用户名: 密码: 验证码:
两种生态条件下氮肥调控和栽培方式对水稻库源构建和光合生产及产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态条件、氮肥调控措施和栽培方式均是影响水稻生产的重要因素,研究不同生态条件下各栽培方式适宜的氮肥调控原则和高产机制,对实现肥料的高效利用及水稻高产、稳产具有重要意义。本研究于2009-2010年在大田试验条件下,以代表性水稻品种杂交籼稻Ⅱ优498为材料,研究了温江和汉源两地不同施氮量和氮肥运筹方式下宽窄行栽培、三角形栽培、宽行窄株栽培、抛秧栽培对水稻库源构建、光合生产及产量形成的影响。主要研究结果如下:
     1、两种生态条件下氮肥调控和栽培方式对水稻群体质量及产量形成的影响
     温光条件优越的汉源点水稻群体质量指标得到改善,抽穗前后物质积累量显著增加,产量性状全面提高是其产量潜力显著增大的原因;高产群体的产量形成方面,温江点表现为穗稳(满足一定穗数)、粒足(每穗颖花数多)、结实率高,而汉源点则表现为足穗大穗。施氮量过高或过低均不利于在较高LAI水平上实现群体质量的提高;穗肥施用比例的增加虽然降低了LAI,但有利于改善抽穗后群体质量。结合群体质量、物质生产及产量结果看,各栽培方式在两地最佳施氮量均为180 kg hm2,此施氮量下宽窄行和三角形栽培氮肥运筹措施以基肥:蘖肥:穗肥比例为6:3:1最佳,宽行窄株栽培方式以5:2:3的氮肥运筹比例最佳,抛秧栽培温江点和汉源点最佳氮肥运筹比例分别为4:1:5和5:2:3。因此,在不同生态条件针对栽培方式采取适宜的氮肥调控措施是在合理群体基础上实现改善群体质量,增加抽穗后物质生产能力,从而提高产量的根本途径。本研究也提出了不同生态条件下的杂交稻高产群体质量指标,且发现不同栽培方式群体构建差异较大,达到高产群体指标的难易不一,但在温江点均能通过适宜的氮肥调控措施实现在较高水平下群体质量的改善,然而在温光条件更为优越的汉源点宽窄行、宽行窄株及抛秧栽培构建超高产群体的难度增大,增产潜力不及三角形栽培。
     2、两种生态条件下氮肥调控和栽培方式对水稻库源构建的影响
     在汉源点库源特征表现为库大源强,穗颈维管束性状虽得到提高,但源端输出同化物的增加导致流负荷有所增大,库端同化物的供应仍相对不足,灌浆强度难以提高,然而灌浆活跃时间的延长使籽粒接受的灌浆物质更为充足,籽粒充实率和充实指数升高,最终库容有效充实率和实际充实量均显著增加。此外,温江点产量的提高在于一定库容下籽粒充实水平的提高,且该生态条件下籽粒灌浆充实水平的下降和流负荷的增大有关;而汉源点产量的提高则在于库容扩大的同时籽粒充实水平有所提高,库容扩大后流的限制对籽粒灌浆充实的影响较小,因此加强源的供应能力成为提高籽粒灌浆充实水平的关键。适宜施氮量可以促进水稻群体叶源、茎鞘源和根源的协调发展,源能力加强,库容得到扩大,维管束的转运效率增强,灌浆充实良好,在较高水平下实现库源流的协调发展,从而库容实际充实量得到提高。随穗肥施用比例的提高,源能力加强的同时群体库容虽有所减少,促进了籽粒灌浆充实,最终增加库容有效充实度以提高库实际充实量。然而在汉源点,过多增加穗肥施用比例难以进一步提高籽粒充实程度,库容量和库有效充实度同时降低,库容实际充实量下降。不同生态条件下各栽培方式高产库源特征所采用的氮肥调控措施并不一致,表现为:在适宜的施氮量和较高的基蘖肥施用比例下,宽窄行和三角形栽培群体源能力加强,流经穗颈的同化物虽然增多但流负荷并无显著增加,促进了籽粒灌浆充实,最终库容实际充实量提高,然而在温光条件更为优越的汉源点该施氮量下三角形栽培更有利于实现更高水平下的源、库、流协调,库容实际充实量最大。对宽行窄株和抛秧栽培而言,基蘖肥施用比例的减少是改善其抽穗后“源”质量,增强源生产能力,协调库源关系,促进籽粒灌浆充实,进而提高库容实际充实量的重要措施。
     3、两种生态条件下氮肥调控和栽培方式对光合生产的影响
     汉源点水稻冠层结构更为合理,单叶和群体光合性能改善,各生育阶段群体生长率(CGR)增加,光合生产能力(尤其是抽穗后)显著高于温江点。氮肥施用量的增加扩大了上三叶光合面积,提高了剑叶净光合速率(Pn),生育前期CGR因叶积(LAD)的增加而提高,但剑叶Pn位差的增大不利于提高下部叶片光合性能,抽穗后CGR受净同化率(NAR)影响表现为显著降低,因而施氮量过低过高均不利于抽穗后光合生产能力的提高。随穗肥施用比例的提高冠层内的透光条件得到改善,植株叶片光合性能得以提高,群体呼吸消耗所占比例(CR/TCAP)减少,抽穗后CGR受NAR主导呈上升趋势,但过多的增加穗肥施用比例导致群体光合速率(CAP)难以提高。氮肥调控措施对各栽培方式光合生产的影响并不一致,表现为三角形栽培和宽窄行栽培改变植株的田间分布,在基蘖肥比例较高的条件下上三叶大小、叶片厚度及冠层透光性能提高,抽穗后植株叶片和群体光合性能均得到提高,抽穗后LAD和NAR的同步增加促进了CGR的提高,抽穗后光合生产优势明显,当温光条件改善后三角形栽培光合生产的优势得到加强,而宽窄行栽培光合生产优势并无体现。在适宜的氮肥运筹比例下,宽行窄株栽培和抛秧栽培抽穗后冠层特性相关指标等方面的差异减小,叶片同化能力和碳代谢增强,群体光合生产能力得以提高,LAD、NAR的同步上升促进了CGR的升高,抽穗前后光合生产得到协调发展。
     4、两种生态条件下氮肥调控和栽培方式对太阳辐射利用率(RUE)的影响
     不同生态条件下,RUE和产量存在极显著的正相关关系。在温江点结实中前期RUE和产量关系密切,增加高效和有效叶面积率及比叶重以改善群体质量是提高整个结实期RUE水平的关键,而在汉源点拔节至抽穗后15d这一阶段RUE的提高是发掘水稻产量潜力的关键,且RUE的增加更强调群体数量基础上质量的提高。试验结果还表明,在较高的穗肥比例下窄行和三角形栽培有利于提高抽穗后RUE,进而提高整个大田生长期的RUE,但温光条件改善后宽窄行栽培RUE高的优势减弱,三角形栽培却得到加强;宽行窄株栽培和抛秧栽培关键时期RUE乃至整个大田生长期RUE的提高则有赖于穗肥施用比例的提高。因此,各栽培方式应根据生态条件采用适宜的氮肥调控措施,实现提高RUE,进而发掘产量潜力的目的。
Ecological condition, nitrogen regulation and cultivation model are important factors affect rice production, the study on optimization nitrogen regulation principle and high-yielding mechanism for kinds of cultivation models at different ecological condition would have a great significance in fertilizer efficient utilization and high and stable yields for rice. The effects of nitrogen regulation and cultivation models on sink-source construction, photosynthetic production and yield formation were studied under field at Wenjiang and Hanyuan by hybrid rice Eryou 498 during 2009 to 2010. the nitrogen regulation measure included nitrogen application rate and nitrogen application stagey, and cultivation models included wide-narrow row spacing cultivation, triangle cultivation, planting with the wide row and narrow plant space, scattered planting cultivation. The main results are follows:
     1. Effects of nitrogen regulation and cultivation modes on population and yield formation in rice at two ecological conditions
     Because of improving population quality, increasing dry matter accumulation and comprehensively improving yield components at Hanyuan with a superior temperature and light condition, the yield potential improved significantly; The high yield population had suitable productive panicles number, more spikelet number per panicle and higher seed setting rate at Wenjiang, while had sufficient productive panicles number and large panicle at Hanyuan. It is no avail to improving population quality basing on high LAI (leaf area index) under too high or too low nitrogen application rate. With increasing ratio of nitrogen application at panicle initiation stage, the LAI decreased, but population quality after heading improved.From the above, the 180 kg ha-1 of nitrogen application is the optimum amount for all cultivation models. when the total nitrogen application amount was 180 kg ha-1, the rational ratio of nitrogen application for transplanting stage, tillering stage and booting stage was 6:3:1 under wide-narrow row spacing cultivation and triangle cultivation, 5:2:3 under planting with the wide row and narrow plant space,4:1:5 and 5:2:3 under scattered planting cultivation at Wenjiang and Hanyuan respectively. It was suggested that achieving high yield by improving crop population quality basing on reasonable population size and increasing dry matter production after heading should adopt suitable nitrogen application strategy according to ecological condition and cultivation model. The study also proposed population quality indexes of super-high yielding-rice at two kinds of ecological conditions, and found there were different ways to construct population under different cultivation models, so the difficulty of each cultivation models in meeting requirement of high yield population was various. All kinds of cultivation models could improving population quality basing higher levels under suitable nitrogen regulation, but it is difficult to construct high yield population for wide-narrow row spacing cultivation and planting with the wide row and narrow plant space as well as scattered planting cultivation at Hanyuan with a superior temperature and light condition, their yield potential was lower than triangle cultivation.
     2. Effects of nitrogen regulation and cultivation modes on sink-source construction in rice at two ecological conditions
     The sink-source characteristics at Hanyuan showed that sink potential enlarged and source enhanced. Though the characters of the vascular bundles of the neck-panicle improved, the flow loading not decreased for more assimilates exported from source, and assimilates supplying rate for sink was insufficient, so it was difficult to increase filling intensity. However, because filling substance received by grain was more abundant by prolonging active filling time, grain filling rate and grain plumpness index increased, and accordingly effective sink-filling rate and actual sink-filling amount improved significantly.Besides, improve grain filling level basing enough size of sink was critical to increasing grain yield at Wenjiang, and overburden flow loading resulted in poor grain filling; Obtaining a high yield at Hanyuan depended on simultaneous enlarging sink size and improving grain filling to some extent, because the effects of flow limitation caused by enlarging sink size on grain filling decreased, the supply capacity of source was the key to achieve high level of grain filling. Under suitable nitrogen application rate, the capacity of source improved by coordinative development in leaf and stem as well as root, sink potential enlarged, transfer efficiency of the vascular bundles increased, so grain filling showed good, sink and source as well as flow got a coordinate development at a high level, actual sink-filling amount improved finally. With increasing ratio of nitrogen application at panicle initiation stage, the capacity of source improved although sink potential decreased, it is beneficial to promote grain filling. As a result, actual sink-filling amount improved by increasing effective sink-filling rate at Wenjiang. but at Hanyuan, it was difficult to improve grain filling by excessive increasing ratio of nitrogen application at panicle initiation stage, which would led to decreasing actual sink-filling amount for cutting down sink potential. In order to establish high yield population at different ecological condition, the suitable nitrogen regulation measures should be adopted according to different cultivation model. Under suitable nitrogen application rate or higher ratio of nitrogen application at basic and tillering, for wide-narrow row spacing cultivation and triangle cultivation, the source-capacity improved, assimilates through neck-panicle increased while flow loading not increased significantly, the grain filling was better, so their actual sink-filling amount improved. Because of getting a coordinate development in sink and source as well as flow under triangle cultivation, its actual sink-filling amount was higher than others. For planting with the wide row and narrow plant space and scattered planting cultivation, it was critical to limiting development of population at early-middle stage, increasing source production ability by improving source quality after heading, coordinating sink-source relationship, promoting grain filling, and improving actual sink-filling finally by decreasing ratio of nitrogen application at basic and tillering.
     3. Effects of nitrogen regulation and cultivation modes on photosynthetic production in rice at two ecological conditions
     Though establishing more reasonable canopy morphological structure, improving single leaf and population photosynthetic characteristics and increasing crop growth rate (CGR), photosynthetic production at Hanyuan was higher than at Wenjiang(especially after heading).With increasing nitrogen application rate, photosynthetic area from flag leaf to third leaf of productive tillers expanded, photosynthetic rate(Pn) in flag leaf was increased, CGR increased with leaf area duration increased during early stage, but photosynthetic characteristics of lower leaf degradation because of rising in photosynthetic disparity in leaf position for Photosynthetic rate in flag leaf, CGR impacted by net assimilation rate(NAR) decreased significantly after heading, so too low or too high nitrogen application rate was not favorable for improving capacity of photosynthetic production. By increasing ratio of nitrogen application at panicle initiation stage, the canopy light transmittance performance improved, leaf photosynthetic characteristics increased, ratio of canopy respiration to total canopy apparent photosynthesis (CR/TCAP) tended to decrease, CGR impacted by NAR showed an increasing tendency, and it was difficult to promote canopy apparent photosynthesis (CAP) under excess nitrogen application rate. The effects of nitrogen regulation on photosynthetic production for cultivation models were not in agreement, it showed that:wide-narrow row spacing cultivation and triangle cultivation change distribution form of plants on field, when the ratio of nitrogen application was 6:3:1, their area from flag leaf to third leaf of productive tillers and Leaf specific weight as well as canopy light transmittance performance all improved, leaf and population photosynthetic characteristics tended increase, CGR was raised for both LAD and NAR increasing, so they had a great advantage in photosynthetic production after heading. However, once temperature and light conditions was improved at Hanyuan, the advantage of triangle cultivation enhanced, while wide-narrow row spacing cultivation reduced. For sprase planting by expanding spacing and reducing plant space and scattered planting cultivation, the difference between them with other cultivation models on canopy characteristics after heading reduced, increase amplitude in leaf assimilation capacity and index related carbon metabolism was higher, capability of photosynthetic production improved, CGR promoted by increasing of both LAD and NAR, so their photosynthetic production Pre-and post heading get a harmonious development under suitable nitrogen application stagey.
     4. Effects of nitrogen regulation and cultivation modes on radiation use efficiency (RUE) at different ecological condition
     Correlation analysis indicated that there existed very significantly positive correlations between RUE with grain yield at different ecological conditions. There was a close relationship between RUE during early-middle period of filling stage with grain yield at Wenjiang, improving crop population by increasing leaf area from flag leaf to third leaf of productive tillers, leaf area of productive tillers and leaf specific weight was the key to improve RUE during filling stage. But at Hanyuan, improving RUE from jointing to 15 days after heading was the key of yield increase, and the better crop population basing on enough population quantity played a critical role in improvement of RUE. When ratio of basic and tillering nitrogen applied was high, it is beneficial to improve RUE after heading for wide-narrow row spacing cultivation and triangle cultivation, thus their RUE improved during the whole lifetime. Once temperature and light conditions have improved, the advantage in RUE under wide-narrow row spacing cultivation decreased, while the advantage under triangle cultivation increased. The improvement of RUE under planting with the wide row and narrow plant space or scattered planting cultivation during critical stage and even whole lifetime depended on increasing ratio of nitrogen application at panicle initiation stage. In order to reach high yield by improving RUE, each cultivation model should adopted respective suitable nitrogen regulation according to ecological condition.
引文
[1]Peng S, Gassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since release of IRI and the challenge of increasing rice yield potential [J]. Crop Science,1999,39: 1552-1559.
    [2]凌启鸿,张洪程.作物栽培学的创新与发展[J].扬州大学学报(农业与生命科学版),2002,23(4):66-69.
    [3]FAO. Statistical databases, Food and Agriculture Organization (FAO) of the United Nations.2004.
    [4]Yuan L P. Hybrid rice breeding in China[J]. In: Virmani S S, Siddiq A, Muralidharan K, eds. Advances in Hybrid Rice Technology. Philippines:International Rice Research Institute,1998: 27-33.
    [5]邹应斌,周上游,唐启源.中国超级杂交稻高产栽培研究的现状与展望[J].湖南农业大学学报(自然科学版),2003,29(1):78-84.
    [6]郑景生,黄育民.中国稻作超高产的追求与实践[J].分子植物育种2003,(1):5-6,585-596.
    [7]黄英金,徐正进.对超级稻研究中几个问题的思考[J].中国农业科技导报,2004,6(5):3-7.
    [8]程式华.中国超级稻育种研究的创新与发展[J].沈阳农业大学学报,2007,38(5):647-651.
    [9]陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系[J].作物学报,2003,29(5):730-734.
    [10]李萍,韩亚东,郝兴宇.不同穗型不同种植方式对水稻光能利用的影响[J].山西农业大学学报,2004,(2):112-115.
    [11]杨丽敏.不同株行距配置对水稻生长发育的影响[J].吉林农业大学硕士学位论文,2008.
    [12]姚永平,宋子洲,叶静.水稻宽窄行配置扩行增产机理研究[J].耕作与栽培,2000,6:41-42.
    [13]赵永龙,陆仕凤,樊国亮,等.水稻等距离栽培与宽窄行栽培效果初报[J].耕作与栽培,2008,6:48.
    [14]郭守斌,帅国元,刘志贤.水稻边际效应型高产栽培技术探讨[J].杂交水稻,2008,23(6):40-43.
    [15]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000.
    [16]朱普平,陈留根,盛婧,等.秧龄与宽窄行移栽对单季晚粳常优1号产量的影响[J].安徽农业科学,2010,38(14):7216-7217.
    [17]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426.
    [18]王建林,徐正进.不同插秧量和田间配置下北方杂交稻与常规稻产量结构分析[J].沈阳农业大学学报:自然科学版,2003,34(5):365-368.
    [19]苏凤岩,闻大中,徐卿德,等.北方稻田生态系统研究Ⅰ.稻萍结合系统的结构研究[J].应用生态学报,1996,(22):23-24.
    [20]Stoop, W.A., Uphoff, N., Kassam A. A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar:opportunities for improving farming systems for resource-poor farmers [J]. Agricultural Systems,2002,71:249-274.
    [21]Moser, C.M., Barrett, C.B.. The disappointing adoption dynamics of a yield increasing, low external-input technology:the case of SRI in Madagascar[J]. Agricultural Systems,2003,76: 1085-1100.
    [22]Barrett, C.B., Moser, C.M., McHugh, O.V., Barison, J.. Better technology, better plots, or better fanners Identifying changes in productivity and riskamong Malagasy rice fanners [J]. American Journal of Agricultural Economics,2004,86,869-888.
    [23]Husain, A.M., Chowhan, P.B., Uddin, A.F.M., Rahman, A.B. M.. Final Evaluation Report on Verification and Refinement of the System of Rice Intensification (SRI) Project in Selected Areas of Bangladesh[J]. PETRRA-Project, IRRI, Dhaka, Bangladesh,2004.
    [24]Latif, M.A., Islam, M.R., Ali, M.Y., Saleque, M.A.. Validation of the system of rice intensification (SRI) in Bangladesh[J]. Field Crops Research,2005,93:281-292.
    [25]袁隆平.水稻强化栽培技术[J].杂交水稻,2001,16(4):1-3.
    [26]马均,陶诗顺,田彦华,等.水稻强化栽培试验初报[J].杂交水稻,2002,17(5):42-44.
    [27]田彦华,牟锦毅,马均,等.杂交水稻中熟组合强化栽培体系SRI研究初报[J].杂交水稻,2002,17(6):34-35.
    [28]王绍华,曹卫星,姜东,戴廷波.水稻强化栽培对植株生理与群体发育的影响中国水稻科学[J].2003,17(1):31-36.
    [29]林贤青,周伟军,朱德峰,等.强化栽培下水稻穗分化期叶片光合速率与水分利用率的研究[J].中国水稻科学,2005,19(2):132-136.
    [30]俞爱英,吴增棋,林贤青,等.水稻强化栽培体系(SRI)优化技术探讨[J].中国农学通报,2005,21(7):162-164.
    [31]许风英,马均,王贺正,等.强化栽培条件下水稻的根系特征及其与产量形成的关系[J].杂交水稻,2003,18(4):61-65.
    [32]马均,吕世华,梁南山.四川水稻强化栽培体系(SRI)的应用研究与示范[J].见:袁隆平,马国辉,张玉烛.超级杂交水稻强化栽培理论与实践.长沙:湖南科学技术出版社,2005:43-52.
    [33]刘志彬.超级稻三围立体强化栽培超高产模式研究[J].见:袁隆平,马国辉,张玉烛.超级杂交水稻强化栽培理论与实践.长沙:湖南科学技术出版社,2005:60-65.
    [34]郑家国,陆贤军,姜心禄.水稻强化栽培的引进创新与四川盆地超高产的技术实践[J].西南农业学报,2004,17(2):169-173.
    [35]袁隆平,马国辉,张玉烛.超级杂交水稻强化栽培理论与实践[J].长沙:湖南科学技术出版社,2005:275-278.
    [36]陈宇,马均,童平,等.氮肥运筹对大苗三角形强化水稻栽培生理和产量的影响[J].2009, 22(2):357-363.
    [37]汪仁全,马均,童平.三角形强化栽培技术对水稻光,合生理特性及产量形成的影响[J].杂交水稻,2006,21(6):60-65.
    [38]龙旭,马均,王贺正,等.四川水稻强化不同栽培方式研究[J].见:袁隆平,马国辉,张玉烛.超级杂交水稻强化栽培理论与实践.长沙:湖南科学技术出版社,2005:43-52.
    [39]陈德春,杨文钰,任万军.秧苗平面分布对水稻群体动态、冠层透光率及穗部性状的影响[J].应用生态学报,2007,18(2):359-365.
    [40]陶诗顺,马均.杂交水稻超高产栽培技术路线的探讨[J].作物杂志,2001,3:25-28.
    [41]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:150-154.
    [42]闫川,丁艳锋,王强盛,等.行株距配置对水稻茎秆形态生理与群体生态的影响[J].中国水稻科学,2007,21(5):530-536.
    [43]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345.
    [44]徐富贤,熊洪,朱永川,等.川东南冬水田杂交中稻进一步高产的栽培策略[J].作物学报,2007,33(6):1004-1010.
    [45]杨泉涌.营养方块育秧种稻[J].农业科技通讯,1983,(4):6-7.
    [46]李文茂,矫江.水稻抛秧栽培技术的发展[J].现代化农业,1988,(10):7-8.
    [47]王世栋.水稻抛秧栽培技术在高纬寒地的应用[J].黑龙江农业科学,1982,(2):29-32.
    [48]陈健.水稻栽培方式的演变与发展研究[J].沈阳农业大学学报,2003,34(5):389-393.
    [49]张洪程,戴其根,钟明喜.抛秧产量形成及其生态特征的研究[J].中国农业科学,1993,26(3):39-49.
    [50]马殿荣,陈温福,王庆祥,苏芳莉,周淑清,陈健.水稻乳苗抛栽与其他栽培方式的比较研究[J].沈阳农业大学学报,2003,34(5):336-339.
    [51]吴建富,潘晓华,石庆华.免耕抛栽对水稻产量及其源库特性的影响[J].作物学报,2009,35(1):162-172.
    [52]冯跃华,邹应斌,Roland J,等.免耕移栽对两系杂交水稻两优培九若干群体特征的影响[J].中国水稻科学,2001,25(1):65-70.
    [53]张洪程,戴其根,钟明喜,苏祖芳,黄务涛,陆永泰,孙禧榴,张定琪,何小保,陈再华,许遐祯.抛秧产量形成及其生态特征的研究[J].中国农业科学,1993,26(3):39-49.
    [54]戴其根,张洪程,苏宝林,邱枫,霍中洋,许轲.抛秧水稻生长发育与产量形成的生态生理 机制Ⅰ.活棵立苗及其生态生理特点[J].作物学报,2001,27(3):278-285.
    [55]戴其根,霍中洋,张洪程,苏宝林,许柯,邱枫.抛秧水稻生长发育与产量形成的生态生理机制Ⅱ.秧苗田间垂直分布格局及其生态生理效应[J].作物学报,2001,27(5):600-611.
    [56]戴其根,霍中洋,张洪程,苏宝林,许柯,邱枫.抛秧水稻生长发育与产量形成的生态生理机制Ⅲ.秧苗地面水平上的分布格局及其生态生理效应[J].作物学报,2001,27(6):802-810.
    [57]戴其根,张洪程,霍中洋,许轲,邱枫.抛秧稻生长发育特征及产量形成规律的探讨[J].江苏农业研究,2000,21(1):1-7.
    [58]刘军,黄庆,付华,陆秀明,刘怀珍,李康活.水稻免耕抛秧高产稳产的生理基础研究[J].中国农业科学,2002,35(2):152-156
    [59]毛璧君,潘玉巢,罗家镏,刘怀珍,卢德成,张万巧,杨江.水稻抛秧栽培的生育生理特性[J].广东农业科学,1994,(2):11-15.
    [60]毛璧君,潘玉巢,罗家镏,刘怀珍,卢德成,张万巧,杨江.水稻纸筒育苗抛秧栽培的产量潜力测定[J].广东农业科学,1994,(2):5-6.
    [61]郎宁,徐世宏,梁人君,陈桂生.不同施氮量对免耕抛秧稻产量的影响[J].杂交水稻,2003,18(2):51-52.
    [62]程永盛,黄庆,刘怀珍,刘军,陆秀明,付华.不同施氮处理对免耕抛秧稻产量及其构成因素的影响[J].广东农业科学,2001,(5):28-30.
    [63]陆敦,邓廷禧,肖爱平,刘著厚.基蘖肥与穗粒肥配比对早稻塑盘旱秧抛栽产量和群体质量的影响[J].耕作与栽培,1998,3(1):19-22.
    [64]Boekman O C, Olfs H W. Fertilizers, agronomy and N2O[J]. Nutr. Cyel. Agroecosyst.,1998,52: 165-170
    [65]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [66]李菊梅,徐明岗,秦道珠,等.有机无机肥配施对稻田氨挥发和水稻产量的影响[J].植物营养与肥料学报,2005,11(1):51-56.
    [67]宋勇生,范晓晖.稻田氨挥发研究进展[J].生态环境,2003,12(2):240-244.
    [68]徐茂,王鹤平,殷广德,周培南,张亚洁,苏祖芳,许乃霞.穗肥施用时期对水稻产量及群体质量的影响[J].江苏农业研究,2000,21(2):36-40.
    [69]苏祖芳,杜永林,周培南,孙成明,张亚洁,季春梅,许乃霞.水稻抽穗后源质量与产量的关系[J].扬州大学学报(自然科学版),2000,3(2):38-41.
    [70]Cassman K G, Peng S, Olk D C, et al. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems[J]. Field Crops Research,1998,56:7-39.
    [71]Ohnishi M, Horie T, Homma K, et al. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand[J]. Field Crops Research,1999,64: 109-120.
    [72]江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004,37(4):490-496.
    [73]丁艳锋,刘胜环,王绍华,等.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报,2004,30(8):739-744.
    [74]吴文革,张四海,赵决建.氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响[J].植物营养与肥料学报,2007,13(5):757-761.
    [75]江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径[J].中国水稻科学,2002,16(3):261-264.
    [76]胡承太,颜振德.水稻品种氮素营养特性与产量形成的关系[J].江苏农业科学,1984,(3):2-8.
    [77]Ingram, K. T. Growth and CO2 assimilation of low land rice in response to timing and method of N fertilization[J]. Plant and Soil,1991,132(1):113-125.
    [78]田中孝,幸等著.朱庆森等译.水稻的基础生理和生态[M].上海:上海科技出版社,1987:106-120.
    [79]石庆华、潘晓华等.杂交早稻吸氮特性与产量形成的初步研究[J].江西农业大学学报,1989,(1):18-23.
    [80]张俊国,李彻,张三元等.不同粳稻品种群体整齐度的比较分析[J].吉林农业科学,2000,25(1):12-16.
    [81]张静兰,等.氮素营养对水稻生产、产量和碳氮代谢的影响[J].植物学报,1964(3):75-81.
    [82]李义珍,郑景生.杂交稻施氮水平效应研究[J].福建农业学报,1998,13(2):58-64.
    [83]王夫玉,黄丕生.水稻群体茎桑消长模型及群体分类研究[J].中国农业科学,1997,30(1):57-64.
    [84]石庆华.水稻不同熟期品种碳氮代谢研究初报[J].江西农业大学学报,1988,10(专辑):94-101.
    [85]De Datta S K.ImProving nitrogen fertilizer efficiency in lowlang rice in tropical Asia[J]. In:De Datta S K, Patrick W H, Jr, eds. Nitrogen economy of flooded rice soils. Martinus Nijho Dr. Junk Pub W, Dordrecht.1986,171-186.
    [86]Murata Y. Photosynthesis, respiration, and nitrogen response[J]. In:The mineral nutrition of the rice Plant. Proceedings of a symposium at the Imitational Rice Research institute. Feb. IRRI.1964, 385-400.
    [87]潘圣刚,曹凑贵,蔡明历.氮肥运筹对水稻氮素吸收和稻田渗漏液氮素浓度影响[J].农业环境科学学报,2009,28(10):2145-215.
    [88]田智慧,潘晓华.氮肥运筹及密度对超高产水稻中优752的产量及产量构成因素的影响[J].江西农业大学学报,2007,29(6):894-898.
    [89]田智慧,潘晓华.氮肥运筹及密度对中优752源库关系和剑叶温度的影响[J].江西农业学报,2008,20(6):10-13.
    [90]潘晓华,石庆华,王永锐.水稻后期施肥的增产作用及其机理研究概况-水稻高产理论与技术[M].北京:中国农业出版社,1996:100-103.
    [91]冯惟珠,苏祖芳.水稻灌浆期源质量与产量关系及氮素调控的研究[J].中国水稻科学,2000,14(1):24-30.
    [92]杜永林,苏祖芳.氮肥运筹对水稻抽穗期群体源库质量的影响[J].耕作与栽培,1999,2:20-23.
    [93]蒋碧娟,熊宗禹,文先发.基桑肥与穗粒肥配比对两系杂交稻产量的影响[J].杂交水稻,2001,16(1):34-35.
    [94]InthaPanya P, SiPaseuth, Sihavong P, Sihathep V, ChanPhengsay M, Fukai S, Basnayake J.GenotyPe differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilized conditions[J]. Field Crop Res,2000,65:57-68.
    [95]潘晓华,王永锐.两系杂交稻始穗期追施氮钾肥提高叶片光合功能的作用[J].江西农业大学学报,1997,19(3):1-5.
    [96]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    [97]Zhang Y B, Tang Q Y, Zou Y B. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions[J]. Field Crops Research,2009,114:91-98.
    [98]Katsura, K., Maeda, S., Lubis, I., Horie, T., Cao, W., Shiraiwa, T.. The high yield of irrigated rice in Yunnan China:a cross-location analysis[J]. Field Crops Res.,2008,101:1-11.
    [99]顾伟,李刚华,杨从党,等.特殊生态区水稻超高产生态特征研究[J].南京农业大学学报,2009,32(4):1-6.
    [100]童平,杨世民,马均.不同水稻品种在不同光照条件下的光合特性及干物质积累[J].2008,19(3):505-511.
    [101]殷宏章.水稻开花后干物质积累和运输[J].植物学报,1959,5(2):177-194.
    [102]杨惠杰,李义珍,黄育民,等.超高产水稻的产量构成和库源结构[J].福建农业学报,1999,14(1):1-5.
    [103]杨建昌,王志琴,朱庆森.水稻产量源库关系的研究[J].江苏农学院学报,1993,1,4(3):47-53.
    [104]马均,朱庆森,马文波,等.重穗型水稻光合作用、物质积累与运转的研究[J].中国农业科学,2003,36(4):375-38.
    [105]严进明,翟虎渠,张荣铣,等.重穗型杂种稻光合和光合产物运转特性研究[J].作物学报,2001,27(2):261-266.
    [106]Jiang D A, Lu Q, Wen X Y, et al. Role of key enzymes for photosynthesis in the diurnal changes of photosynthetic rate in rice[J].Acta Agronmica,Sinica,2001,27(3):301-307.
    [107]严建民,翟虎渠,万建民,等.亚种间重穗型杂交稻光合产物的运转特性及其生理机制[J].中国农业科学,2003,36(5):502-507.
    [108]张荣铣,程在全,方志伟.关于光合速率高值持续期的初步研究[J].南京师范大学学报(自然科学版),1992,5:76-86.
    [109]刘宛,徐正进,陈温福,等.氮素水平对不同穗型水稻品种植株衰老和产量的影响[J].沈阳农业大学学报,2001,32(4):243-246.
    [110]曹树青,翟虎渠,张荣铣,等.不同类型水稻品种叶源量及有关光合生理指标的研究[J].中国水稻科学,1999,13(2):91-94.
    [111]Yoshida S. Physiological aspects of grain yield[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1972,23:437-464.
    [112]Kobata T, Palta J A, Turner N C. Rate of development of postanthesis water deficits and grain filling of spring wheat[J]. Crop Science,1992,32:1238-1242.
    [113]李义珍,黄育民,庄占龙,等.杂交稻高产群体干物质积累运转Ⅱ.碳水化合物的积累运转[J].福建省农科院学报,1996,11(2):1-6.
    [114]李木英,潘晓华,石庆华,等.两系杂交稻结实期茎鞘物质运转特性及其籽粒影响的初步研究[J].江西农业大学学报,1998,20(3):297-302.
    [115]李荣改,孟祥祯,王玉珍,等.亚种间杂交稻干物质生产积累及转换与籽粒充实度的研究[J].河北农业大学学报,1999,22(1):29-32.
    [116]庄宝华,洪植蕃,林菲,等.两系杂交稻栽培生理生态特性Ⅰ.灌浆特性及其生理基础[J].福建农学院学报,1993,22(2):141-147.
    [117]刘承柳,蔡明历.两系晚粳杂交稻的生育特性与高产栽培技术[J].华中农业大学学报,1995,14(6):543-548.
    [118]黄育民,李义珍,庄占龙,等.杂交稻高产群体干物质的积累运转.Ⅰ.干物质积累运转[J].福建省农科院学报,1996,11(2):7-11.
    [119]王志琴,杨建昌,朱庆森,等.土壤水分对水稻光合速率与物质运转的影响[J].中国水稻科学,1996,10(4):235-240.
    [120]王志琴,戴国钧,杨建昌等.水分胁迫对稻茎中碳的运转与淀粉水解酶活性的影响[J].江苏农业研究,2001,22(3):1-6.
    [121]杨建昌,徐国伟,王志琴等.旱种水稻结实期茎中碳同化物的运转及其生理机制[J].作物学报,2004,30(2):108-114.
    [122]Egger B, Eineg w, Schlereth A, et al.. Carbohydrate metabolism in one-and two-year old spruce needles, and stem carbohydrates from three months before until three months after bud break[J]. Physiologia Plantarum,1996,96:91-100.
    [123]Weber H, Borisjuk L, Wobus U. Sugar important metabolism during seed developmen[J]. Trends in Plant Science,1997,2:169-174.
    [124]刘军,余铁桥.大穗型水稻超高产产量形成特点及物质生产分析[J].湖南农业大学学报,1998,24(1):1-7.
    [125]赵全志,乔江方,刘辉,等.水稻根系与叶片光合特性的关系[J].中国农业科学2007,40(5):1064-1068.
    [126]王志芬,陈学留,余美炎,王同燕,任凤山,徐兵.冬小麦群体根系32P吸收活力与群体光合速率关系的研究[J].作物学报,1999,25:458-465.
    [127]王法宏,王旭清,李松坚,于振文,余松烈.小麦根系扩展深度对旗叶衰老及光合产物分配的影响[J].麦类作物学报,2003,23:53-57.
    [128]潘庆民,于振文,王月福,李光忠,王瑞英.小麦开花后iPA和ABA含量的变化及与旗叶光合、根系活力和籽粒灌浆的关系[J].西北植物学报,2000,20:733-738.
    [129]杨洪强,接玉玲,李军.植物根源逆境信使及其产生和传输[J].植物学通报,2002,19(1):56-62.
    [130]王恒彬,张蜀秋,王学臣,娄成后.乙酰胆碱在植物根冠间信息传递中的作用[J].科学通报, 2003,48:691-693.
    [131]黄升谋,邹应斌.库源关系对杂交水稻根系及叶片衰老的影响[J].湖南农业大学学报(自然科学版),2002,28(3):192-194.
    [132]赵全志,高尔明,黄丕生,等.源库质量与作物超高产栽培及育种[J].河南农业大学学报,1999,33(3):226-230.
    [133]陈温福,徐正进,张步龙.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995:69-94.
    [134]Sheehy J E, Dionora M J A, Mitchell P L. Spikelet numbers, sink size and potential yield in rice[J]. Field Crops Research,2001,7:77-85.
    [135]杨惠杰,杨仁崔,李义珍,郑景生,姜照伟.水稻超高产的决定因素[J].福建农业学报,2002,17(4):199-203.
    [136]Evance LT.作物产量的生理基础[M].北京:中国农业出版社,1978:253-274.
    [137]朱庆森,王志琴,张祖建,等.水稻籽粒充实度的指标研究[J].江苏农学院学报,1995,16(2):1-4.
    [138]董桂春,李进前,董燕萍,等.产量构成因素及穗部性状对籼稻品种库容的影响[J].中国水稻科学,2009,23(5):523-528.
    [139]吴文革,张洪程,吴桂成,翟超群,钱银飞,陈烨,徐军,戴其根,许轲.超级稻群体籽粒库容特征的初步研究[J].中国农业科学,2007,40(2):250-257.
    [140]马均,陶诗顺.杂交中稻超多蘖壮秧超稀高产栽培技术的研究[J].中国农业科学,2002,35(1):42-48.
    [141]潘晓华,李木英,曹聚明.水稻发育胚乳中淀粉的积累与及淀粉合成的酶活性变化[J].江西农业大学学报,1999,21(4):456-462.
    [142]Nakamura Y, Yuki K, Park S, et al. Carbohydrate metabolism in the developing endosperm of rice grains[J]. Plant Cell Physiol,1989,30(6):833-839.
    [143]Umemoto T, Nakamur Y, Ishikura N. Activity of,starch synthase and the amylose content in rice endosperm[J]. Phyto-chemistry,1995,40(6):1613-1616.
    [144]李天,刘奇华,大杉立等.灌浆结实期高温对水稻籽粒蔗糖及降解酶活性的影响[J].中国水稻科学,2006,20(6):626-630.
    [145]李天,大杉立,山岸徹,佐佐木治人.灌浆结实期弱光对水稻籽粒蔗糖及其降解酶活性的影响[J].作物学报,2006,32(6):943-945.
    [146]马均,明东风,马文波等.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究[J]. 中国农业科学2005,38(2):290-296.
    [147]张玲谢崇华李伟等,氮钾对杂交水稻B优827籽粒淀粉含量及淀粉合成酶活性的影响[J].中国水稻科学,2008,22(5):551-554.
    [148]杨建昌,袁莉民,唐成,王志琴,刘立军,朱庆森.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响[J].作物学报,2005,31(8):1052-1057.
    [149]赵步洪,张洪熙,朱庆森.两系杂交稻籽粒充实不良的成因及其与激素含量的关系[J].中国农业科学,2006,39(3):477-486.
    [150]马均,周开达.亚种间重穗型杂交稻穗颈维管束与穗部性状的关系[J].西南农业学报,2001,14(3):1-5.
    [151]徐正进,陈温福,曹洪任,等.水稻穗颈维管束与穗部性状关系的研究[J].作物学报,1998,24(1):47-54.
    [152]马均,周开达,马文波,等.重穗型杂交稻穗颈节间维管束与籽粒充实关系的研究[J].中国农业科学,2002,35(5):576-579.
    [153]黄璜.水稻大穗形成机制研究-茎秆维管束数目与大穗形成的关系[J].湖南农业科学,1983,3(2):18-27.
    [154]凌启鸿,蔡建中,苏祖芳.水稻茎秆维管束数与穗部性状关系及其应用的研究[J].江苏农学院学报,1982,3(3):7-16.
    [156]杨守仁.水稻源与库的辩证关系[M].北京:农业出版社,1980,176-185.
    [157]段俊,梁承邺,黄毓文,等.杂交水稻灌浆过程中籽粒充实的生理研究[J].植物生理学通讯,1995,31(2):91-95.
    [158]王夫玉,黄丕生.水稻群体源库特征及高产栽培策略研究[J].中国农业科学,1997,30(5):26-33.
    [159]刘建丰,康春林,伏军,等.水稻籽粒充实状况指标测定方法研究[J].作物研究,1993,7(1):16-19.
    [160]朱庆森,曹显祖,骆亦其.水稻籽粒灌浆的生长分析[J].作物学报,1988,14(3):182-93.
    [161]Peng S, Yang J, Garcia F V, et al. Physiology-based crop management for yield maximization of hybrid rice[J]. In: Virmani S S, Siddiq E A, Muralidharan K, ed. Advances in Hybrid Rice Technology, International Rice Research Institute, Los Banos, Pilippines,1998:157-176.
    [162]杨建昌,张文虎,王志琴,刘立军,朱庆森.水稻新株型与粳/籼杂种源库特征与物质运转的研究[J].中国农业科学,2001,34:511-518.
    [163]梁建生,曹显祖,张海燕,等.水稻籽粒灌浆期间茎鞘贮存物质含量及其影响因素研究[J].中国水稻科学,1994,8(3):151-156.
    [164]朱庆森,张祖建,杨建昌,曹显祖,郎有忠,王增春.亚种间杂交稻产量源库特征[J].中国农业科学,1997,30(3):52-59.
    [165]杨从党,周能,袁平荣,等.水稻结实率和若干生理因素的品种间差异及其相关研究[J].中国水稻科学,1998,12(3):144-148.
    [166]黄农荣,钟旭华,王丰,郑海波.超级杂交稻结实期根系活力与籽粒灌浆特性研究[J].中国农业科学,2006,39(9):1772-1779.
    [167]王余龙,蔡建中,何杰升,等.水稻颖花根活量与籽粒灌浆结实的关系[J].作物学报,1992,18(2):81-89.
    [168]王余龙,山本由德,姚友礼,等.栽培条件对水稻粒重的影响及其原因分析[J].作物学报,1998,24(3):280-290.
    [169]魏丹,韩光,赵海滨,等.根外追肥在水稻灌浆过程中对籽粒养分和水分动态变化的影响[J].黑龙江农业科学,1996,(2):1-4.
    [170]李志刚,叶正钱,杨肖娥,等.不同养分管理对杂交稻生育后期功能叶生理活性和籽粒灌浆的影响[J].浙江大学学报:农业与生命科学版,2003,29(3):265-270.
    [171]薛艳风,陆江锋,吕川根,等.两系亚种间杂交稻两优培九籽粒灌浆动态研究[J].江苏农业研究,2001,2(2):9-13.
    [172]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [173]洪植蕃,林菲,庄宝华,等.两系杂交稻栽培生理生态特性Ⅲ.结实特性与库源特征[J].福建农学院学报,1992,21(3):251-258.
    [174]曹树青,陆巍,张荣铣,等.水稻叶源量的调节与遗传分析[J].中国农业科学,2002,35(8):901-905.
    [175]郎有忠,杨建昌,朱庆森.亚种间杂交稻根系形态生理特征及其与籽粒充实度关系的研究[J].作物学报,2003,29(2):230-235.
    [176]林贤青,王雅芬,朱德峰.水稻茎鞘非结构性碳水化合物与穗部性状关系的研究[J].中国水 稻科学,2001,15(2):155-157.
    [177]赵全志,高尔明,黄丕生.水稻穗颈节与基部节间伤流的比较及其氮素调控研究[J].作物学报,2001,27(1):103-109.
    [178]赵全志,黄王生,凌启鸿,等.水稻颖花伤流量与群体质量的关系[J].南京农业大学学报,2000,23(3):9-12.
    [179]曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究[J].作物学报,1987,13(4):265-272.
    [180]曹显祖,朱庆森,杨建昌,等.水稻不同库源类型品种的栽培对策研究[J].江苏农学院学报,1988,9(3):11-15.
    [181]黄丕生,王夫玉.水稻群体源库质量特征及高产栽培策略[J].江苏农业科学,1997,(4):5-8.
    [182]张雪,郭玉华,朱彩云.低氮对沈农702的库源关系及灌浆进程的影响[J].中国农学通报,2006,26(2):221-224.
    [183]叶永印,张时龙,罗洪发,等.水稻生长中期群体结构对产量及构成因素的影响[J].安徽农业科学,2003,31(1):87-89.
    [184]石庆华,徐益群,张佩莲,等.籼粳杂交稻的氮素吸收及其对源库特征的影响[J].杂交水稻,1995,(4):19-22.
    [185]蒋之埙,黄仲青,李奕松,等.中粳稻播栽密度和追氮方法的扩库增源效应研究[J].江苏农学院学报,1998,19(1):35-39.
    [186]叶永印,谭有斌,Abu,等.杂交稻华优3号在尼日利亚旱种源库关系的研究[J].种子,2008,27(8):25-29.
    [187]袁立新,张宝金.谷子理想株形的形态特性[J].作物杂志,2000,(2):23-24.
    [188]松岛省三.肖连成译.水稻研究新技术[M].长春:吉林人民出版社,1973:35-56.
    [189]杨守仁.水稻理想株型育种的理论和方法初论[J].中国农业科学,1984,(3):6-13.
    [190]凌启鸿.IR24大面积高产栽培技术途径[J].江苏农业科学,1982,(9):1-10.
    [191]袁隆平.超级杂交稻的现状和展望[J].粮食科技与经济,2003,(1):1-3.
    [192]陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系[J].作物学报,2003,29(5):730-734.
    [193]]陈德春,杨文钰,任万军.秧苗平面分布对水稻群体动态、冠层透光率及穗部性状的影响[J].应用生态学报,2007,18(2):359-365.
    [194]王建林,徐正进,衣先众.插秧量与行距配置对北方杂交稻和常规稻产量及其构成因子的影 响[J].中国水稻科学,2006,20(6):631-637
    [195]Sinclair, T.R., Muchow, R.C.. Radiation use efficiency[J]. Adv. Agron.,1999,65:215-265.
    [196]Monteith J L. Climate and efficiency of crop productionin Britain[J]. Phil Trans,1977,281: 277-294.
    [197]Connell M G O, Leary G J. Interception of photosynthetically active radiation and radiation use efficiency of wheat, filed pea and mustard in a semiarid environment[J]. Field Crops Research, 2004,85:111-124.
    [198]Choudhury BJ. Modeling radiation-and carbonuse efficiencies of maize, sorghum and rice[J]. Agric For M eteorol,2001,106(4):317-330.
    [199]Costa LC, Santos AA Dos. Analysis of sun radiation use efficiency for soy bean, maize, rice and bean crops on various producers regions of Minas Gerais, Brazil[J]. Agric Jaboticabal,2000,20(3): 188-194.
    [200]Peterson AG, Field CB, Ball JT, el al. Reconciling the apparent difference between--mass and area--based expressions of the photosynthesis-nitrogen relationship [J]. Oecologia,1999,118: 144-150.
    [201]Albfizio R, Steduto P. Resource use efficiency of field grown sunflower, sorghum, wheat and chickpea. I. Radiation use efficiency[J]. Agricultural and Forest Meteorology,2005,130: 254-268.
    [202]Gallagher JN, Biscoe PV. Radiation absorption, growth and yield of cereals[J]. Journal of Agricultural Science,1978,91:47-60.
    [203]Latiri-Souki K, Nortclif S, Lawlor DW. Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions [J]. European Journal of Agronomy,1998,9:21-34.
    [204]Fischer RA. Irrigated spring wheat and timing and amount of nitrogen fertilizer. II. Physiology of grain yield response[J]. Field Crops Research,1993,33:57-80.
    [205]Sinclair TR, Horie T. Leaf N photosynthesis, and crop radiation use efficiency:A review [J]. Crop Science,1989,29:90-98.
    [206]Caviglia O P, Sadras V O. Effect of nitrogen supply on crop conductance[J]. water-and radiation-use efficiency of wheat[J]. Field Crops Research,2001,69:259-266.
    [207]Olesen JE, Jcrgensen LN, Mortensen JV. Irrigation strategy, nitrogen application and fungicide control in winter wheat on a sandy soil. 1I. Radiation interception and conversion[J]. Journal of Agricultural Science,2000,134:13-23.
    [208]李秦迪.超级杂交稻冠层特性与太阳辐射利用及其对产量影响的研究[D].湖南农业大学,博士学位论文,2009.
    [209]Venkateswarlu B, Visperas R M. Source-sink relationships in crop plants[J]. International Rice Research Paper Series,1987,125:1-19.
    [210]王建林,徐正进,冯永祥,等.作物超高产栽培与株型育种的光合作用基础-以水稻为例[J].中国农学通报,2004,20(5):130-134.
    [211]Elmore C D. The paradox of no correlation between leaf photosynthetic rates and crop yields[J]. In: Hesketh J D, Jones J W. eds. Predicting Photosynthesis for Ecosystem Models. Vol.11. Boca Raton, Fla. (USA):CRC Press,1980:155-167.
    [212]EvansL T. From leaf Photosynthesis to crop productivity[J]. In:Murata N (ed.), Research in Photosynthesis, Vol. IV, Dordrecht, Kluwer A cadem ic Publishers,1992,587.
    [213]许大全,沈允钢.光合作用与作物产量[M].邹琦,王学臣主编,作物高产高效生理学研究进展.北京:科学出版社,1994,17-24.
    [214]程建峰,沈允.作物高光效之管见[J].作物学报,36(8):1235-1247.
    [215]Lichtenthaler H K. Chlorophylls and caroteneoids:pigments of photosynthetic biomembranes[J]. Methods Enzymol,1987,148:351-383.
    [216]方志伟.水稻叶片叶绿素含量变化与光合速率的关系[J].南京农业大学学报,1987,(4):18-24.
    [217]王强,张其德,卢从明,等.超高产杂交稻不同生育期的光合色素含量,净光合速率和水分利用效率[J].植物生态学报,2002,26(6):647-651.
    [218]Wang Q, Zhang Q D, Jiang GM,LuC M, Kuang T Y, Wu S, Li C Q, Jiao D M. Photosynthetic characteristics of two super high-yield hybrid rice[J]. Acta Bot Sin,2000,42(12):1285-1288.
    [219]郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制[J].植物生理学通讯,1996,32(1):1-8.
    [220]Somerville CR, Ogren WL. Inhibition of photosynthesis in Arabidopsis mutants lacking in leaf glutamate synthase activity[J]. Nature,1980,286:257-259.
    [221]Kelly G J, Largo E. Regulatory aspects of photosynthetic carbonmetabolism[J]. Ann Rev Plant Physml,1976,27:181-205.
    [222]Stitt M. Control analysis of photo synthetic sucrose synthesis:as signment of elasticity coefficients and flux-control coefficients to synthase[J]. Philos Trans R Soc London(Biol),1989,323:327-338.
    [223]Stitt M, Wilke I, Feil R, Heldt H W. Coarse control of sucrose-phosphate synthase in leaves: alterations of the kineticproperties in response to the rate of photosynthesis and the accumulation of sucrose[J]. Planta,1992,174: 217-230.
    [224]Hodges D M, Andrews C J, Johnson D A, Hanulton R I. Antioxidant eyzyme responses to chilling stress in differentially sensitive inbred maize lines[J]. Journal of Experiment Botany.1997,78: 707-721.
    [225]朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系[J].中国水稻科学,2002,16(4):326-330.
    [226]陈善坤,等.水稻成熟期间叶片氮素变化动态及其与光合能力和经济产量的关系[J].植物生理学通讯,1982,(2):22-23.
    [227]吴良欢,陈峰,方萍,等.水稻叶片氮素营养对光合作用的影响[J].中国农业科学,1995,28(增刊):104-107.
    [228]Arora A, Singh V P, Mohan J. Effect of nitrogen and water stress on photosynthesis and nitrogen content in wheat[J]. Biol Plant,2001,44(1):153-155.
    [229]王仁雷,李霞,陈国祥,等.氮肥水平对杂交稻汕优63剑叶光合速率和RuBP羧化酶活性的影响[J].作物学报,2001,27(6):930-934.
    [230]刘宛,徐正进,陈温福,等.不同氮素水平对直立穗型水稻品种群体光合特性的影响[J].沈阳农业大学学报,2001,32(1):8-12.
    [231]Evans J R. Nitrogen and photosynthesis in flag leaf of wheat[J]. Plant Physiol.1983,72:297-302.
    [232]许大全.光合作用及有关过程对长期高CO2浓度的响应[J].植物生理通讯,1994,30(2):81-87.
    [233]王东,于振文,李延奇,等.施氮量对济麦20旗叶光合特性和蔗糖合成及籽粒产量的影响[J].作物学报,2007,33(6):903-908.
    [234]孙永健,孙园园,刘凯,等.水氮互作对结实期水稻衰老和物质转运及产量的影响[J].植物营养与肥料学报,2009,15(6):1339-1349.
    [235]潘庆民,于振文,王月福,等.追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响[J].中国农业科学,2002,35(7):771-776.
    [236]杨安中,李孟良,牟筱玲,等.氮肥运筹方式对地膜旱作水稻抽穗后光合性能、剑叶衰老及产 量的影响[J].土壤学报,2006,43(4):703-707.
    [237]杜明伟,冯国艺,姚炎帝,等.杂交棉标杂A1和石杂2号超高产冠层特性及其与群体光合生产的关系[J].作物学报,2009,35(6):1068-1077.
    [238]张显.小麦群体光合能力的N肥调控及其与产量形成关系的研究[D].南京农业大学,博士学位论文,1990.
    [239]董树亭.高产冬小麦群体光台能力与量关系的研究[J].作物学报,1991,17(6):461-469.
    [240]董树亭.高产麦田群体结构与光音作用的关系[J].山东农业大学学报,1998,83(1):27-30.
    [241]岳寿橙,元新华,亲橙烈.冬小麦生育后期的群体光合作用与物质生产能力[J].山东农业大学学报,1992.28(1):9-13.
    [242]赵全志,黄丕生,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究[J].中国农业科学,2001,34(3):304-310.
    [243]凌启鸿,龚荐,朱庆森,等.中稻各叶位叶片对产量形成作用的研究[J].江苏农学院学报,1982,3(2):9-19.
    [244]殷宏章,王天怿,李有则,邱国雄,杨善元,沈巩林.水稻田的群体结构与光能利用[J].分子细胞生物学报,1959,6(3):33-50.
    [245]Maddonni G A, Otegui M E. Leaf area, light interception and crop development in maize[J]. Field Crops Res,1996,48:81-87.
    [246]张建新.群体中叶片光合能力的分布及其对群体光合作用的影响[J].植物生理学报,1988,14(1):1-8.
    [247]李霞,焦德茂,刘友良.不同水稻品种各层叶片光合能力的比较[J].江苏农业学报,2004,20(4):213-219.
    [248]焦德茂,崔继林.主要农作物光合特性解析与在生产上的应用Ⅰ.杂交水稻群体不同高度叶层的光合特性[J].江苏农业科学.1982,9:11-15.
    [249]蒋彭炎,洪晓富,冯来定,等.水稻中期群体成穗率与后期群体光合效率的关系[J].中国农业科学,1994,27(6):8-14.
    [250]肖凯,张荣铣,钱维朴.氮素营养对小麦群体光合碳同化作用的影响及其调控机制[J].植物营养与肥料学报,1999,5(3):235-243.
    [251]赵全志.水稻高产群体库源产量的氮素调控研究[D].南京农业大学,博士学位论文,1998.
    [252]陈惠哲,朱德峰,林贤青,等.促花肥施氮对超级杂交稻冠层叶片生长及光合速率的影响[J].湖南农业大学学报(自然科学版),2007,33(5):617-621.
    [253]杨吉顺,高辉远,刘鹏,等.种植密度和行距配置对超高产夏玉米群体光合特性的影响[J].作物学报,2010,36(7):1226-1233.
    [1]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [2]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000.
    [3]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345.
    [4]李刚华,张国发,陈功磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应[J].作物学报,2009,35(6):1106-1114.
    [5]张洪程,吴桂成,李德剑,等.杂交粳稻13.5thm-2超高产群体动态特征及形成机制的探讨[J].作物学报,2010,36(9):1547-1558.
    [6]吴桂成,张洪程,钱银飞,等.粳型超级稻产量构成因素协同规律及超高产特征的研究[J].中国农业科学,2010,43(2):266-276.
    [7]马均,吕世华,梁南山.四川水稻强化栽培体系(SRI)的应用研究与示范[A].袁隆平,马国 辉,张玉烛.超级杂交水稻强化栽培理论与实践[M].长沙:湖南科学技术出版社,2005,43-52.
    [8]龙旭,汪仁全,孙永健,马均.不同施氮量下三角形强化栽培水稻群体发育与产量形成特征[J].中国水稻科学,2010,24(2):162-168.
    [9]张洪程,戴其根,霍中洋,等.中国抛秧稻作技术体系及其特征[J].中国农业科学,2008,41(1):43-52.
    [10]张强,万靓军,戴其根,等.水稻氮素的生物学特征及其高产运筹研究概况[J].垦殖与稻作,2004,(5):41-43.
    [11]张耀鸿,张亚丽,黄启为,等.不同氮肥水平下水稻产量以及氮素吸收、利用的基因型差异比较[J].植物营养与肥料学报,2006,12(5):616-621.
    [12]吴文革,张四海,赵决建,等.氮肥运筹模式对双季稻北缘水稻氮素吸收利用及产量的影响[J].植物营养与肥料学报,2007,13(5):757-764.
    [13]江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004,37(4):490-496.
    [14]杨惠杰,杨仁崔,李义珍,姜照伟,郑景生.水稻超高产品种的产量潜力及产量构成因素分析[J].福建农业学报,2000,15(3):1-8.
    [15]杨惠杰,李义珍,杨仁崔,姜照伟,郑景生.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    [16]Ying J, Peng S, He Q, Yang H, Yang C, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical enviromnents I[J]. Determinants of grain and dry matter yields. Field Crops Research,1998,57:71-84.
    [17]Ying J, Peng S, Yang G, Zhou N, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical environments II [J]. Nitrogen accumulation and utilization efficiency. Field Crops Research,1998,57:85-93.
    [18]吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究[J].中国农业科学,2007,40(2):250-257.
    [19]Sheehy J E, Dionora M J A, Mitchell P L. Spikelet numbers, sink size and potential yield in rice. Field Crops Research,2001,7:77-85.
    [20]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科学,2008,41(7):1927-1936.
    [21]吴桂成,张洪程,钱银飞,等.粳型超级稻产量构成因素协同规律及超高产特征的研究[J].中国农业科学,2010,43(2):266-276.
    [22]De Datta S K. Improving nitrogen fertilizer efficiency in lowland rice in tropical Asia[J]. In:De Datta S K, Patrick W H, J r, eds. Nitrogen economy of flooded rice soils. Martinus Nijho Dr. Junk Pub W, Dordrecht.1986: 171-186.
    [23]田智慧,潘晓华.氮肥运筹及密度对超高产水稻中优752的产量及产量构成因素的影响[J].江西农业大学学报,2007,29(6):894-898.
    [24]潘晓华,石庆华,王永锐.水稻后期施肥的增产作用及其机理研究概况/水稻高产理论与技术[M].北京:中国农业出版社,1996:100-103.
    [25]蒋碧娟,熊宗禹,文先发.基蘖肥与穗粒肥配比对两系杂交稻产量的影响[J].杂交水稻,2001,16(1):34-35.
    [26]Intha Panya P, Si Paseuth, Sihavong P, Sihathep V, Chan Phengsay M, Fukai S, Basnayake J. Genoty Pe differences in nutrient uptake and utilization for grain yield production of rained lowland rice under fertilized and non-fertilized conditions. Field Crop Res,2000,65:57-68.
    [27]邹应斌,黄见良,屠乃美,等.“旺壮重”栽培对双季杂交稻产量形成及生理特性的影响[J].作物学报,2001,27(3):343-350.
    [28]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995,169-194.
    [29]张洪松,岩田忠寿,佐滕勉,等.粳型杂交稻与常规稻的物质生产及营养特性的比较[J].西南农业学报,1995,8(4):11-16.
    [30]朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量源库特征[J].中国农业科学,1997,30(3):52-59.
    [31]马均,朱庆森,马文波,等.重穗型水稻光合作用、物质积累与转运的研究[J].中国农业科学,2003,36(4):375-381.
    [32]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究[J].中国农业科学,2005,38(2):258-264.
    [33]丁艳锋.氮素营养提哦空水稻群体质量指标的研究[D].南京:南京农业大学,博士学位论文,1997,4.
    [34]曾勇军,石庆华,潘晓华,等.施氮量对高产早稻氮素利用特征及产量形成的影响[J].作物学报,2008,34(8):1409-1416.
    [35]冯惟珠,苏祖芳.水稻灌浆期源质量与产量关系及氮素调控的研究[J].中国水稻科学,2000,14(1):24-30.
    [36]杜永林,苏祖芳.氮肥运筹对水稻抽穗期群体源库质量的影响[J].耕作与栽培,1999,2:20-23.
    [37]戴其根,张洪程,霍中洋,等.抛秧稻生长发育特征及产量形成规律的探讨[J].江苏农业研究,2000,21(1):1-7.
    [38]张洪程,戴其根,钟明喜,等.抛秧产量形成及其生态特征的研究[J].中国农业科学,1993,26(3):39-49.
    [39]陈德春,杨文钰,任万军.秧苗平面分布对水稻群体动态、冠层透光率及穗部性状的影响[J].应用生态学报,2007,18(2):359-365.
    [1]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [2]芦义.作物的光合作用与物质生产[M].北京:科学出版社,1971:365-373.
    [3]玖村敦彦.从源库关系看日本水稻栽培的发展[J].国外农学-水稻,1983,(3):1-5.
    [4]田中明.从源-库关系剖析水稻丰产性[J].国外农业参考资料(广东省农科院科技情报室),1981(1):12-14.
    [5]张洪程,王夫玉.中国水稻群体研究进展[J].中国水稻科学,2001,15(1):51-56.
    [6]王丰,张国平,白朴.水稻源库关系评价体系研究进展与展望[J].中国水稻科学,2005,19(6):556-560.
    [7]盛大海,刘元英,李广宇.水稻源库关系研究进展与应用[J].东北农业大学学报,2009,40(5):117-122.
    [8]曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究[J].作物学报,1987,13(4):265-272.
    [9]杨建昌,王志琴,朱庆森.水稻产量源库关系的研究[J].江苏农学院学报,1993,14(3):47-53.
    [10]杨守仁.水稻源与库的辩证关系[M].北京:农业出版社,1980,176-185.
    [11]石庆华,徐益群,张佩莲,等.籼粳杂交稻的氮素吸收特性及其对“源”“库”特征的影响[J].杂交水稻,1995(4):19-22.
    [12]蒋之埙,黄仲青,李奕松,等.中粳稻播栽密度和追氮方法的扩库增源效应研究[J].江苏农学院学报,1998,19(1):35-39.
    [13]屠乃美,官春云.光周期对水稻源库关系的影响[J].作物学报,1999,25(5):596-601.
    [14]马均,吕世华,梁南山.四川水稻强化栽培体系(SRI)的应用研究与示范[A].袁隆平,马国辉,张玉烛.超级杂交水稻强化栽培理论与实践[M].长沙:湖南科学技术出版社,2005,43-52.
    [15]龙旭,汪仁全,孙永健,马均.不同施氮量下三角形强化栽培水稻群体发育与产量形成特征[J].中国水稻科学,2010,24(2):162-168.
    [16]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000.
    [17]张洪程,戴其根,霍中洋,等.中国抛秧稻作技术体系及其特征[J].中国农业科学,2008,41(1):4-52.
    [18]曹显祖,朱庆森,杨建昌,等.水稻不同库源类型品种的栽培对策研究[J].江苏农学院学报,1988,9(3):11-15.
    [19]叶永印,张时龙,罗洪发,等.水稻生长中期群体结构对产量及构成因素的影响[J].安徽农业科学,2003,31(1):87-89.
    [20]冯惟珠,苏祖芳,杜永林,等.水稻灌浆期源质量和产量关系及氮素调控的研究[J].中国水稻科学,2000,14(1):24-30.
    [21]杜永林,苏祖芳.氮肥运筹对水稻抽穗期群体源库质量的影响[J].耕作与栽培,1999,(2):20-23.
    [22]顾伟,李刚华,杨从党,等.特殊生态区水稻超高产生态特征研究[J].南京农业大学学报,2009,32(4):1-6.
    [23]Katsura, K.., Maeda, S., Lubis, I., Horie, T., Cao, W., Shiraiwa, T.. The high yield of irrigated rice in Yunnan China: a cross-location analysis[J]. Field Crops Res.,2008,101:1-11.
    [24]Li G H, Xue L H, Gu W, etc. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a'special eco-site'and Nanjing, China[J]. Field Crops Research, 2009,112:214-221.
    [25]Zhang Y B, Tang Q Y, Zou Y B. Yield potential and radiation use efficiency of''super''hybrid rice grown under subtropical conditions[J]. Field Crops Research,2009,114:91-98.
    [26]童平,杨世民,马均,等.不同水稻品种在不同光照条件下的光合特性及干物质积累[J].应用生态学报,2008,19(3):505-511.
    [27]赵全志,高尔明,黄丕生,凌启鸿,孙淑萍,焦三军.源库质量与作物超高产栽培及育种[J].河南农业大学学报,1999,33(3):226-230.
    [28]黄璜.水稻大穗形成机制研究-茎秆维管束数目与大穗形成的关系[J].湖南农业科学,1983,3(2):18-27.
    [29]陈宏涛,李军,钱永德,郑桂萍,周建新.肥料与密度对寒地水稻源库关系的影响[J].北方水稻,2008,38(4):20-22.
    [30]田智慧,潘晓华.氮肥运筹及密度对中优752源库关系和剑叶温度的影响[J].江西农业学报.2008,20(6):10-13.
    [31]陈温福,徐正进,张步龙.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995:69-94.
    [32]Sheehy J E, Dionora M J A, Mitchell P L. Spikelet numbers, sink size and potential yield in rice. Field Crops Research,2001,7:77-85.
    [33]谢华安,王乌齐,杨惠杰,杨高群,李义珍.杂交水稻超高产特性研究[J].福建农业学报,2003,18(4):201-204.
    [34]杨惠杰,杨仁崔,李义珍,郑景生,姜照伟.水稻超高产的决定因素[J].福建农业学报,2002,17(4):199-203.
    [35]杨建昌,杜永,吴长付,刘立军,王志琴,朱庆森.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345.
    [36]董桂春,李进前,董燕萍,等.产量构成因素及穗部性状对籼稻品种库容的影响[J].中国水稻科学,2009,23(5):523-528.
    [37]吴文革,张洪程,吴桂成,翟超群,钱银飞,陈烨,徐军,戴其根,许轲.超级稻群体籽粒库容特征的初步研究[J].中国农业科学,2007,40(2):250-257.
    [38]王夫玉,黄丕生.水稻群体源库特征及高产栽培策略研究[J].中国农业科学,1997,(5):5-8.
    [39]马均,陶诗顺.杂交中稻超多蘖壮秧超稀高产栽培技术的研究[J].中国农业科学,2002,35(1):42-48.
    [40]徐正进,陈温福,张龙步,等.水稻穗颈维管束性状的类型间差异的研究[J].作物学报,1996,22(2):168-172.
    [41]马均,周开达.亚种间重穗型杂交稻穗颈维管束与穗部性状的关系[J].西南农业学报,2001,14(3):1-5.
    [42]徐正进,陈温福,曹洪任,等.水稻穗颈维管束与穗部性状关系的研究[J].作物学报,1998,24(1):47-54
    [43]邓启云,马国辉.亚种间杂交水稻维管束性状及其与籽粒充实度关系的初步研究[J].湖北农学院学报,1992,12(2):7-11.
    [44]马均,周开达,马文波,汪旭东,明东风,严志彬.重穗型杂交稻穗颈节间维管束与籽粒充实关系的研究[J].中国农业科学,2002,(05):576-579.
    [45]黄璜.生态条件对水稻茎杆维管束数的影响[J].仲恺农学院学报,1994,7(2):9-15.
    [46]凌启鸿,蔡建中,苏祖芳.水稻茎秆维管束数与穗部性状关系及其应用的研究[J].江苏农学院学报,1982,3(3):7-16.
    [48]Venkateswarlu B, Viperas R M. Source-sink relationships in cropplants[J]. IRPS,1987,125:1-19.
    [49]段俊,梁承邺,黄毓文,等.不同类型水稻品种(组合)籽粒灌浆特性及库源关系的比较研究[J].中国农业科学,1996,29(3):66-73.
    [50]柯建国,江海东,陆建飞,等.水稻不同库源类型品种灌浆特点及库源协调关系的研究[J].南京农业大学学报,1998,21(3):15-20.
    [51]袁继超,丁志勇,俄胜哲,等.源库关系对水稻籽粒灌浆特性的影响[J].西南农业学报,2005,18(1):15-19.
    [52]张洪熙,季红娟,肖宁.两系杂交稻扬两优6号高产源库特征分析[J].扬州大学学报(农业与生命科学版),2009,30(2):54-58.
    [1]范仲学,Brown JD,柳絮,等.作物科学的优先研究领域展望[J].沈阳农业大学学报,2004,35(1):68-72.
    [2]Yoshida S. Physiological aspects of grain yield[J]. Annu Rev PlantPhysiol,1972,23:437-464.
    [3]Evanshe L T. Crop Physiology:Some Case Histories[J]. Great Britain: Cambridge University Press,1975. pp 327-356.
    [4]Zelitch Ⅰ. The close relationship between net photosynthesis and crop yield[J]. BioScience,1982, 32:796-802.
    [5]Fageria N K. Maximizing Crop Yields[J]. USA:Marcel Dekker, Inc.,1992. pp 55-63.
    [6]Venkateswarlu B, Visperas R M. Source-sink relationships in crop plants[J]. International Rice Research Paper Series,1987,125:1-19.
    [7]Li G H, Xue L H, Gu W, Yang C D, Wang S H, Ling Q H, Qin X, Ding Y F. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a'special eco-site' and Nanjing, China[J]. Field Crops Res,2009,112:214-221.
    [8]松岛省三.肖连成译.水稻研究新技术[M].长春:吉林人民出版社,1973:35-56.
    [9]杨守仁.水稻理想株型育种的理论和方法初论[J].中国农业科学,1984,(3):6-13.
    [10]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426.
    [11]Yoshida S. Fundamentals of rice sciences[J]. Manila (Philippines):International Rice Research Institute,1981:269.
    [12]王强,张其德,卢从明,等.超高产杂交稻不同生育期的光合色素含量,净光合速率和水分利用效率[J].植物生态学报,2002,26(6):647-651.
    [13]Wang Q, Zhang Q D, Jiang G M, Lu C M, Kuang T Y, Wu S, Li C Q, Jiao D M. Photosynthetic characteristics of two super high-yield hybrid rice[J]. Acta Bot Sin,2000,42(12):1285-1288.
    [14]季本华,朱素琴,焦德茂.午间强光下籼粳杂种稻的叶黄素循环和C02交换特性[J].中国水稻科学,2000,14(3):149-156.
    [15]Spreitzer R J, Salvucci M E. RUBISCO:Structure, regulatory interactions, and possibilities for a better enzyme [J]. Annu Rev Plant Biol,2002,53:449-475.
    [16]Stitt M, Schulze D. Does Rubisco control the rate of photosynthesis and plant growth/An exercise in molecular ecophysiology[J]. Plant Cell Environ,2006,17:456-487.
    [17]焦德茂,李霞,黄雪清,等.转PEPC基因水稻的光合CO2同化和叶绿素荧光特性[J].科学通报,2001,46(5):414-418.
    [18]许大全.光合作用效率[M].上海:上海科技出版社,2002.
    [19]Foyer C H, Bloom Arnold J, Queval G, Noctor G. Photo respiratory metabolism:genes, mutants, energetics, and redox signaling[J]. Annu Rev Plant Biol,2009,60:455-484.
    [20]Stitt M, Wilke I, Feil R, Heldt H W. Coarse control of sucros-phosphate synthase in leaves: alterations of the kinetic properties in response to the rate of photosynthesis and the accumulation of sucrose[J]. Planta,1992,174:217-230.
    [21]Echeverria E. Intracellular localization of sucrose-phosphate in storage cells[J]. Physiol plant,1995, 95:539-562.
    [22]Geigenberger P, Stitt M. sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues[J]. Planta,1993,189:329-243.
    [23]Monteith J L. Climate and efficiency of crop productionin Britain[J]. Phil Trans,1977,281: 277-294.
    [24]Sinclair, T.R., Muchow, R.C.. Radiation use efficiency [J]. Adv. Agron,1999,65:215-265.
    [25]Mitchell, P.L., J.E. Sheehy, and F.I. Woodward. Potential yields and the efficiency of radiation use in rice[J]. IRRI Discussion PaperSer.32. IRRI, Manila, Philippines,1998.
    [26]Yamamoto, lwaya HK, Takasu Y. Comparisons of efficiency of solar energy utilization and efficiency of solar energy conversion in high-yielding rice canopies[J]. Agric Meteorol,2003, 59(1):1-11.
    [27]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    [28]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科学,2008,41(7):1927-1936.
    [29]杨建昌,朱庆森,王志琴,等.亚种间杂交稻光合特性及物质积累与运转的研究[J].作物学报,1997,23(1):81-87.
    [30]Ying J F, Peng S B, He Q R, et al. Comparison of high-yield rice in tropical and subtropical environments:I. Determinants of grain and dry matter yields[J]. Field Crops Res.1998,57:71-84.
    [31]汪仁全,马均,童平.三角形强化栽培技术对水稻光合生理特性及产量形成的影响[J].杂交水稻,2006,21(6):60-65.
    [32]陈德春,杨文钰,任万军.秧苗平面分布对水稻群体动态、冠层透光率及穗部性状的影响[J].应用生态学报,2007,18(2):359-365.
    [33]陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系[J].作物学报,2003,29(5):730-734.
    [34]王建林,徐正进,衣先众.插秧量与行距配置对北方杂交稻和常规稻产量及其构成因子的影响[J].中国水稻科学,2006,20(6):631-637.
    [35]Sinclair TR, Shiraiwa A. Soybean radiation use efficiency as influenced by nonuniform specific leaf N distribution and diffuse radiation[J]. Crop Science,1993,33:808-812.
    [36]Katsura, K., Maeda, S., Lubis, I., Horie, T., Cao, W., Shiraiwa, T. The high yield of irrigated rice in Yunnan China: a cross-location analysis[J]. Field Crops Res,2008,101:1-11.
    [37]潘晓华,王永锐.两系杂交稻始穗期追施氮钾肥提高叶片光合功能的作用[J].江西农业大学学报,1997,19(3):1-5.
    [38]王东,于振文,李延奇,等.施氮量对济麦20旗叶光合特性和蔗糖合成及籽粒产量的影响[J].作物学报,2007,33(6):903-908.
    [39]刘宛,徐正进,陈温福,等.不同氮素水平对直立穗型水稻品种群体光合特性的影响[J].沈 阳农业大学学报,2001-02,32(1):8-12.
    [40]陈惠哲,朱德峰,林贤青,等.促花肥施氮对超级杂交稻冠层叶片生长及光合速率的影响湖南农业大学学报(自然科学版),2007,33(5):617-621.
    [41]Mitchell LP, Sheehy JE, Woodward FI. Potential yields and the efficiency of radiation use in rice[J]. IRRI Discussion Paper Series,1998,32:1-62.
    [42]童平,杨世民,马均,等.不同水稻品种在不同光照条件下的光合特性及干物质积累[J].2008,19(3):505-511.
    [43]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [44]中国科学院上海植物生理研究所,上海市植物生理学会[M].现代植物生理学实验指南.北京:科学出版社,2004.
    [45]张宪政.作物生理研究法[M].北京:农业出版社,1992.
    [46]任红旭,陈雄,吴东秀.CO2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响[J].作物学报,2001,27(6):729-736.
    [47]Holaday A S, Martindale W, Aired R, Andrews A L, Leegood R C. Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature[J]. Plant Physiol,1992,98:1105-1114.
    [48]曹树青,翟虎渠,张荣铣,等.不同类型水稻品种叶源量及有关光合生理指标的研究[J].中国水稻科学,1999,13(2):91-94.
    [49]董树亭,高荣岐,胡昌浩,等.玉米花粒期群体光台性能与高产潜力研究[J].作物学报,1997,23(3):318-325.
    [50]吕川根,邹江石.两个超级杂交稻与汕优63光合株型的比较分析[J].中国农业科学,2003,36(6):633-639.
    [51]周开达,马玉清,刘太清,徐茂松.杂交水稻亚种间重穗型组合的选育-杂交水稻超高产育种的理论与实践[J].四川农业大学学报,1995,13(4):403-407.
    [52]袁隆平.杂交水稻超高产育种[M].杂交水稻,1997,12(6):1-3.
    [53]杨建昌,朱庆森,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究[J].中国农业科学,1992,25(4):7-14.
    [54]马均,马文波,明东风,等.重穗型水稻株型特性研究[J].中国农业科学,2006,39(4):679-685.
    [55]Seneweera S P, Basra A S, Barlow E W. Diurnal regulation of leaf blade elongation in rice by CO,:Is it related to sucrose phosphate synthase activity[J]. Plant Physiology,1995,108(4): 1471-1477.
    [56]时向东,刘艳芳,文志强,等.施N水平对雪茄外包皮烟叶片生长发育和内源激素含量的影响[J].西北植物学报,2007,27(8):1625-1630.
    [57]张洪程,戴其根,钟明喜,等.抛秧产量形成及其生态特征的研究[J].中国农业科学,1993,26(3):39-49.
    [58]Lichtenthaler H K. Chlorophylls and caroteneoids: pigments of photosynthetic biomembranes[J]. Methods Enzymol,1987,148:351-383.
    [59]肖凯,张荣铣,钱维朴.氮素营养对小麦群体光合碳同化作用的影响及其调控机制[J].植物营养与肥料学报,1999,5(3):235-243.
    [60]姜东,于振文,苏波,等.不同施氮时期对冬小麦根系衰老的影响[J].作物学报,1997,23(2):180-190.
    [61]赖世登,刘祚昌,余彦波,安庆坤.小麦光合速率和光呼吸的研究[J].植物学报,1981,23(2):122-126.
    [62]郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制[J].植物生理学通讯,1996,32(1):1-8.
    [63]Stitt M. Control analysis of photo synthetic sucrose synthesis: as signment of elasticity coefficients and flux-control coefficients to synthase[J]. Philos Trans R Soc London (Biol).1989,323: 327-338.
    [64]夏叔芳,徐建,苏丽英,於建新.水稻叶片的蔗糖合成酶[J].植物生理学报,1989,15(3):239-243.
    [65]Kelly G J, Largo E. Regulatory aspects of photosynthetic carbon metabolism[J]. Ann Rev Plant Physml,1976,27:181-205.
    [66]Fair P. Enzyme activities associated with carbon dioxide exchange in illuminated leaves of Hordeum valgare L.111. Effects of concentration and form of nitrogen supply on carbon dioxide compensation point[J]. Ann. Bot.1974,38:39-43.
    [67]潘庆民,于振文,王月福,余松烈.追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响[J].中国农业科学,2002,35(7):771-776.
    [68]杜明伟,冯国艺,姚炎帝,等.杂交棉标杂A1和石杂2号超高产冠层特性及其与群体光合生产的关系[J].作物学报,2009,35(6):1068-1077.
    [69]张建新.群体中叶片光合能力的分布及其对群体光合作用的影响[J].植物生理学报,1988,14(1):1-8.
    [70]杨吉顺,高辉远,刘鹏,等.种植密度和行距配置对超高产夏玉米群体光合特性的影响[J].作物学报,2010,36(7):1226-1233.
    [71]赵全志,黄丕生,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究[J].中国农业科学,2001,34(3):304-310.
    [72]李秦迪.超级杂交稻冠层特性与太阳辐射利用及其对产量影响的研究[D].博士论文,2009.
    [73]Ying J, Peng S, He Q, Yang H et al. Comparison of high-yield rice in tropical and subtropical environments I. Determinants of grain and dry matter yields[J]. Field Crops Res.,1998,57:71-84.
    [74]吴文革,张洪程,钱银飞,等.超级杂交中籼水稻物质生产特性分析[J].中国水稻科学,2007,21(3):287-293.
    [1]苏祖芳,王辉斌,杜永林.水稻生育中期群体质量与产量形成关系的研究[J].中国农业科学,1998,31(5):19-25.
    [2]Nakamura Y, Yuki K, Park S Y, et al. Carbohydrate metabolism in the developing endosperm of rice grains[J]. Plant Cell Physiol,1989,30:833-839.
    [3]Nakamura Y, Umemoto T, Takahata Y, et al. Characteristics and roles of key enzymes associated with starch biosynthesis in rice endosperm[J]. Gamma Field Symposia,1992,31:25-44.
    [4]梁建生,曹显祖,徐生,等.水稻籽粒库强与其淀粉积累之间关系的研究[J].作物学报,1994,20(6):685-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700