用户名: 密码: 验证码:
大变形异步叠轧与热处理调控超细晶铜组织结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过大变形异步叠轧与热处理调控铜材组织,制备出具有均匀孪晶的超细晶铜材,通过大变形异步叠轧与热处理工艺探索、铜材不同工艺阶段组织结构分析、再结晶铜材晶界类型及孪晶分析与形成条件理论计算、铜材变形织构与再结晶织构计算、各工艺条件铜材性能测试等研究手段,围绕大变形异步叠轧铜材微观结构分析与晶粒细化机制、再结晶形成超细孪晶结构铜材组织演变与再结晶机制、变形与再结晶织构演变规律和孪晶取向形成机制、制备出超细孪晶铜材力学性能和导电性等内容开展了系统的实验分析与理论研究。研究获得以下结果:
     1.研究了异步叠轧变形过程中铜材内部组织和晶界结构的变化规律,分析获得异步叠轧晶粒细化过程分为三个阶段:
     异步叠轧等效应变ε≤1.6时,剪切应力作用下形成S带,S带中纵横交错的位错墙,将S带进一步细化为5-10μM的位错胞结构;晶界发生滑动、晶粒内部晶面发生滑移,大晶粒内部产生很多小角度晶界。
     异步叠轧等效应变2.4≤ε≤4.0时,S带消失,大部分形变晶粒中都形成2~3个小亚晶;在相邻晶粒的塑性变形及位错胞壁的聚集作用下,亚晶最终被分裂成不同的两个大角晶粒,使晶粒进一步细化,亚晶胞尺寸在0.5μm以下;位错的塞积团聚分布不均匀。
     异步叠轧等效应变ε=4.8时,显微组织结构有两种典型特征:一是部分大晶粒内包含几个由位错胞包裹的小晶粒;二是内部位错密度很高的区域,形状不规则,杂乱无序的分布在各个形变晶粒之间。
     2.研究了异步叠轧(ε=4.8)制备超细晶铜材再结晶过程中组织结构和界面演变,并获得再结晶机制与孪晶形成机制:
     异步叠轧(ε=4.8)铜材再结晶退火过程中首先发生回复,铜材内位错攀移,对消,并规则排列在亚晶界,形成规整锋锐的亚晶结构;随退火时间延长,发生再结晶形核,由于亚晶在回复过程中形成有效的取向梯度,以及大变形异步叠轧时晶界处位错的交滑移等因素的影响,产生亚晶聚合粗化形核;最后在亚晶粗化聚合后,小角度晶界比例减小,大角度晶界比重增加,大角晶界向位错密度高的区域弓出迁移,直到与相邻的再结晶晶粒相遇,再结晶完成。
     240℃再结晶退火20分钟开始,形成在晶界处最初的退火孪晶形核,随退火时间的延长,这种由亚晶胞壁内萌生的部分位错在此亚晶胞结构内向前扫过时,孪晶形核的前端向晶粒内部生长,便产生不同的孪晶界,最终在退火35~40分钟时,形成大量超细孪晶。
     异步叠轧变形过程中铜材的低Σ CSL晶界逐渐被剪切变形破碎;再结晶过程中,形成∑3再激发模型,随着再结晶形核和晶粒长大,大角晶界逐步迁移的过程,构成Σ3-Σ9-∑3的晶界连接网络,达到铜材再结晶过程GBDC优化效果。
     3.研究了异步叠轧变形和再结晶过程铜材织构演变过程:
     经过均匀化退火,铜材内形成退火织构,但在异步叠轧过程中退火织构组分消失,其他织构组分较为复杂,主要为剪切织构({001}<110>)组分,随着等效应变量的增大,剪切织构组分的取向密度随之增强,在道次间去应力退火处理后,会生成较弱的立方织构({001}<100>)组分。
     再结晶退火铜材的织构组分变化较大,残余的变形织构只剩剪切织构组分,而且它的取向密度随退火时间延长而减弱,但再结晶完成时并不能完全消除剪切织构组分;而随着再结晶过程,逐渐形成新的织构组分,其中{221}<114>实质上是异步叠轧形成的剪切织构再结晶退火时沿{111}面的镜面反映,而形成的孪晶取向。
     4.研究了不同等效应变异步叠轧变形铜材、再结晶不同阶段铜材的显微硬度、单向静拉伸、疲劳性能和导电性能,结合铜材组织研究对其性能变化进行分析:
     异步叠轧过程中,随等效应变量的增大,变形铜材的强度随之增高,但延伸率降低;异步叠轧(ε=4.8)铜材在240℃进行再结晶退火处理40分钟后获得强度与塑性较好超细孪晶铜。
     异步叠轧过程中,随等效应变量的增大,变形铜材的疲劳寿命先增后减,在三道次异步叠轧(ε=2.4)时达到极大值;240℃再结晶退火40分钟时,超细孪晶铜材疲劳寿命达到极大值,抗拉强度也为最大值,其综合性能是最好的。
     铜材的电导率在异步叠轧变形过程中随等效应变量的增大而减小,再结晶退火过程中,随退火时间延长而逐渐增加,形成超细孪晶对导电性提高较大。
     本论文通过大变形异步叠轧与热处理组合调控超细晶铜材组织、界面结构,制备出组织均匀、高强度、高塑性及良好导电性的超细孪晶铜材。通过大变形异步叠轧方法制备出超细孪晶铜材,为超细晶材料的组织控制提供新的研究内容,也为制备块体尺寸超细孪晶铜材提供新的方法。关于利用调控大变形异步叠轧和热处理方法制备含有均匀超细孪晶结构铜材,及对其组织结构、织构演变过程的研究工作具有特色与创新,并对晶粒细化机制、再结晶孪晶机制进行分析和讨论。
In present thesis, structure evolution process of copper was regulated by Asymmetrical Accumulative Rolling Bonding(AARB) and heat treatment. By means of AARB and heat treatment technology searching, analysis of copper microstructure in different conditions, analysis and theoretical calculation of the twins and grain boundaries, calculation of texture in deformed and recrystallized process, testing of copper in every process condition, the deformation and grain refinement mechanism of copper deformed by AARB, ultrafine twins and recrystallization mechanism of copper, evolution of deformed and recrystallized texture to twin orientation, mechanical properties and electrical conductivity of copper were researched by experimental and theoretical analysis. The mainly results could be concluded as follows.
     1. The evolution of the structure and grain boundary structure of copper deformed by AARB were studied. The process of grain refinement was obtained.
     The copper with big grains was obtained by AARB when the equivalent strain(ε) was less than1.6, bands shaped like "S" were formed with the action of shear stress. The crisscrossed dislocation walls in "S" band refined the "S" band to smaller dislocation cells. Based on the slipping of grain boundaries and the slipping of crystal in grains, low-angle boundaries were produced in most of the big grains.
     As copper deformed by AARB with the equivalent strain(ε) within2.4and4.0,"S" bands can't be obtained, and about2-3subgrains were obtained in most of deformed grains. With the effect of plastic deformation and gathering of dislocation walls, one sub-grain was divided to two grains. Deformed grains were refined to0.5μm, and distribution of piling up of dislocations was uneven.
     2. Ultrafine copper was treated by recrystallization annealing when ε was4.8, and the microstructure and twins was observed, the results were as follows:
     Recovering of deformed grains was observed first of all in the recrystallization annealing of copper deformed by AARB with ε was4.8, in this stage, cliping and compensation of dislocations in deformed grains had happened. The dislocations were lined up in subgrain boundaries, and neat subgrain structure was obtained. Along with the recrystallization annealing time, nucleation and growth happened during recrystallization. Due to the orientation gradient in subgrains in recovering stage, the subgrains occured aggregation and coarsening to nucleation. At last, the grains grown to adjacent grain boundaries approached. In that stage, low-angle boundaries decreased and high-angle boundaries increased with which migrated to the dislocation area of high density.
     The original annealing twin nucleation was observed at grain boundary when recrystallization annealing for20minutes. Along with the annealing time, when the partial dislocation inside the subgrain boundary swept forward in the very subgrain cell structure, the annealing twin nucleation grown to the grain inside, and two of twin boundaries were produced. Finally annealing for35~40minutes, a plenty of ultrafine twins were obtained.
     The low-Σ CSL grain boundries were broken crushed by AARB shearing deformation. According Σ3remotication model, the Σ3-Σ9-Σ3grain boundaries bonding formed with the growth of recrystallization nucleation and the migration of high-angle grain boundaries.
     3. The evolution of texture of copper deformed by AARB with different s and recrystallization annealing for different times were observed, and the results showed as follows:
     Annealing texture was obtained in copper after homogenizing annealing, and which disappeared in AARB deformation followed. The deformed texture was complex. But there was mainly shear texture ({001}<110>) whose density increased with the rise of ef fective strain s. The feeblish cube texture({001}<100>) was obtained after relief annealing in every twice passes.
     Great changes had happened in copper during recrystallization. The shear texture was the only remained deformed texture, and whose density decreased with extension of annealing time. The new texture was obtained in recrystallization, in which texture {221}<114> was twin orientation, a mirror reflection of shear texture from AARB deformation along twinning plane{111}.
     4. The micro hardness,tesile properties, fatigue properties and electrical conductivity of copper under different conditions were determined and the change of properties was analyzed.
     During the course of AARB, the strength of copper increases with the rise ofε, but its elongation rate decreases. Ultrafine copper with good properties could be obtained when recrystallized annealing at240℃for40minutes.
     During the course of AARB, the fatigue life of copper increases with the rise of ε; and it achieved the maximum at three passes deformed by AARB. Recrystallization annealing ultrafine copper achieved the maximum at240℃for40minutes, and its tensile strength got the maximum.
     Electrical conductivity decreased with the rise of equivalent strain. During the recrystallization annealing, electrical conductivity of ultrafine copper increased with the annealing time extension. Ultral-fine annealing twins formed during recrystallization annealing increased the electrical conductivity of ultra-fine grain copper.
     Ultra-fine grain copper possessing uniform structure, high strength and ductility, good electrical conductivity has been prepared by AARB and recrystallization annealing. Ultrafine-twin copper obtained by AARB was proposed firstly. This could provide new research contents to controling the stucture of ultrafine materials, and also provide a new method for preparing ultrafine-twin copper with block size. By means of regulating deformation by AARB and recrystallization annealing, preparation of ultrafine-twin copper and its structure and texture had not been reported yet, but this work was researched here, in the meantime, the mechanism of grain refinement and recrystallization twins formation were analyzed and discussed too.
引文
[1]张娟,刘长瑞,王快社等.制备块体细晶材料的大塑性变形方法[J].新技术新工艺,2008(8):94-95.
    [2]Segal V M, Reznikov V I, Drobyshevski A E, et al. Metally,1981,1:115.
    [3]郑志军,高岩.块体纳米晶材料的大塑性变形制备技术[J].材料导报,2008,22(1):90-101.
    [4]Stolyarov V V, et al. Mater Sci Eng A,2001,299(1-2):59/金鑫炎,李双寿,曾大本.sr对AM60B铸造镁合金晶粒细化的影响[J].铸造,2005,(6):566.
    [5]李金锋,耿浩然,滕新营.Ba对AZ91镁合金组织和性能的影响[J].热加工工艺,2005,(7):5.
    [6]王星,吕广庶,蔡刚毅.不同热处理工艺对7475铝合金ECAP的影响[J].新技术新工艺,2007(10):88-89.
    [7]K.Oh-ishi, A.P.Zhilaev, T.R.McNelley. Effect of strain path on evolution of deformation bands during ECAP of pure aluminum[J]. Materials Science and Engineering A, 2005,(410-411):183-187.
    [8]Majid Hoseini, Mahmood Meratian, Mohammad R. Toroghinejad, Jerzy A. Szpunar. Texture contribution in grain refinement effectiveness ofdifferent routes during ECAP[J]. Materials Science and Engineering A,2008(497):87-92.
    [9]M.CabibboA TEM Kikuchi pattern study of ECAP AA1200 via routes A,C,BC[J]. MATERIALS CHARACTERIZATION,2010(61):613-625.
    [10]丁雨田,唐向前,袁训锋等.ECAP条件下纯铜应变行为的等效应变规律及变形均匀性[J].兰州理工大学学报,2009,35(2):1-4.
    [11]边丽萍,梁伟,马建等.改进ECAP路径对Al-Mg2Si原位复合材料组织与力学性能的影响[J].中国有色金属学报,2011,21(8):1841-1846.
    [12]杨西荣,赵西成,付文杰.变形方式对工业纯钛室温ECAP组织及性能影响[J].稀有金属材料与工程,2009,38(11):1910-1914.
    [13]Yang Xirong, Zhao Xicheng, Fu Wenjie. Deformed Microstructures and Mechanical Properties of CP-Ti Processed by Multi-Pass ECAP at Room Temperature[J]. Rare Metal Materials and Engineering,2009,38(6):0955-0957.
    [14]杨西荣,吕梦南.室温ECAP变形影响的有限元分析[J].西安建筑科技大学学报,2011,43(5):720-724.
    [15]张国平.应变速度对等通道转角变形纯铝组织细化的影响[J].材料热处理学报,2008,29(1):111-115.
    [16]杨占林,赵西荣,何晓梅.12MnNb钢ECAP变形及组织性能研究[J].热加工工艺,2009,38(18):9-15.
    [17]何运斌,潘清林,刘晓艳等.ECAP法制备细晶ZK60镁合金的微观组织与力学性能[J].材料工程,2011(6):32-38.
    [18]王成,赵西成,杨西荣等.室温ECAP变形工业纯钛的微观组织研究[J].热加工工艺,2009,38(14):1-3.
    [19]王幸运,赵西成,杨西荣等.ECAP制备超细晶钛的力学性能研究[J].热加工工艺,2009,38(10):10-15.
    [20]李萧,杨平,李继忠等.等通道挤压对AZ80镁合金的组织和织构的影响[J].热加工工艺,2010,39(1):85-91.
    [21]王磊,武保林.具有初始织构的AZ31镁合金等通道挤压的显微组织和织构研究[J].沈阳航空工业学院学报,2009,26(5):46-50.
    [22]王素梅,孙康宁,刘睿等.第二相粒子对ECAP挤压的2A12铝合金晶粒细化的影响[J].材料科学与工艺,2007,15(1):115-117.
    [23]程晓农,宋刚,莫纪平等.强化固溶态2024铝合金ECAP加工后的拉伸性能[J].江苏大学学报,2007,28(1):33-36.
    [24]王飞,魏伟,魏坤霞等.ECAP铜基原位复合材料的组织与性能研究[J].稀有金属,2009,33(3):338-342.
    [25]李明山,杜忠泽,王庆娟等.超细晶高性能Cu-0.6Cr合金的疲劳裂纹的产生与断裂[J].材料热处理技术,2008,37(2):20-24.
    [26]刘琼,王庆娟,杜忠泽.用等通道转角挤压法制备的超细晶铜的腐蚀性能[J].材料保护,2009,42(8):27-29.
    [27]P.WJ.Mckenzie, R.Lapovok.ECAP with back pressure for optimum strength and ductility in aluminium alloy.Part 1:Microstructure[J]. Acta Materialia, 2010(58):3198-3211.
    [28]P.WJ.Mckenzie, R.Lapovok. ECAP with back pressure for optimum strength and ductility in aluminium alloy. Part 2:Mechanical properties and texture[J]. Acta Materialia,2010(58):3212-3222.
    [29]E.A.E1-Danaf, M.S.Soliman, A.A.Almajid, M.M.El-Rayes.Enhancement of mechanical properties and grain size refinement of commercial purity aluminum 1050 processed by ECAP[J]. Materials Science and Engineering A,2007(458):226-234.
    [30]K.R.Cardoso, D.N.Travessa, WJ.Botta, A.M.Jorge Jr. High Strength AA7050 Al alloy processed by ECAP:Microstructure and mechanical properties[J]. Materials Science and Engineering A,2011 (528):5804-5811.
    [31]L.J.Zheng, H.X.Li,M.F.Hashmi, C.Q.Chen, Y.Zhang, M.G.Zeng.Evolution of microstructure and strengthening of 7050 Al alloy by ECAP combined with heat-treatment[J]. Journal of Materials Processing Technology,2006(171):100-107.
    [32]W.Blum, YJ.Li, Y.Zhang, J.T.Wang, deformation resistance in the transition from coarse-grained to ultrafine-grained Cu by severe plastic deformation up to 24 passes of ECAP[J]. Materials Science and Engineering A,2011(528):8621-8627.
    [33]Mohamed Ibrahim Abd El Aal, Nahed El Mahallawy, Farouk A. Shehata et al. Wear properties of ECAP-processed ultrafine grained Al-Cu alloys[J]. Materials Science and Engineering A,2010(527):3726-3732.
    [34]Sangmok Lee. Superplastic properties of Pd-62%Sn eutectic alloy after equal channel angular pressing (ECAP)[J].Journal of Materials Processing Technology,2008(201):441-444.
    [35]Saito Y, Utunomiya H, Ysuji N, et al. Novel utral-high straining process for bulk materials development of the accumulative roll-bonding(ARB) process[J]. Acta Materialia,1999,47(2):579-583.
    [36]詹美燕,李元元,陈维平.累积叠轧技术的研究现状与展望[J].中国有色金属学报,2007,17(6):841-851.
    [37]Charles Kwan, Zhirui Wang, Suk-Bong Kang. Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding(ARB) processed Al alloy 1100[J]. Materials Science and Engineering A, 2008(480):148-159.
    [38]Charles C.F.Kwan, Zhirui Wang. A composite nature of cyclic strain accommodation mechanisms of accumulative roll bonding (ARB) processed Cu sheet materials [J]. Materials Science and Engineering A,2011(528):2042-2048.
    [39]G. Krallics, J.G Lenard. An examination of the accumulative roll-bonding process[J]. Journal of Materials Processing Technology,2004(152):154-161.
    [40]Rika Yoda, Kosuke Shibata, Takatoshi Morimitsu, et al. Formability of ultrafine-grained interstitial-free steel fabricated by accumulative roll-bonding and subsequent annealing[J]. Scripta Materialia,2011(65):175-178.
    [41]Damon Kent, Gui Wang, Zhentao Yu, et al. Strength enhancement of a biomdical titanium alloy through a modified accumulative roll bonding technique[J], Journal of the Mechnical Behavior of Biomedical Materials,2011(4):405-416.
    [42]许荣昌,唐荻,任学平等.累积叠轧焊强化金属材料的力学性能[J].北京科技大学学报,2007,29(3):310-314.
    [43]王耀奇,候红亮,李志强等.纯铝累积叠轧焊组织与性能演变规律研究[J].塑性工程学报,2006,13(8):96-99.
    [44]王耀奇,候红亮,许荣昌等.累积叠轧焊对L2纯铝力学性能影响的研究[J].锻压技术,2006(1):86-89.
    [45]许荣昌,唐荻,任学平等.累积叠轧焊工艺改善普碳钢材料性能特征[J].北京科技大学学报,2005,27(4):448-452.
    [46]吕爽,王快社,张兵等.1060工业纯铝累积叠轧后的力学性能[J].机械工程材料,2008,32(3):75-77.
    [47]张兵,袁守谦,魏颖娟等.1060铝在累积轧制中组织和性能的演变[J].机械工程材料,2008,32(1):67-69/田景来,吕爽,王快社.累积叠轧1060纯铝微观组织和力学性能的研究[J].铸造技术,2008,29(5):667-669.
    [48]陈维平,杨冬雨,詹美燕.累积叠轧焊温度和循环道次对AZ31镁合金组织和性能的影响[J].特种铸造及有色合金,2008,28(5):338-340.
    [49]詹美燕,李元元,陈维平等.累积叠轧工艺对AZ31镁合金板材组织和行能得影响[J].材料工程,2008(3):22-27.
    [50]K. Wu, H. Chang, E. Maawad, et al. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding(ARB)[J]. Materials Science and Engineering A,2010(527):3073-3078.
    [51]H.S.Liu, B.Zhang, GP.Zhang. Microstructures and mechanical properties of Al/Mg alloy multilayered composites produced by accumulative roll bonding[J]. J.Mater.Sci.Technol,2011,27(1):15-21.
    [52]M.Eizadjou, A.Kazemi Talachi, H.Danesh Manesh, et al. Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding(ARB) process[J]. Composites Science and Technology, 2008(68):2003-2009.
    [53]董成文,任学平,李艳芳等.低压循环相变对累积叠轧TA1/Q235钢复合板结合特性影响的研究[J].塑性工程学报,2008,15(3):180-185.
    [54]何春雨,许荣昌,任学平等.钛/钢复合板累积叠轧焊复合工艺的试验研究[J].上海金属,2006,28(3):28-31.
    [55]程永奇,陈振华,夏伟军,张文玉,曹清香.大塑性变形技术的研究与发展现状[J].材料导报,2006(20):245-248.
    [56]杨钢,王立民,刘正东.超大塑性变形的研究进展-块体纳米材料制备(1)[J].特钢技术,2008,54(14):1-8.
    [57]薛克敏,张君,李萍等.高压扭转法的研究现状及展望[J].合肥工业大学学报,2008,31(10):1613-1616.
    [58]Ungar T, Kolednik O, Pippan R. Homogenization of metal matrix, composites by high-pressure torsion[J]. Metallurgical and Materials Transactions, 2005(A36):2005-2863.
    [59]谢子令,武晓雷,谢季佳等.高压扭转铜试样的微观组织与压缩性能[J].金属学报,2008,44(7):803-809.
    [60]程永奇,陈振华,夏伟军等.大塑性变形技术的研究与发展现状[J].材料导报,2006(20):245-248.
    [61]Valiev R Z, Islamgaliev R K, Shagiev M R, et al. SCR Mater,1999,40(2):183.
    [62]张廷杰,张小明,田锋等.7050铝合金在多向大变形锻造和退火中细晶粒结构的演变[J].稀有金属材料与工程,2001,30(5):335-338.
    [63]张小明,张廷杰,田锋等.多向锻造对改善7050铝合金性能的作用[J].稀有金属材料与工程,2003,32(5):372-374.
    [64]Zhang Tingjie, Zhang Xiaomin, Tian Feng, Li Zhongkui. Structure and Properties of Multi-directionally Forged 7050 Aluminum Alloy[J]. RARE METAL MATERIALS AND ENGINEERING,2002,31(4):257-260.
    [65]郭强,严红革,陈振华等.多向锻造工艺对AZ80镁合金显微组织和力学性能的影响[J].金属学报,2006,42(7):739-744.
    [66]郭强,严红革,陈振华等.AZ80镁合金多向锻造变形过程中晶粒取向的演变[J].金属学报,2007,43(6):619-624.
    [67]Bethash Mani, Mohammad Jahedi, Mohammad Hossein Paydar. A modification on ECAP process by incorporating torsional deformation[J]. Materials Science and Engineering A,2011(528):4159-4165.
    [68]K.Matsubara, Y.Miyahara, Z.Horita et al. Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP[J]. Acta Materialia, 2003(51):3073-3084.
    [69]H.Alihosseini, M.Awle Zaeem, K.Dehghani. A cyclic forward-backward extrusion process as a novel severe plastic deformation for production of ultrafine grains materials[J]Materials Letters,2011.10.037.
    [70]M.Shahbaz, N.Pardis, R.Ebrahimi et al. A Novel Single Pass Severe Plastic Deformation[J]. Materials Science & Engineering A,2011.09.114.
    [71]N.Pardis, R.Ebrahimi. Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique [J]. Materials Science and Engineering A, 2009(527):355-360.
    [72]A.Zangiabadi, M.Kazeminezhad. Development of a novel severe plastic deformation method for tubular materials:Tube Channel Pressing (TCP)[J].Materials Science and Engineering A,2011 (528):5066-5072.
    [73]Seung Chae Yoon, A. Krishnaiah, Uday Chakkingal et al. Severe plastic deformation and strain localization in groove pressing[J]. Computational Materials Science,2008(43):641-645.
    [74]L.S. To'th, M. Arzaghi, J.J.Fundenberger et al. Severe plastic deformation of metals by high-pressure tube twisting[J]. Scripta Materialia,2009(60):175-177.
    [75]孙蓟泉,戴辉,唐荻.异步轧制技术发展概况及其应用前景[J].鞍钢技术,2009(5):1-6.
    [76]Zhiming Li, Liming Fu, Bin Fu et al. Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J]. Materials Science & Engineering A, 2012(558):309-318.
    [77]刘刚,齐克敏,王福等.剪切变形方式对取向硅钢织构和磁性的影响[J].钢铁,2000,35(4):40-43.
    [78]张正贵,姚旭升,祝晓波等.异步轧制速比对低硅无取向硅钢冷轧织构的影响[J].机械工程材料,2007,31(12):8-10.
    [79]张正贵,祝晓波,刘沿东等.形变对无取向硅钢冷轧织构的影响[J].钢铁研究学报,2008,20(5):41-44.
    [80]刘刚,齐克敏,贺会军等.异步轧制取向硅钢的织构形成与转变机理[J].钢铁研究学报,1999,11(5).
    [81]张芳,周世春,沙玉辉等.异步轧制下无取向硅钢的冷轧织构[J].东北大学学报(自然科学版),2007,28(11):1564-1566.
    [82]高秀华,齐克敏,邱春林等.同步、异步组合轧制取向硅钢极薄带的织构研究[J].材料导报,2002,16(1):64-65.
    [83]高秀华,齐克敏,邱春林等.轧制方式对超薄取向硅钢带性能的影响[J].钢铁研究学报,2001,13(3):48-50.
    [84]贺彤,刘沿东,蒋奇武等.异步轧制对IF钢冷轧及再结晶织构的影响[J].东北大学学报(自然科学版),2008,29(4):512-516.
    [85]张锦刚,刘沿东,蒋奇武等.异步冷轧工艺对IF钢织构的影响[J].材料与冶金学报,2006,5(2):129-132.
    [86]张杰,邱常明,王彦凤.异步冷轧工艺对高猛钢性能的影响[J].河北冶金,2008(1):7-8.
    [87]邱常明,王彦凤,张贵杰.异步轧制对高锰钢组织与性能的影响[J].机械工程材料,2008,32(2):34-36.
    [88]张贵杰,张爱亮,宋卓霞.异步轧制下高锰钢耐磨性[J].河北理工大学学报(自然科学版),2010,32(3):43-47.
    [89]虞海燕,张洋,吕爱强等.异步轧制对316L不锈钢组织与性能的影响[J].材料与冶金学报,2009,8(1):69-72.
    [90]黄涛,曲家惠,胡卓超等.高纯铝箔在异步轧制和再结晶过程中取向的演变[J].金属学报,2005,41(9):953-957.
    [91]黄涛,刘沿东,陈金玉等.冷轧形变量对异步轧制高纯铝箔织构的影响[J].材料研究学报,2005,19(6):619-624.
    [92]花丽影,黄涛,邢进等.同步异步轧制对高压阳极铝箔织构的影响[J].轻合金加工技术,2009,37(2):21-23.
    [93]黄涛,曲家惠,高明等.异步轧制速比对高纯铝箔织构转变的影响[J].中国有色金属学报,2006,16(1):110-114.
    [94]吕爱强,蒋奇武,王福等.异步轧制对高纯铝箔冷轧织构的影响[J].金属学报,2002,38(9):974-978.
    [95]吕爱强,黄涛,王福等.异步轧制高纯铝箔冷轧织构沿板厚的分布规律[J].中国有色金属学报,2003,13(1):56-59.
    [96]张文玉,刘先兰.异步轧制技术及其在镁合金中的应用[J].锻压技术,2008,33(2):1-5.
    [97]张文玉,刘先兰,陈振华.轧制路径对AZ31镁合金薄板组织性能的影响[J].特种铸造及有色合金,2007,27(9):716-719.
    [98]张文玉,刘先兰.异步轧制技术及其在镁合金中的应用研究现状[J].新技术新工艺,2007(7):89-92.
    [99]刘先兰,张文玉,刘楚明等.异步轧制AZ31镁合金板材组织[J].中南大学学报,2008,39(6):1244-1250.
    [100]王丽娜,杨平,夏伟军等.特殊成型工艺下AZ31镁合金的织构及变形机制[J].金属学报,2009,45(1):58-62.
    [101]张文玉,刘先兰,陈振华.异步轧制AZ31镁合金板材室温冲压性能研究[J].塑性工程学报,2007,14(4):6-9.
    [102]夏伟军,蔡建国,陈振华等.异步轧制AZ31镁合金的微观组织与室温成型性能[J].中国有色金属学报,2010,20(7):1247-1252.
    [103]朱素琴,严红革,夏伟军等.湖南大学学报,2008,35(8):51-54.
    [104]曲家惠,张正贵,王福等.AZ31镁合金室温异步轧制的织构演变[J].材料研究学报,2007,21(4):354-358.
    [105]丁茹,王伯健,任晨辉等.异步轧制AZ31镁合金板材的晶粒细化及性能[J].稀 有金属,2010,34(1):34-37.
    [106]丁茹,王伯健,师晓丽.异步轧制Mg-3Al-1Zn合金板材的微观组织[J].有色金属,2011,63(2):19-21.
    [107]丁茹,王伯健,任晨辉.异步轧制AZ31镁合金板材在退火处理中的组织性能演变[J].特种铸造及有色合金,2009,29(12):1151-1152.
    [108]WJ.Kim, J.B.Lee, W.Y.Kim et al. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling[J]. Scripta Materialia,2007(56):309-312.
    [109]Y.H.Ji, J.J.Park, W.J.Kim. Finite element analysis of severe deformation in Mg-3Al-1Zn sheets through differential-speed rolling with a high speed radio [J]. Materials Science and Engineering A,2007(454-455):570-574.
    [110]李志明,将建华,单爱党.异步轧制工业纯钛的组织与力学性能[J].上海有色金属,2011,32(4):151-155.
    [111]蒋建华,丁毅,单爱党.冷轧工业纯钛的微观组织及力学性能[J].有色金属学报,2010,20(1):s59-s61.
    [112]Zhiming Li, Liming Fu, Bin Fu et al. Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling[J]. Materials Science & Engineering A, 2012(558):309-318.
    [113]李立新,郑红专,王铭宗等.固相异步轧制复合双金属材料工业条件的确定[J].武汉钢铁学报,1994,17(4):363-366.
    [114]李立新.固相轧结铜铝铜双金属复合材料工艺条件优化[J].上海有色金属,1995,16(6):326-329.
    [115]李立新.同步及异步固相轧结铜铝铜复合材料的比较研究[J].上海有色金属,1995,16(3):133-137.
    [116]王铭宗,郑红专,姚利仁.异步轧结铝-铜双金属的实验研究[J].钢铁,1994,29(12):32-35.
    [117]李立新.异步轧结双金属复合材料轧制力矩研究[J].江苏冶金,1996(4):15-17
    [118]林大超,史庆南,贺艳苓等.精密复合带材异步轧制工艺中的变形关系[J].昆明理工大学学报,1997,22(1):78-83.
    [119]段坤祥,张营森,史庆南等.双金属异步轧制压力的测试实验研究[J].昆明理工大学学报,1997,22(1):54-57.
    [120]林大超,史庆南.双金属轧制复合技术及其研究的进展[J].云南冶金,1998,27(6):32-36.
    [121]魏伟,史庆南.铜/钢双金属板异步轧制复合机理研究[J].稀有金属,2001,25(4):307-311.
    [122]张永福,丁修堃.双金属固相复合异步轧制新工艺[J].东北工学院学报,1991,12(6):619-624.
    [123]卢柯.纳米孪晶纯铜的强度和导电性研究[J].中国科学院院刊,2004,19(5):352-354.
    [124]Lu L, Shen Y F, Chen X H et al. Ultrahigh strengh and high electrical conductivity in copper[J]. Science,2004,304(5669):422-426.
    [125]温树林,马希聘等.材料科学与微观结构[M].科学出版社,2007.
    [126]Luo J, Mei Z, Tian W H, et al. Diminishing of work hardening electroformed polycrystalline copper with nano-sized and uf-sized twins[J]. Materials Science and Engineering A,2006(441):282-290.
    [127]左伟.精密电铸铜工艺的研究[J].西安航空技术高等专科学校报,2009,27(5):12-13.
    [128]范爱玲,贺怀堂,田文怀等.电铸超细晶材料的微观组织研究[J].太原重型机械学院学报,2003,24(2):88-91.
    [129]范爱玲,高红叶,田文怀.电铸超细晶Cu超高速变形机理的TEM研究[J].电子显微学报,2002,21(5):679-680.
    [130]范爱玲,田文怀等.电铸铜药型罩高速变形前后微观组织的观察以及变形机理的探讨[J].兵嚣材料科学与工程,2001,24(4):3-5.
    [131]Ailing Fan, Wenhuai Tia, Oi Sun, Baoshen Wang. Microstructure and penetration behavior of electroformed copper liners of shaped charges during explosive detonation deformation[J]. Journal of University ofScience and Technology Beijing, 2006,13(1):73-77.
    [132]W.H.Tian, H.Y.Gao, A.L.Fan, X.O.Shan, Q.Sun. Microstructure and texture of electroform ed copper liners of shaped charges[J]. JournalofUniversity ofScience and Technology Beijing,2002,9(4):265-268.
    [133]W.H.Tian, A.L.Fan, H.Y.Gao, J.Luo, Z.Wang. Comparison of microstructures in electroformed copper liners of shaped charges before and after plastic deformation at different strain rates[J]. Materials Science and Engineering A,2003(350):160-167.
    [134]关丽雅,郑秀华,王富耻等.脉冲参数对电铸铜组织形态和硬度的影响[J].电镀与精饰,2008,30(6):1-5.
    [135]关丽雅,郑秀华,王富耻等.电铸铜微观组织与织构的研究[J].电镀与涂饰,2009,28(8):21-24.
    [136]关丽雅,郑秀华,王富耻等.电流密度对电铸铜晶粒组织的影响[J].稀有金属材料与工程,2009,38(suppl.1):524-529.
    [137]倪星元,姚兰芳,沈军等.纳米材料制备技术[M].化学工业出版社,2008.
    [138]Valerie Randle, Gregory Owen. Mechanisms of grain boundary engineering[J]. Acta Materialia,2006(54):1777-1783.
    [139]Valerie Randle.Twinning-related grain boundary engineering[J]. Acta Materialia, 2004(52):4067-4081.
    [140]A.W.Larsen, H.F.Poulsen, etal. Nucleation of recrystallization observed in situ in the bulk of a deformed metal[J]. Scripta Materialia,2005(53):553-557.
    [141]L. Qiangyong, J.R.Cahoon, N.L.Richards. On the calculation of annealing twin ensity[J]. Scripta Materialia,2006(55):1155-1158.
    [142]D.P.Field, L.T.Bradford, M.M.Nowell, etal.The role of annealing twins during recrystallization of Cu[J].Acta Materialia,2007(55):4233-4241.
    [143]D.P.Field, R.C.Eames. T.M.Lillo. The role of shear stress in the formation of annealing twin boundaries in copper[J].Scripta Materials,2006(54):983-986.
    [144]S.Mahajan, C.S.Pandle, M.A.Imam, B.B.Rath. Formation of annealing twins in f.c.c crystals[J]. Acta Mater 1997,45:2633-2638.
    [145]T. Baudin, A.L. Etter, R. Penelle. Annealing twin formation and recrystallization study of cold-drawn copper wries from EBSD measurements[J]. Materials Characterization,2007(58):947-952.
    [146]Ji Lou, Zhi Mei, Wenhuai Tian, et al. Diminishing of work hardening in electroformed polycrystalline copper with nano-sized and uf-sized twins [J]. Materials Science and Engineering A 441,2006:282-290.
    [147]P. Mullner, A.H. King. Deformation of hierarchically twinned martensite[J]. Acta Materialia,2010(58):5242-5261.
    [148]K.Rolfs, M.Chmielus, R.C.Wimpory, et al. Double twinning in Ni-Mn-Ga-Co[J]. Acta Materialia,2010(58):2646-2651.
    [149]D.GLeo Prakash, R.Ding, R.J.Moat, et al. Deformation twinning in Ti-6A1-4V during low strain rate deformation to moderate strains at room temperature[J]. Materials Science and Engineering A,2010(527):5734-5744.
    [150]H.Idrissi, K.Renard, I.Rvelandt, et al. On the mechanism of twin formation in Fe-Mn-C TWIP steels[J]. Acta Materialia,2010(58):2464-2476.
    [151]C.X.Huang, K.Wang, S.D.Wu, et al. Deformation twinning in polycrystalline copper at room temperature and low strain rate[J]. Acta Materialia,2006(54):655-665.
    [152]X.H.An, Q.Y.Lin, S.D.Wu, et al. Formation of fivefold deformation twins in an ultrafine-grained copper alloy processed by high-pressure torsion [J]. Scripta Materialia2011(64):249-252.
    [153]Jiapeng Sun, Liang Fang, Kun Sun, et al. Direct observation of dislocations originating from perfect twin boundaries[J]. Scripta Materialia,2011(65):501-504.
    [154]卢柯.纳米孪晶铜的强度和导电性研究[J].中国科学院院刊,2004,19(5):352-354.
    [155]Y.F.Shen, L.Lu, M.Dao, et al. Strain rate sensitivity of Cu with nanoscale twins[J]. Scripta Materialia,2006(55):319-322.
    [156]吴波,魏悦广.纳米孪晶铜力学性能和尺度效应的研究[J].金属学报,2007,43(12):1245-1250.
    [157]顾振华,史庆南,起华荣.等径角挤压模具的新设计[J].机电产品开发与创新,2007,20(4):26-27.
    [158]杨智强,史庆南,起华荣等.6061铝合金等通道挤压工艺数值模拟[J].计算机应用技术,2010,30(2):123-126.
    [159]杨智强,史庆南,起华荣等.6062铝合金等径角挤压有限元模拟[J].兵器材料科学与工程,2009,32(5):12-15.
    [160]罗许,史庆南,刘韶华等.6061铝合金超细晶制备及其组织性能的研究[J].材料 热处理学报,2009,30(3):71-75.
    [161]陈家欣,史庆南,郝勇.等径角挤压7003铝合金的组织及性能研究[J].热加工工艺,2011,40(21):5-8.
    [162]张坤华,史庆南,吴承玲.异步叠轧制备超细晶铜材工艺研究[J].南方金属,2006(148):4-8.
    [163]崔浩,史庆南,张坤华等.异步叠轧制备超细晶铜材微观组织与力学性能[J].新技术新工艺,2006(8):18-20.
    [164]陈亮维,韩波,史庆南等.纯铜深度塑性变形的织构组织均匀性研究[J].材料科学与工艺,2010,18(3):392-395.
    [165]王军丽,史庆南,吴承玲.大变形异步叠轧法制备超细晶铜材的再结晶研究[J].材料热处理学报[J].2008,29(4):87-90.
    [166]王军丽,史庆南,王效琪.异步累积叠轧技术制备超细晶铜材退火过程组织及取向研究[J].材料工程,2008(11):5-8.
    [167]陈绍楷,李晴宇,苗壮等.电子背散射衍射(EBSD)及其在材料研究中的应用[J].稀有金属材料与工程,2006,35(3):500-504.
    [168]刘庆.电子背散射衍射技术及其在材料科学中的应用[J].中国体视学与图像分析,2005,10(4):205-210.
    [169]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007.
    [170]Russ J C, Bright D S, Hare T M. Application of Hough Transtormation to electron diffraction patterns[J]. Journal of computer-assisted microscopy
    [171]郭宁,黄天林,周正等.EBSD技术结合背散射电子成像在材料研究中的应用[J].电子显微学报,2010,29(2):75-79.
    [172]Liu Q. Asimple and rapid method for determining orientations and misorientations of crystalline in TEM[J]. Ultramicroscropy,1995,60(1):81-89.
    [173]G托马斯等著,洪班德译.材料的透射电子显微术[M].北京,机械工业出版社,1985.
    [174]周玉,武高辉.材料分析测试技术[M].哈尔滨,哈尔滨大学出版社,2006.
    [175]GB/T 228-2002,金属材料室温拉伸试验方法,中华人民共和国国家标准:297-313.
    [176]HB 5287-1996,金属材料轴向加载疲劳试验方法,中华人民共和国国家标准
    [177]朱泉等.大延伸异步轧制时的轧制力[M],东北工学院,1981.
    [178]史庆南,林大超.复合带材异步轧制工艺基础及理论研究[M].昆明:云南大学出版社,2001.
    [179]王耀奇,侯红亮,黄重国等.纯铝累积叠轧焊连接机理及力学性能[J].航空制造技术,2008(16):84-86.
    [180]曹鸿德.塑性变形力学基础与轧制原理[M].北京:机械工业出版社,1981.
    [181]杨觉先.金属塑性变形物理基础[M].北京,冶金工业出版社,1988.
    [182]黄孝瑛.电子显微镜图像分析原理与应用[M].北京,宇航出版社,1989.
    [183]许荣昌,唐荻,任学平等.累积叠轧焊强加工制备亚微米金属材料的研究[J].塑性工程学报,2006,13(4):86-89.
    [184]吕爽,王快社,张兵等.ECAP与ARB纯铝的微观组织和力学性能的比较[J].新技术新工艺,2007(4):61-63.
    [185]И.И.诺维柯夫.金属热处理理论[M].北京:机械工业出版社,1987.
    [186]潘金生著.材料科学基础[M].北京:清华大学出版社,2004.
    [187]余永宁.金属学原理[M].北京:冶金工业出版社,2007.
    [188]毛卫民.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,2002.
    [189]I.Gutierrez-Urrutia, S.Zaefferer, D.Raabe. The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel[J]. Materials Science and Engineering A,2010(527):3552-3560.
    [190]D.Ando, J.Koike, Y.Sutou. Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys[J]. Acta Materialia,2010(58):4316-4324.
    [191]Kumar M, King W E, Schwartz A J. Acta Mater,2000,48:2081/Davies H, Randle V. Philos Mag,2001(A33):1853.
    [192]张玉彬,Godfrey A,刘伟.大应变量冷轧金属Ni再结晶过程中∑3晶界演化[J].金属学报,2009,45(10):1159-1165.
    [193]Y.F.Shen, L.Lu, M.Dao et al. Strain rate sensitivity of Cu with nanoscale twins[J]. Scripta Materialia,2006(55):319-322.
    [194]D.P.Field, R.C.Eames, T.M.Lillo. The role of shear stress in the formation of annesling twin boundaries in copper[J]. Scripta Materialia,2006(54):983-986.
    [195]K.Konopka, J.Mizera, J.W.Wyrzykowski. The generation of dislocations from twin boundaries and its effect upon the flow stresses in FCC metals[J]. Journal of Materials Processing Technology,2000(99):255-259.
    [196]周蕾,史庆南,刘润等.大变形异步累积叠轧纯铜再结晶退火后的超细孪晶[J].金属热处理,2012,37(12):29-34.
    [197]X.H.An, Q.Y.Lin, S.D.Wu et al. Formation of fivefold deformation twins in an ultrafine-grained copper alloy processed by high-pressure torsion[J]. Scripta Materialia, 2011(64):249-252.
    [198]余永宁,毛卫民.材料的结构[M].北京:冶金工业出版社,2001.
    [199]张建民,吴喜军,黄育红等.fcc金属层错能的EAM法计算[J].物理学报,2006,55(1):393-397.
    [200]何刚,戎咏华,徐祖耀.fcc结构晶体层错的自身能及其交互作用能的嵌入原子法计算[J].中国科学(E辑),2000,30(1):1-7.
    [201]戎咏华,孟庆平,何刚等.Fe-Mn合金层错能的嵌入原子法计算[J].上海交通大学学报,2003,37(2):171-174.
    [202]万见峰,陈世朴,徐祖耀.Fe-30Mn-6Si-xN形状记忆合金层错能的热力学计算[J].金属学报,2000,36(7):679-683.
    [203]Jinichiro Nakano, Pascal J. Jacques. Effects of the thermodynamic parameters of the hcp phase on the stacting fault energy calculations in the Fe-Mn and Fe-Mn-C systems[J]. CALPHAD:Computer coupling of phase diagrams and thermochemistry, 2010(34):167-175.
    [204]Xian Peng, Dingyi Zhu, Zhenming Hu et al. Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels:Effect of Cu addition[J]. Material and Design,2013(45):518-523.
    [205]方晓英,王卫国,周邦新.金属材料晶界特征分布(GBCD)优化研究进展[J].稀有金属材料与工程,2007,36(8):1500-1504.
    [206]方晓英,王卫国,郭红等.304不锈钢冷轧退火∑3n特殊晶界分布研究[J].金属学报,2007,43(12):1239-1244.
    [207]张玉彬,A. Godfrey,刘伟等.大应变量冷轧金属Ni再结晶过程中∑3晶界演化[J].金属学报,2009,45(10):1159-1165.
    [208]毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].北京:冶金工业出版社,2008.
    [209]武保林.材料织构与晶界特征分布及其性能增强[J].沈阳航空工业学院学报,2002,19(3):1-6.
    [210]将红辉,张新民,闫伟永等.不同润滑条件下高纯铝的冷轧织构及组织[J].有色矿冶,2003,19(2):36-39.
    [211]刘楚明,张新明,陈志永等.中间退火对高纯铝箔立方织构的影响[J].金属热处理,2001(3):28-30.
    [212]王国军.铝及铝合金板带材织构[J].轻合金加工技术,2004,32(6):28-33.
    [213]Somayeh Pasebani, Mohammad Reza Toroghinejad, Majid Hosseini et al. Textural evolution of nano-grained 70/30 brass produced by accumulative[J]. Materials Scienc and Engineering A,2010(527):2050-2056.
    [214]赵素玲,郑子樵.退火和冷轧变形对电容铝箔立方织构的影响[J].武汉理工大学学报,2001,23(6):31-33.
    [215]孙永辉,黄涛,贾楠等.退火对异步轧制高纯铝箔织构的影响[J].金属热处理,2004,29(9):35-37.
    [216]袁韧,张新明,周卓平.钽丝的织构和再结晶行为研究[J].材料导报,2002,16(6):68-70.
    [217]张德芬,左良.预回复退火对3104铝合金再结晶织构和显微组织的影响[J].石油化工高等学校学报,2004,17(3):62-65.
    [218]Liangwei Chen, Qingnan Shi, Dengquan Chen et al. Research of textures of ultrafine grain pure copper produced by accumulative roll-bonding[J]. Materials Scienc and Engineering A,2009(508):37-42.
    [219]米辉,史庆南,王军丽等.异步叠轧中剪切力对超细孪晶铜制备的影响[J].热加工工艺,2011,40(5):27-30.
    [220]ZHANG Y, TAO N.R, LU K. Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles[J]. Acta Materialia, 2008(56):2429-2440.
    [221]XING Z P, KANG S B, KIM H W. Structure and Properties of AA3003 Alloy Produced by Accumulative Roll Bonding Process[J]. Journal of Materials Science, 2002,37:717-722.
    [222]HULL Derek. Fractography:Observing, Measuring and Interpreting Fracture Surface Topography[M]. Cambridge University Press,1999.
    [223]HOM C. L, MCMEKING R. M. Three-dimensional void growth before blunting crack[J]. J.Mech. Solids,1989(37):395-415.
    [224]刘华赛,张滨,张广平.累积叠轧焊制备Al/AZ31多层复合材料及其强度[J].稀有金属,2009,33(2):285-289.
    [225]LEE S H, SAITO Y, SAKAI T, et al. Microstructures and mechanical propertise of 6061 aluminum alloy processed by accumulative roll-bonding[J]. Materials Science and Engineering A,2002,324(1-2):228.
    [226]LAWN. B. Fracture of Brittle Solids[M]. Cambridge University Press,1993.
    [227]Chaboche J L. Continuum damage mechanics[J]. Appl. Mech.,1988(55):59-64.
    [228]Kachanov L M. Introduction to continuum damage mechanics[M]. Dordrecht, Martinus Nijhoff Publisher,1986.
    [229]许金泉.材料强度学[M].上海:上海交通大学出版社,2009.
    [230]束德林.工程材料力学性能[M].北京:机械工业出版社,2003.
    [231]郭小龙,申勇峰,卢磊等.孪晶对多晶铜疲劳行为的影响[J].金属学报,2004,40(12):1281-1284.
    [232]郭小龙,卢磊,李守新.孪晶铜中孪晶尺寸对疲劳位错组态的影响[J].金属学报,2005,41(1):23-27.
    [233]王润.金属材料物理性能[M].北京:冶金工业出版社,1993.
    [234]Nakamichi I.Electrical resistivity and grain boundaries in metals[J]. Materials Science Forum,1996,47.
    [235]王军丽,史庆南,钱天才等.大变形异步叠轧技术制备高强高导超细晶铜材研究[J].航空材料学报,2010,30(3):14-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700