度[J].江苏大学学报(自然科学版), 2006, 27(4): 364-367.
    [39] Robert C M, Robert E M, John M S. Solubility of potassium carbonate in water between 384 and 529 K measured using the synthetic method[J]. Journal of Chemical and Engineering Data, 1997, 42: 1078-1081.
    [40] Hodes M, Griffith P, Smith K A, et al. Salt solubility and deposition in high temperature and pressure aqueous solutions[J]. AIChE Journal, 2004, 50(9): 2038-2049.
    [41] Hurst W S, Hodes M S, Bowers W J. Optical flow cell and apparatus for solubility, salt deposition and Raman spectroscopic studies in aqueous solutions near the water critical point[J]. The Journal of Supercritical Fluids, 2002, 22: 157-166.
    [42] Pokrovskia G S, Rouxb J, Hazemann J L. An X-ray absorption spectroscopy study of argutite solubility and aqueous Ge(IV) speciation in hydrothermal fluids to 500 oC and 400 bar[J]. Chemical Geology, 2005, 217: 127-145.
    [43] Connolly J F. Solubility of hydrocarbons in water near the critical solution temperatures[J]. Journal of Chemical and Engineering Data, 1966, 11(1): 13-16.
    [44] Abdulagatov I M, Azizov N D. Experimental vapor pressures and derived thermodynamic properties of aqueous solutions of lithium sulfate from 423 to 573 K[J]. Fluid Phase Equilibria, 2004, 216: 189-199.
    [45] Carr A G, Mammucari R, Foster N R. Solubility, solubility modeling, and precipitation of naproxen from subcritical water solutions[J]. Industrial and Engineering Chemistry Research, 2010, 49: 9385-9393.
    [46] Carr A G, Mammucari R, Foster N R. Solubility and micronization of griseofulvin in subcritical water[J]. Industrial and Engineering Chemistry Research, 2010, 49: 3403-3410.
    [47] Carr A G, Branch A, Mammucari R, Foster N R. The solubility and solubility modelling of budesonide in pure and modified subcritical water solutions[J]. The Journal of Supercritical Fluids, 2010, 55: 37-42.
    [48] Sue K, Usami T, Arai K, et al. Quinacridone solubility in hot-compressed water[J]. Journal of Chemical and Engineering Data, 2007, 52: 714-717.
    [49] Kayan B, Yang Y, Lindquist E J., et al. Solubility of benzoic and salicylic acids in subcritical water at temperatures ranging from (298 to 473) K[J]. Journal of Chemical and Engineering Data, 2010, 55: 2229-2232.
    [50] Leusbrock I, Metz S J, Rexwinkel G, et al. Solubility of 1:1 alkali nitrates and chlorides in near-critical and supercritical water[J]. Journal of Chemical and Engineering Data, 2009, 54: 3215-3223.
    [51] Leusbrock I, Metz S J, Rexwinkel G, et al. The solubility of magnesium chloride and calcium chloride in near-critical and supercritical water[J]. The Journal of Supercritical Fluids, 2010, 53: 17-24.
    [52] Leusbrock I, Metz S J, Rexwinkel G, et al. The solubilities of phosphate and sulfate salts in supercritical water[J]. The Journal of Supercritical Fluids, 2010, 54: 1-8.
    [53] Zhang D F, Montanés F, Srinivas K, et al. Measurement and correlation of the solubility of carbohydrates in subcritical water[J]. Industrial and Engineering Chemistry Research, 2010, 49: 6691-6698.
    [54] Srinivas K, King J W, Howard L R, et al. Solubility and solution thermodynamic properties of quercetin and quercetin dihydrate in subcritical water[J]. Journal of Food Engineering, 2010, 100: 208-218.
    [55] Srinivas K, King J W, Howard L R, et al. Solubility of gallic acid, catechin, and protocatechuic acid in subcritical water from (298.75 to 415.85) K[J]. Journal of Chemical and Engineering Data, 2010, 55: 3101-3108.
    [56]陈洪,苏畅,张兆斌,等.超临界二氧化碳的四个应用方向[J].生物加工过程, 2005, 3(4): 14-22.
    [57]陈洪,马清仪,杜毅,等.微生物和植物细胞的破碎方法[P].中国发明专利: 03115098. 5, 2003.
    [58]侯玉翠,孙军红.卵黄油在超临界二氧化碳中的溶解度及其模拟[J].山西师范大学学报(自然科学版), 2000, 14(3): 62-67.
    [59]黄海涛,丁一刚,陈虎,等.金属络合物在超临界二氧化碳中的溶解度研究[J].化学与生物工程, 2009, 26(2): 14-17.
    [60] Min J, Li S, Hao J, et al. Supercritical CO2 extraction of jatropha oil and solubility correlation[J]. Journal of Chemical and Engineering Data, 2010, 55: 3755-3758.
    [61] Chafer A, Fornari T, Stateva R P, et al. D-Pinitol solubility in supercritical CO2: experimental data and correlation[J]. Journal of Chemical and Engineering Data, 2010, 55: 3101-3108.
    [62] Zheng J H, Xu M X, Lu X Y, et al. Measurement and correlation of solubilities of C.I. Disperse Red 73, C.I. Disperse Blue 183 and their mixture in supercritical carbon dioxide[J]. Chinese Journal of Chemical Engineering. 2010, 18(4): 648-653.
    [63]张阳.分子模拟在纯超临界流体及其二元混合物体系中的应用[D].北京:清华大学化学工程系, 2005.
    [64]刘娟红,娄彦敏,周晓平,等.超临界二氧化碳与共溶剂甲醇的分子动力学模拟[J].西南师范大学学报(自然科学版), 2009, 34(6): 28-33.
    [65] Chafer A, Fornari T, Stateva R P, et al. Solubility of the natural antioxidant gallic acid in supercritical CO2 + ethanol as a cosolvent[J]. Journal of Chemical and Engineering Data, 2007, 52: 116-121.
    [66] Wu W Z, Li W J, Han B X, et al. Effect of organic cosolvents on the solubility of ionic liquids in supercritical CO2[J]. Journal of Chemical and Engineering Data, 2004, 49: 1579-1601.
    [67] Catchpole O J, Tallon S J, Dyer P J, et al. Measurement and modelling of urea solubility in supercritical CO2 and CO2 + ethanol mixtures[J]. Fluid Phase Equilibria, 2005, 237: 212-218.
    [68]美国国家标准与技术研究院(NIST)http://webbook.nist.gov/cgi/cbook.cgi?ID=C7732185&Units=SI&Mask=4#Thermo-Phase.
    [69]刘光启.化学化工物性数据手册无机卷[M].北京:化学工业出版社,2002.
    [70] Miller D J, Hawthorne S B. Solubility of liquid organic flavor and fragrance compounds in subcritical (hot/liquid) water from 298 K to 473 K[J]. Journal of Chemical and Engineering Data, 2000, 45: 315-318.
    [71] Wei G T, Wei C H, He F M, et al. Dechlorination of chlorobenzene in subcritical water with Fe/ZrO2, Ni/ZrO2 and Cu/ZrO2[J]. Journal of Environmental Monitoring, 2009, 11: 678-683.
    [72]天津化工研究院等.无机盐工业手册[M].北京:化学工业出版社, 1979.
    [73]李武.无机晶须[M].北京:化学工业出版社, 2005.
    [74] Levin E M , Robbins C R , Mcmurdie H F. Phase diagrams for ceramists[M]. USA: The American Ceramic Society , 1989.
    [75]黄子卿.电解质溶液理论导论[M].北京:科学出版社, 1983: 118-235.
    [76]朱路甲,靳建龙,刘颖.木糖醇溶解度和结晶介稳区的研究[J].中国食品添加剂, 2005, 12: 35-37.
    [77]向波涛,王涛,陈跎.超临界水中硫酸钠溶解度研究[J].化学工程, 2001, 29(1): 72-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700