用户名: 密码: 验证码:
矿区地面沉降的InSAR监测及参数反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于自然条件的原因,煤矿开采多数是地下开采,过度的开采容易破坏当地环境甚至引发多种灾害,如地表塌陷、地表水倒灌等,给国家和当地人民带来巨大损失。然而,目前我国仅靠简单的人工测量手段监测矿区形变,地表植被和水系发育、山势陡峭等地带的地表沉降现象却无法得到有效监测,缺乏开采过程中的形变趋势及灾害预测信息。如何实时、高效监测煤矿开采过程中地表形变变化是防控煤矿灾害的一项关键内容,也是本论文的主要研究目标。
     论文重点围绕InSAR(合成孔径雷达干涉测量)技术结合位错模型对煤矿矿区进行监测的方法展开研究。针对InSAR技术大尺度形变监测,采用SBAS方法(短基线集)对满足一定时空基线的干涉对进行处理,有效地减弱时空基线引起的失相干问题,在提高D-InSAR结果精度的同时提高形变的时空分辨率;针对大地形变场研究的热门方法-位错模型,研究基于垂直方向的简化后位移位错模型,并结合InSAR结果利用大地测量反演方法反演煤矿塌陷机理。
     论文主要研究工作如下:
     1)采用SBAS(小基线集)技术获取丰城某煤矿时间序列沉降图
     选择江西丰城市某煤矿矿区作为实验区,利用D-InSAR技术对获取的日本ALOS PALSAR数据进行差分干涉测量,采用最优化融合和线性方向窗口的方法生成干涉图,提取矿区2007-2008年矿区形变场。获取煤矿2007-2008年间的7景PALSAR影像,采用SBAS技术对数据进行处理,采用最小二乘法估计出高相干点时间序列上的沉降速率和累积沉降量,得到各影像不同时刻的时间序列沉降图,并利用研究区域已有的监测结果(水准数据)对本文获取的沉降速率和累积沉降量进行验证。
     2)基于InSAR监测技术的矿区地表形变时空演化规律分析
     结合常规水准监测数据和InSAR结果,对煤矿工作面开采导致的地表形变时间演化规律进行分析,通过形变时间曲线预报了地表形变所处的演化阶段,结合煤矿采工图及收集到的地表宏观形变信息数据,分析煤矿地表形变空间演化规律,判断矿区工作面地表形变所处的时空演化阶段。
     3)研究基于煤矿塌陷机理的简化矩形位错理论模型
     以Okada矩形位错理论模型为基础,根据煤矿塌陷的特点和煤矿开挖的实际情况来建立合理的地球物理反演模型—简化矩形位错模型,利用简化矩形位错模型对矿区塌陷进行位错位错张裂分量的反演,然后将反演的位错张裂分量模拟计算矿区地表沉降量。
     4)采用大地测量反演方法对矿区塌陷进行位错位错张裂分量的反演
     基于简化矩形位错模型,结合水准数据,将最小二乘线性反演算法与蒙特卡罗非线性反演算法分别对丰城某煤矿进行位错位错张裂分量的反演,得到矿区开采过程中的塌陷趋势量。
     5) InSAR监测数据结合简化位错模型煤矿塌陷的参数反演
     利用SBAS技术获取的矿区沉降漏斗B、D区域的大概1年内累积沉降量,结合简化矩形位错模型,采用最小二乘线性反演算法与蒙特卡罗非线性反演算法分别对矿区的位错位错张裂分量进行反演,并将反演的位错张裂分量来模拟计算矿区地表沉降量,然后将SBAS监测数据反演与水准监测数据反演进行对比分析,并基于参数反演对煤矿开采进度进行了分析;实验结果表明:利用简化位错模型结合SBAS监测技术反演煤矿地表形变是可行的。
Because of constraints in site conditions, most coal mines are underground mines. Excessive exploitation can destroy local environments, cause hazards such as ground subsidence and surface water encroachment and endanger workers' lives, resulting in great losses to local people and the country. However, most coal-mining firms in the country use only simple manual measurement techniques to monitor ground surface deformation, which is often ineffective and cannot monitor effects on surface vegetation, water development, mountain steep terrain and farmland subsidence, and even cannot get the trends of deformations in the process of mining and disaster forecasting information. This study focuses on how to monitor land surface changes efficiently in the process of coal-mining in the real time.
     The thesis focuses on a monitoring analysis method that combines Interferometrtric Snyhtetie Apertuer Radar (InSAR) and a dislocation modeling. The small baseline subset (SBAS) approach is used to monitor ground deformation. The method can effectively overcome effect of decorrelation and enhance the accuracy of D-InSAR. A simplified dislocation model for vertical displacement is studied and the geodetic inversion method is used for the coal mine studied based on the InSAR deformation results to invert the mechanism of the coal mine deformation.
     The thesis contains the following main research components:
     1) Obtaining the temporal settlement sequence of Feng-Cheng coal mine based SBAS technology. After getting a PALSAR dataset of the Ping-Hu coal mine in Fengcheng City, Jiangxi Province, D-InSAR method is used to generate interferograms based on the method of optimal fusion and linear direction windows. The deformation field for different time intervals from2007to2008are exacted. After getting seven PALSAR images of the coal mine from2007to2008, the SBAS method is used to to estimate the accumulated settlements of the high coherent points to obtain the temporal settlement sequence. Leveling results are used to verify the deformation rates and accumulated settlements from the SBAS method.
     2) Temporal-spatial deformation evolution of the surface deformation on mining area based on InSAR results. InSAR and leveling results are combined to analyze the temporal-spatial evolution of surface deformation in coal mining area and to predict surface deformation by deformation-time curve. The spatial surface deformation evolution of the coal mining area is analyzed based on the mining map and surface macroscopical deformation to determine the surface deformation of the working face.
     3) Studying the simplified rectangular dislocation model. Based on the Okada rectangular dislocation model, a simplified rectangular dislocation model is established according to the characteristics of the coal mine's deformation and mining activities. The simplified rectangular dislocation model isused to invert the dislocation tensor to simulate the surface settlement of the mining area.
     4) Inversion of the dislocation tensor in the mining area. Based on the simplified rectangular dislocation model and leveling data, the linear inversion algorithm-least squares and nonlinear inversion algorithm-Monte Carlo are used respectively to invertthe dislocation tensor to obtain the collapse trend of the mining area.
     5) Simulation by the simplified rectangular dislocation model. According to accumulated settlement of about one year in the settlement funnels B and D of the mining area and the simplified rectangular dislocation model, the linear inversion algorithm-least squares and nonlinear inversion algorithm-Monte Carlo are used respectively to invert the dislocation tensors of the mining areato simulate the surface settlement of the mining area. It is shown that the simulation results are consistent with the surface settlement measured by SBAS method. Then SBAS monitoring data inversion and level momtoring data inversion were analyzed, and coal mining processes are analyzed based on the parameter inversion. The experimental results show that:Using the dislocation model of combining SBAS inversion of coal mine surface deformation monitoring technology is feasible.
引文
[1]Curlander J C.Synthetic aperture radar system and signal Processing [M]. Wiley&Sons,1991.
    [2]Roger A E, Ingalls R P.Venus Mapping the surface reflectivity by radar interferometry[J].Science,1969,165:797-799.
    [3]Graham L C. Synthetic interferometer radar for topographic mapping[J]. Pro.of IEEE.1974,62(6):763-768.
    [4]Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry:Two dimensiOnal phase unwrapping[J]. Radio Science,1988,23(4):713-720.
    [5]Gabriel, A.K, R.M.Goldstein, et al. Mapping small elevation changes over large areas:differential radar interferometry[J]. Journal of Geophysical Research, 1989,94:9183-9191.
    [6]Perski Z, Hanssen R, Wojcik A, et al. DInSAR analyses of terrain deformation near the Wieliczka Salt Mine [J]. Poland Engineering Geology,2009,106(3): 58-67.
    [7]Agustan. Ground deformation detection based on ALOS-PALSAR data utilizing DInSAR technique in Indonesia [D]. Nagoya:Doctor of Science in Nagoya University,2010.
    [8]T.Frontera, A.Concha, P.Blanco, A.Echeverria, et al. DInSAR coseismic deformation of the May 2011 Mw 5.1 Lorca earthquake,(Southern Spain) [J]. Solid Earth Discussions,2011, (3):963-974.
    [9]Fitra Ismaya, James Donovan. Applications of DInSAR for Measuring Mine-InduCed Subsidence and Constraining Ground Deformation Model[J]. GeoCongress,2012:3001-3010.
    [10]Tang Fuquan, Chen Zuxi, Wu Hangying. Application of GPS/InSAR Fusion Technology in Dynamic Monitoring of Mining Subsidence in Western Mining Areas[J].the 20122nd International Conference on Consumer Electronics, Communications and Networks,2012:2420-2423.
    [11]Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry [J]. IEEE International Geoscience and Remote Sensing Symposium,1999, (3): 1528-1530.
    [12]Vilardo G, Ventura G, Terranova C, et al. Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region from Permanent Scatterers Synthetic Aperture Radar Interferometry [J]. Remote Sensingof Environmet,113:197-212.
    [13]Piyush Shanker. Persistent scatter interferometry in natural terrain [D]. Doctoral dissertation of STANFORD UNIVERSITY,2010.
    [14]Lagios.E, Sakkas.V, Novali.F, et al. Ground deformation studies in Cephallonia island(Western Greece) based on DGPS&PS interferometry[J]. IEEE Geoscience and Remote Sensing,2011, (7):3887-3890.
    [15]Jin Baek, Sang-Wan Kim, Hyuck-Jin Park, et al. Analysis of ground subsidence in coal mining area using SAR interferometry [J].Geosciences Journal,2008, 12(3):277-284.
    [16]Euillades.L, Pepe.A, Berardino.P, Bonano.M, et al. RADARSAT-1 defromation time-series generation by using the SBAS-DInSAR algorithm [J]. IEEE Radar Conference,2009, doi:10.1109/RADAR.2009.4977079.
    [17]Sergey Samsonov. Topographic Correction for ALOS PALSAR Interferometry [J]. IEEE Geoscience and Remote Sensing,2010,48(7):3020-3027.
    [18]R.Lanari, P.Berardino, M.Bonano, F.Casu, et al. Surface displacements associated with the L'Aquila 2009 Mw 6.3 earthquake(central Italy):New evidence from SBAS-DInSAR time series analysis[J]. GEOPHYSICAL RESEARCH LETTERS,2010,37:L20309-L20315.
    [19]GZeni.M.Bonano, F.Casu, M.Manunta, et al. Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique:the case study of the city of Rome, Italy [J]. Journal of Geophysis and Engineering, 2011, doi:10,1088/1742-2132/8/3/S01.
    [20]M.Manzo, Yuri Fialko, Francesco Casu, et al. A Quantitative Assessment of DInSAR Measurements of Interseismic Deformation.The Southern San Andres Fault Case Study [J]. Pure and Applied Geophysics,2011, doi:10.1007/s00024-011-0403-2.
    [21]Yajing Yan, Marie-Pierre Doin, Penelope Lopez-Quiroz, et al. Mexico City Subsidence Measured by InSAR Time Series:Joint Analysis Using Ps and SB AS Approaches[J]. IEEE Journal of Selected Topics in Appled Earth Observations and Remote Sensing,2012,5(4):1312-1326.
    [22]Sergey Samsonov, Nicolas d'Oreye. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volconic Pronvince [J]. Geophysical Journal International,2012, doi: 10.11111/J.1365-246X.2012.05669.X.
    [23]Mora O, Mallorqui J J, Broquetas A. Liner and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2243-2252.
    [24]Hooper A. Persistent Scatterer Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation:[Ph.D thesis]. Stanford: Stanford University,2006.
    [25]Hooper A. A multi-temporal InSAR method incorporating both persistent scatter and small baseline approaches [J]. Geophysical Research Letters,2008,35: L16302.
    [26]Huang Qihuan, He Xiufeng. SAR Interferometry for Long Term Deformation Mapping Using SBAS Method:A Case study in Nanjing Area [J]. IEEE Urban Remote Sensing Joint Event,2009,23(7):1311-1321.
    [27]Zhenhong Li, Yanxiong Liu, Xinghua Zhou, et al. Using small baseline Interferometric SAR to map nonlinear ground motion:a case study in Northern Tibet [J]. Journal of Applied Geodesy,2009, (3):163-170.
    [28]Tao Li, Jicang Wu, Lina Zhang. Monitoring ground subsidence in Jiaxing region using Envisat data [J]. International Symposium on Lidar and Radar Mapping, 2011, doi:10.1117/12.912722.
    [29]Simone Atzori, Ingrid Hunstad, Marco Chini, Stefano Salvi,et al. Finite Fault inversion of DInSAR coseismic displacement of the 2009 L'Aquila Earthquake(central Italy) [J]. Geophysical Research Letters,2009, (36): L15305-L15311.
    [30]A.Y.Babeyko, A.Hoechner, and S.V.Sobolev. Source modeling and inversion with near real-time GPS:a GITEWS perspective for Indonesia [J]. Natural Hazaards and Earth System Sciences,2010, (10):1617-1627.
    [31]T.R.Wu, T.C.He. High resolution tsunami inversion for 2010 Chile earthquake [J]. Natural Hazaards and Earth System Sciences.2011, (11):3251-3261.
    [32]M.Aloisi, V.Bruno, F.Cannavo, et al. Are the sourced models of the M 7.1 1908 Messina Straits earthquake reliable Insights from a novel inversion and a sensitivity analysis of leveling data [J]. Geophysical Journal International,2012, doi:10,1093/gji/ggs062.
    [33]Zebker H A, Goldstein R M. Topographic mapping from Interferometric Synthetic Aperture Radar Observations [J]. Journal of Geophysical Research, 1986,91 (BS):4993-4999.
    [34]Lu Zhong, Wicks Jr, Charles. Charactererizing 6 August 2007 Crandall Canyon mine collapse from ALOS PALSAR InSAR [J]. Geomatics, Natural Hazards and Risk,2010,1(1):85-93.
    [35]Zebker H A, Villasenor J. Decorrelation in interferometric radar echoes [J].IEEE TraNsactions on Geoscience and Remote Sensing,1992,30(5):950-959.
    [36]Hanssen R H. Radar Interferometry:Data Interpretation and Error Analysis [M]. Kluer Academic Publisher, Netherlands,2001.
    [37]Just D, Bamler R. Phase statistics of interferograms with applications to syntheTic aperture radar [J]. Applied Optics,1994,32(20):4361-4368.
    [38]Hanssen R H. Atmospheric heterogeneities in ERS tandem SAR interferometry [M]. Delft University Press, Netherlands,1998.
    [39]Li Z W, Ding X L, Liu G X. Modeling atmospheric effects on InSAR with meteorological and continuous GPS observations:algorithms and some test results [J]. Journal of Atmospheric and Solar-Terrestrial Physics,2004, (66):907-917.
    [40]Li Z H. Correction of atmospheric water vapour effects on repeat-pass SAR interfeRometry using GPS, MODIS and MERIS Data [D]. PH.D dissertation, University College London,2005.
    [41]Singh K, Stussi N, Keong K L. Baseline estimation in interferometric SAR[A].International 3rd ERS Symposium,Florence, ESA,1997.
    [42]Small D, Werner C L, Nuesch D. Baseline Modelling for ERS-1 SAR Interferometry[A].IEEE International Geoscence and Remote Sensing Symposium,1993.
    [43]Usai S, KLEES R. SAR Interfermetry on a Very long Time Scale:a study of the Interferometric Characteristics of Man_made Features [J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(4):2118-2123.
    [44]Usai S. A Least Squares Database Aproach for SAR Interfermetry Data [J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(4):753-760.
    [45]Ferretti A, Prati C, and Rocca F. Nonlinear Subsidence Rate Estimation Using Permanet Scatters in Differential SAR Interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2202-2212.
    [46]Ferretti A, Prati C, and Rocca F. Permanent Scatters in SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(1):8-20.
    [47]Berandino P, Fornaro G and Lanari R. A new algorithm for surface deformation monitoring based on small baseline differential interferograms [J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383.
    [48]Lanri R, Mora O, Manunta M, et al. A small_baseline approach for investigating deformation on fulljresolution differential SAR interferograms [J]. IEEE Transations on Geoscience and Remote Sensing,2004,42(7):1377-1386.
    [49]Okada Y. Surface deformation due to shear and tensile faults in a half-space[J]. BSSA,1985,82:1018-1040.
    [50]王平,任小冲,尹宏杰,等.基于PALSAR数据的青藏高原地区冻土形变监测[J].工程勘察,2010(1):55-62.
    [51]殷硕文.基于相干目标DInSAR方法的南方公路沉降监测应用研究[D].解放军信息工程大学博士论文,2010.
    [52]黄昭权,张登荣,王帆,等.基于差分干涉SAR的煤田火区地表形变监测[J].国土资源遥感,2010(4):85-90.
    [53]唐升峰,孙倩,胡俊,等.基于PALSAR数据的2010年Darfield地震地区表同震形变场提取[J].中国测绘,2011,34(4):159-162.
    [54]黄宝伟.基于D-InSAR和GIS技术的煤矿区地面沉降监测研究[D].中国石油大学硕士论文,2011.
    [55]何敏,陆晓燕,何秀凤.利用D-InSAR二轨法监测徐州大屯中心区地表形变[J].地理信息空间,2011,9(5):3-5.
    [56]付春永,苗小利,冯西林.D-InSAR技术在矿区开采沉陷监测中的应用[J].陕西科技大学学报,2011,29(3):113-117.
    [57]闫建伟,汪云甲,朱勇.基于D-InSAR技术的淮南矿区地面沉陷监测[J].工矿自动化,2011,(8):48-51.
    [58]郭炳跃,何敏,刘建东.利用InSAR技术监测徐州市矿区地表变形[J].地质学刊,2012,36(1):99-103.
    [59]鲍金杰,汪云甲.InSAR测量技术在矿区地表沉降监测中的应用[J].煤炭科学技术,2012,40(5):96-99.
    [60]洪卓众.基于D-InSAR的矿区沉降监测[J].山西建筑,2012,38(22):73-75.
    [61]刘晓菲,邓喀中,薛继群,等.基于D-InSAR技术的公路采空区变形监测[J].煤矿安全,2012,43(8):207-209.
    [62]魏长靖,汪云甲,闫建伟.D-InSAR技术二轨法监测矿区地表沉陷的方法 研究[J].煤炭技术,2012,31(7):121-123.
    [63]陈强,丁晓利,刘国祥,等.雷达干涉PS网络的基线识别与解算方法[J].地球物理学报,2009,52(9):2229-2235.
    [64]胡波,汪汉胜.用PSInSAR技术监测地面沉降研究[J].大地测量与地球动力学,2010,30(2):34-39.
    [65]樊力彰.小数据集时间序列PS-InSAR技术及其地表沉降应用[D].辽宁阜新:辽宁工程技术大学硕士学位论文,2010.
    [66]丁伟.PSInSAR点目标提取及相位解缠技术研究[D].长沙:中南大学硕士论文,2011.
    [67]王宏宇.短时空基线PS-InSAR技术在大同地区的形变监测研究[D].西安:长安大学硕士论文,2011.
    [68]郭娇娇.矿区地表形变监测PS-DInSAR应用方法研究[D].太原:太原理工大学硕士论文,2011.
    [69]李强.PSInSAR技术在地表沉降监测中的应用研究[D].太原:太原理工大学硕士论文,2012.
    [70]罗海滨,赵显富.基于PS-DInSAR技术监测盐城地面沉降的结果与分析[J].测绘通报,2012,(11):35-37.
    [71]葛大庆,王艳,郭小方,等.利用短基线差分干涉纹图集监测地表形变场[J].大地测量与地球动力学,2008,28(2):61-66.
    [72]孙广通.时间序列InSAR地表形变反演及大气相位改正技术研究[D].辽宁阜新:辽宁工程技术大学硕士学位论文,2010.
    [73]胡乐银.应用InSAR时序分析方法监测断层活动性研究[D].山东青岛:山东科技大学硕士学位论文,2010.
    [74]赵鸿燕,魏也纳,戴立乾.多基线距DInSAR反演河南省永城煤矿区地表形变[J].中国地质灾害与防治学报,2010,21(4):91-94.
    [75]范洪冬.InSAR若干关键算法及其在地表沉降监测中的应用研究[D].北京:中国矿业大学博士论文,2010.
    [76]范洪冬,邓喀中,薛继群,等.利用时序SAR影像集监测开采沉陷的试验研究[J].煤矿安全,2011,42(2):15-18.
    [77]吴宏安,张永红,陈晓勇,等.基于小基线DInSAR技术监测太原市2003—2009年地表形变场[J].地球物理学报,2011,54(3):673-680.
    [78]山峰.基于SBAS—InSAR技术的大同市地面沉降监测研究[D].西安:长安大学,2011.
    [79]罗三明,杨国华,董运洪,等.基于SB-DInSAR时间序列探测地震形变 过程的研究[J].大地测量与地球动力学,2011,31(6):15-19.
    [80]季灵运,王庆良.利用SBAS—DInSAR技术提取腾冲火山区形变时间序列[J].大地测量与地球动力学,2011,31(4):149-153.
    [81]许文斌,李志伟,丁晓利,等.利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J].地球物理学报,2012,55(2):452-461.
    [82]张静,张勤,曲菲菲.运城市地面沉降SBAS—InSAR监测和敏感性GIS分析[J].上海国土资源,2012,39(1):58-61.
    [83]候安业,张景发,刘斌,等.PS-InSAR与SBAS-InSAR监测地表沉降的比较研究[J].大地测量与地球动力学,2012,32(4):125-128.
    [84]张金芝.InSAR技术在地面沉降监测中的应用研究[D].山东青岛:山东科技大学硕士学位论文,2011.
    [85]李英会,张永红,孙广通,等.基于多时相干涉SAR提取地表形变的关键技术探究[J].遥感信息理论研究,2012,(1):19-24.
    [86]张学东,葛大庆,吴立新,等.基于相干目标短基线InSAR的矿业城市地面沉降监测研究[J].煤田学报,2012,37(10):1606-1611.
    [87]佟国助.基于InSAR的伊朗BAM地震形变场获取和震源参数确定[D].长沙:中南大学硕士论文,2008.
    [88]许强,汤明高,徐开祥,等.滑坡时空演化规律及预警预报研究[J].岩石力学与工程学报,2008,27(6):1104-1112.
    [89]白玉柱,徐杰,徐锡伟,等.2008年汶川8.0级地震地表位移场的模拟—映秀-北川断裂逆冲兼右旋走滑错动形式的地表位移场[J].地震地质,2010,32(1):16-27.
    [90]白玉柱,周庆,徐锡伟,等.汶川地震形成位移场的空间分布[J].地球物理学进展,2012,27(1):29-37.
    [91]刘杰.粒子群算法反演断层滑动速率[D].西安:长安大学,2011.
    [92]刘杰,张永志.GPS数据的粒子群算法反演断层的三维滑动速率[J].大地测量与地球动力学,2010,30(2):40-42.
    [93]刘杰,张永志.多种数据的粒子群算法反演河西地区主要断层运动[J].大地测量与地球动力学,2010,30(5):28-31.
    [94]段虎荣,张永志,徐海军.改进的粒子群算法在断层滑动速率反演中的应用[J].大地测量与地球动力学,2010,20(6):31-36.
    [95]张秀霞,张永志.遗传算法反演龙门断裂带断层三维滑动参数研究[J].地球科学与环境学报,2011,33(2):217-220.
    [96]张秀霞.顾及误差的遗传算法反演研究[D].西安:长安大学,2010.
    [97]李飞.基于位错模型反演断层三维滑动速率[J].杨凌职业技术学院学报,2010,9(3):9-12.
    [98]张慧鑫.使用ALOS DInSAR提取5.12汶川地震同震地表形变场及形变场数值模拟[D].西南交通大学硕士论文,2010.
    [99]宋键.喜马拉雅东构造周边地区主要断裂现今运动特征与数值模拟研究[D].北京:中国地震地质研究所博士学位论文,2010.
    [100]宁黎虎,朱建军.位错模式下三维滑动参数的求解[J].测绘工程,2011,20(1):26-29.
    [101]张国宏,屈春燕,单新建,等.2008年Ms 7.1于田地震InSAR同震形变场及其震源滑动反演[J].地球物理学报,2012,54(11):2753-2760.
    [102]薛莲,孙建宝,沈正康.2010年1月12日海地MW7.0地震InSAR同震形变观测及同震滑动分布反演[J].地震地质,2011,33(1):157-174.
    [103]张贵钢,杨志强,王庆良.龙门山断裂带三维滑动速率反演及其分段性研究[J].大地测量与地球动力学,2011,31(1):5-7.
    [104]张永志,徐海军,王卫东,等.渭河盆地断裂活动速率的粒子群算法反演[J].西北地震学报,2011,33(4):322-325.
    [105]吴小利.祁连山北缘断裂滑动参数的GPS数据算法反演研究[J].工程地球物理学报,2011,8(2):182-186.
    [106]胡亚轩,王建华,王雄.汾渭盆地内断层和地裂引起的地表垂直形变特征[J].自然灾害学报,2011,20(6):57-61.
    [107]王亚男.InSAR技术用于矿区大量级塌陷监测研究[D].西安:长安大学硕士学位论,2011.
    [108]李鹏.两种优化算法在反演断层滑动速率中的对比研究[J].全球定位系统,2012,37(3):41-44.
    [109]谭凯.汶川地震断层滑动及形变演化模拟研究[J].国际地震动态,2012,doi:10.3969/j.issn.0235-4975,2012.01.021.
    [110]王阅兵,金红林,付广裕,等.利用Yabuki&Matsu'ura反演方法计算2011年日本东北地区太平洋海域MW9.0级地震同震滑动方式[J].地球物理学报,2012 55(5):2551-2560.
    [111]王阅兵.利用Yabuki&Matsu'ura反演方法研究日本东北地震和汶川地震的同震滑动模型[D].北京:中国地震局地震研究所硕士学位论文,2012.
    [112]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    [113]舒宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社,2003.
    [114]张红,王超,吴涛等.基于相干目标的DInSAR方法研究[M].北京:科学出版社,2009.
    [115]何秀风,何敏.InSAR对地观测数据处理方法与综合测量[M].北京:科学出版社,2012.
    [116]黄宝伟.基于D-InSAR和GIS技术的煤矿区地面沉降监测研究[D].青岛:中国石油大学硕士学位论文,2011.
    [117]杨红磊,彭军还,张丁轩,等.轨道误差对InSAR数据处理的影响[J].测绘科技术学报,2012,29(2):118-121.
    [118]孙广通,张永红,吴宏安.合成孔径雷达干涉测量大气改正研究综述[J].遥感信息,2011,(4):111-115.
    [119]蒋弥,丁晓利,李志伟,等.用L波段和C波段SAR数据研究汶川地震的同震形变[J].大地测量与地球动力学,2009,29(1):21-26.
    [120]阎跃观.DInSAR监测地表沉陷数据处理理论与应用技术研究[D].北京:中国矿业大学博士论文,2010.
    [121]尹宏杰.基于InSAR的矿区地表形变监测研究[D].长沙:中南大学硕士论文,2008.
    [122]史卫平.DInSAR技术及其在矿区地面沉降监测中的应用研究[D].青岛:山东科技大学硕士论文,2010.
    [123]尹宏杰,朱建军,李志伟,等.基于SBAS的煤矿区形变监测研究[J].测绘学报,2011,40(1):52-58.
    [124]张红,王超,吴涛,等.基于相干目标的DInSAR方法研究[M].北京:科学出版社,2009.
    [125]杨红磊,彭军还,张丁轩,等.轨道误差对InSAR数据处理的影像[J].测绘科学技术学报,2012,29(2):118-121.
    [126]王永哲,朱建军,李志伟,等.利用PALSAR数据反演2010年玉树地震断层的同震滑动分布[J].测绘学报,2013,42(1):27-33.
    [127]董晓燕.基于影像匹配技术的地震形变监测研究[D].湖南长沙:中南大学硕士学位论文,2011.
    [128]何秀风,何敏.InSAR对地观测数据处理方法与综合测量[M].北京:科学出版社,2012.
    [129]黄宝伟,宋小刚,王振杰,等.基于D-InSAR技术的葛亭地面沉降监测研究[J].工程勘察,2012,(4):55-60.
    [130]佟国功.基于InSAR的伊朗BAM地震形变场获取和震源参数确定[D].长沙:中南大学硕士学位论文,2008.
    [131]王亚男.InSAR技术用于矿区大量级塌陷监测研究[D].西安:长安大学,2011.
    [132]张永志.位错理论及其在大地变形研究中的应用[M].西安:西安交通大学出版社,2011.
    [133]王健.现代非线性优化算法在大地测量反演中的应用[D].北京:中国科学院硕士学位论文,2002.
    [134]张秀霞.顾及误差的遗传算法反演研究[D].西安:长安大学,2010.
    [135]马莉.MATLAB语言实用教程[M].北京:清华大学出版社,2010.
    [136]赵静,但琦.数学建模与数学实验[M].北京:高等教育出版社,2000.
    [137]赵少荣.断层区域的水准网布设及其探测断层活动的效果[J].测绘学报,1992,(3):3-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700