用户名: 密码: 验证码:
大肠杆菌质粒介导喹诺酮耐药机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着喹诺酮类抗生素在临床上的广泛应用,大肠杆菌对其耐药性也日益严重。以往的研究发现,大肠杆菌对喹诺酮类的耐药主要由靶位改变和主动外排所致,两者均由染色体介导。随后发现质粒介导的喹诺酮耐药是其耐药性传播的主要途径。目前国内外对大肠杆菌喹诺酮类耐药机制的研究多集中于人类临床分离株,食源性分离株的研究较少。本论文以食源性和临床分离的大肠杆菌为研究对象,对分离株的耐药性以及I类整合子携带情况进行检测分析,深入探讨大肠杆菌对喹诺酮类药物的耐药机制,旨在了解不同来源大肠杆菌中相关耐药基因的分布及水平传播,并寻找有效的方法切断其传播途径,以遏制大肠杆菌耐药性的进一步扩散。研究所得结论如下:
     (1)对33株分离自熟肉制品的食源性大肠杆菌和66株临床大肠杆菌分离株的药敏试验结果显示,菌株对磺胺甲基异噁唑、复方新诺明、氨苄西林、四环素和链霉素耐药最为严重,对阿米卡星和氯霉素的敏感性最好。食源性菌株中耐受3种或3种以上抗生素的多重耐药菌株有18株(54.5%);临床分离株中多重耐药情况相对严重,所有菌株均对3种或3种以上抗生素具有耐药性,其中有将近一半的菌株耐10种或10种以上抗生素,有2株大肠杆菌对所用的14种抗生素全部显示出耐药性。
     (2)食源性和临床分离的大肠杆菌中I类整合子的阳性率分别为18.2%和54.5%。I类整合子阳性的食源性菌株携带3种不同类型的基因盒,分别为dfrA17-aadA5,dfrA1-aadA1和dfrA12-orfF-aadA2。I类整合子阳性的临床分离株携带7种不同类型的基因盒,分别为dfrA17-aadA5,dfrA12-orfF-aadA2,dfr2d,aacA4-catB8-aadA1,aadA2+dfrA12-orfF-aadA2,dfrA5,dfr2d+dfrA17-aadA5。
     (3)食品分离株中未检出qnr基因,而临床分离株中qnr基因阳性共7株,其中2株携带qnrA1,5株携带qnrS1。临床株中aac(6’)-Ib基因阳性菌株共有20株,其中11株经确认为携带其变体基因aac(6’)-Ib-cr。5株qnr阳性菌株通过接合转移成功的将耐药质粒转入受体菌E. coli J53中,接合效率分别在3.4×10~(-5)到2.4×10~(-3)之间。供体菌对喹诺酮类耐药水平明显高于其接合子。通过对供体菌、接合子和受体菌的QRDRs检测发现,5株供体菌均在GyrA亚基和/或ParC亚基存在氨基酸突变,其相应的接合子及受体菌J53的QRDRs均未发现突变。这说明染色体突变介导了较高水平的喹诺酮耐药;qnr基因的单独存在可使菌株对喹诺酮类药物的敏感性降低,从而介导了低水平的耐药。相对于受体菌来说,接合子对环丙沙星和左氧氟沙星的MIC值分别增加了32~128倍和16~32倍,对庆大霉素、阿米卡星、头孢他啶、头孢哌酮、头孢吡肟、氨苄西林和磺胺甲基异噁唑的耐药性也有大幅提高。
     (4)通过实时荧光定量PCR发现,筛选出的三株qnrS阳性接合子对环丙沙星的MIC值有所不同,但是qnrS基因的表达水平却基本相同。在环丙沙星和左氧氟沙星的作用下,qnrS的表达水平显著升高。结果表明qnrS基因的表达水平与喹诺酮类耐药程度有关。
     (5)5株qnr阳性菌株经SDS-高温高浓度双重处理交替培养法处理后,有3株成功的筛选出了消除子,消除率在60.4%到70.8%之间。这3株菌在质粒消除后质粒图谱发生了明显变化,并且经PCR扩增反应未检出qnr基因。质粒消除后,这3株菌的耐药谱也发生了变化,对庆大霉素、阿米卡星、头孢他啶、头孢哌酮、头孢吡肟、氨苄西林和磺胺甲基异噁唑的耐药性发生了逆转,由原本的耐药变为敏感。而未成功消除耐药质粒菌株的耐药谱则没有发生变化。
As quinolones used widely in clinical medicine, the increasing prevalence of resistantisolates among Escherichia coli has been an emerging problem. Previous studiesdemonstrated that the mechanisms of resistance to quinolones in E. coli are mainlychromosome-mediated, alterations in target genes and efflux pumps. Plasmid-mediatedquinolone resistance (PMQR) was found to be the primary route of transmission of resistancesubsequently. Currently, studies related to resistance to quinolones among foodborne isolatesof E. coli, however, are limited and primarily focused on clinical isolates. In this study, E. coliisolates from food and clinical patients were determined their susceptibility to14antimicrobial agents, the presence of class I integrons and the mechanisms of resistance toquinolones in E. coli. The objectives were to understand the prevalence and horizontaltransfer of resistance genes in E. coli isolates from different sources and find out the effectivemeasures to control the dissemination of bacterial resistance. The results were as follows:
     (1) A total of33E. coli isolated from cooked meat products and66clinical isolates weresubjected to antimicrobial susceptibility testing. Resistance to sulfamethoxazole,trimethoprim/sulfamethoxazole, ampicillin, tetracycline, and streptomycin were observedmost often, whilst amikacin and chloramphenicol exhibited good activity against theseisolates. Eighteen foodborne isolates (54.5%) were multiresistance, expressing resistance tothree or more antimicrobials. Multidrug resistance (MDR) was common in clinical isolates.All isolates were resistance to at least three antimicrobials; nearly50.0%of the isolates wereresistance to at least ten antimicrobials; two isolates were resistance to all14antimicrobialsused in this study.
     (2) Class I integrons were detected in18.2%of foodborne isolates and54.5%of clinicalisolates. Integron-positive isolates from food contained three groups of resistance genecassette, consisting of dfrA17-aadA5, dfrA1-aadA1, and dfrA12-orfF-aadA2. Clinical isolatescarried integrons contained seven groups of resistance gene cassette, consisting ofdfrA17-aadA5, dfrA12-orfF-aadA2, dfr2d, aacA4-catB8-aadA1, aadA2+dfrA12-orfF-aadA2,dfrA5, and dfr2d+dfrA17-aadA5.
     (3) qnr genes were absent in foodborne isolates. Among clinical isolates, qnr genes were detected in7isolates (2isolates carried qnrA1and5isolates carried qnrS1); aac(6’)-Ib genewas detected in20isolates and eleven carried aac(6’)-Ib-cr gene. Quinolone resistance couldbe transferred to recipient E. coli J53by conjugation from five qnr-positive isolates, with thetransfer frequency in the range of3.4×10~(-5)to2.4×10~(-3). The donors showed higher levels ofresistance to quinolones relative to their transconjugants. DNA sequencing of the PCRproducts covering the entire quinolone-resistance determining regions (QRDRs)demonstrated that mutations in GyrA and/or ParC were present in all donor isolates and therewere no mutations in the target genes among the transconjugants and the recipient. It wassuggested that chromosomal mutations in QRDRs played an important role in mediatinghigh-level quinolones resistance and the presence of qnr alone conferred a low level ofquinolones resistance. Transconjugants showed32-to128-fold and16-to32-fold increasesin the minimal inhibitory concentrations (MICs) of ciprofloxacin and levofloxacinrespectively, and exhibited higher levels of resistance to gentamicin, amikacin, ceftazidime,cefoperazone, cefepime, ampicillin, and sulfamethoxazole relative to recipient.
     (4) The levels of qnrS-specific transcripts were compared using real-time quantitativePCR. Three transconjugants obtained in the present study had different ciprofloxacin MICs,however, the results showed no significant differences in the basal expression levels of qnrSgene. The qnrS transcript levels increased when ciprofloxacin and levofloxacin was present,suggesting that the qnrS expression was associated with quinolone resistance.
     (5) Five qnr-positive isolates were subjected to plasmid curing by variabletemperature-SDS method and three isolates obtained eliminators successfully with the curingfrequency of60.4%to70.8%. After curing, there were obvious changes in the plasmidpatterns of the three isolates, and qnr genes were not detected in these isolates by PCR. Theresistance profiles of the isolates changed after curing. Before curing, the isolates wereresistant to gentamicin, amikacin, ceftazidime, cefoperazone, cefepime, ampicillin, andsulfamethoxazole; after curing, the isolates become susceptible to these antimicrobials.Nevertheless, no changes were observed in the two isolates which failed to plasmid curing.
引文
[1] Nataro J.P., Kaper J.B. Diarrheagenic Escherichia coli [J]. Clin Microbiol Rev,1998,11(1):142-201
    [2] Riley L.W., Remis R.S., Helgerson S.D., et al. Outbreaks of hemorrhagic colitisassociated with a rare Escherichia coli serotype [J]. N Engl J Med,1983,308(12):681-685
    [3] Besser R.E., Lett S.M., Weber J.T., et al. An outbreak of diarrhea and hemolytic uremicsyndrome from E. coli O157:H7in fresh-pressed apple cider [J]. JAMA,1993,269(17):2217-2220
    [4] Izumiya H., Terajima J., Wada A., et al. Molecular typing of EnterohemorrhagicEscherichia coli O157:H7isolates in Japan by using pulsed-field gel electrophoresis [J]. JClin Microbiol,1997,35(7):1675-1680
    [5]遇晓杰,姜晓明,袁玉兰,等.从市售蔬菜和熟肉制品中检测出O157:H7大肠杆菌[J].中国食品卫生杂志,1999,11(3):20-21
    [6] Sarimehmetoglu B., Aksoy M.H., Ayaz N.D., et al. Detection of Escherichia coliO157:H7in ground beef using immunomagnetic separation and multiplex PCR [J]. FoodControl,2009,20(4):357-361
    [7] Abong'o B.O., Momba M.N.B. Prevalence and characterization of Escherichia coliO157:H7isolates from meat and meat products sold in Amathole District, Eastern CapeProvince of South Africa [J]. Food Microbiol,2009,26(2):173-176
    [8]严纪文,朱海明,王海燕,等.2000-2005年广东省食品中食源性致病菌的监测与分析[J].中国食品卫生杂志,2006,18(6):528-531
    [9]袁宝君,戴建华,乔昕,等.2007年江苏省食源性致病菌监测分析[J].中国食品卫生杂志,2009,21(2):114-116
    [10]只帅,席美丽,申进玲,等.食源性大肠杆菌耐药性检测[J].西北农业学报,2009,18(6):377-381
    [11]肖永红,沈萍,魏泽庆,等. Mohnarin2010年度全国细菌耐药监测[J].中华医院感染学杂志,2011,23:4896-4902
    [12] Drago L., de Vecchi E., Mombelli B., et al. Activity of levofloxacin and ciprofloxacinagainst urinary pathogens [J]. J Antimicrob Chemother2001,48(1):37-45
    [13]简翠,张蓓,王斌,等.2008年湖北省细菌耐药性监测[J].中国感染与化疗杂志,2010,10(1):8-12
    [14]张小江,杨启文,孙宏莉,等.2005-2010年北京协和医院细菌耐药性监测[J].中国感染与化疗杂志,2012,12(5):330-339
    [15]朱德妹,汪复,胡付品,等.2010年中国CHINET细菌耐药性监测[J].中国感染与化疗杂志,2011,11(5):321-329
    [16] Barlow R.S., Pemberton J.M., Desmarchelier P.M., et al. Isolation and characterizationof integron-containing bacteria without antibiotic selection [J]. Antimicrob Agents Chemother,2004,48(3):838-842
    [17] Hall R.M., Collis C.M., Kim M.J., et al. Mobile gene cassettes and integrons inevolution [J]. Ann N Y Acad Sci,1999,870:68-80
    [18] Bennett P.M. Integrons and gene cassettes: a genetic construction kit for bacteria [J]. JAntimicrob Chemother,1999,43(1):1-4
    [19] Partridge S.R., Collis C.M., Hall R.M. Class1integron containing a new gene cassette,aadA10, associated with Tn1404from R151[J]. Antimicrob Agents Chemother,2002,46(8):2400-2408
    [20] Boucher Y., Labbate M., Koenig J.E., et al. Integrons: mobilizable platforms thatpromote genetic diversity in bacteria [J]. Trends Microbiol,2007,15(7):301-309
    [21] Partridge S.R., Tsafnat G., Coiera E., et al. Gene cassettes and cassette arrays in mobileresistance integrons [J]. FEMS Microbiol Rev,2009,33(4):757-784
    [22] Vinué L., Sáenz Y., Somalo S., et al. Prevalence and diversity of integrons and associatedresistance genes in faecal Escherichia coli isolates of healthy humans in Spain [J]. JAntimicrob Chemother,2008,62(5):934-937
    [23]顾兵,童明庆,刘根焰,等.整合子介导大肠埃希菌和克雷伯菌多重耐药机制的研究[J].中华检验医学杂志,2006,29(8):725-729
    [24] Su J., Shi L., Yang L., et al. Analysis of integrons in clinical isolates of Escherichia coliin China during the last six years [J]. FEMS Microbiol Lett,2006,254(1):75-80
    [25] van Essen-Zandbergen A., Smith H., Veldman K., et al. Occurrence and characteristics ofclass1,2and3integrons in Escherichia coli, Salmonella and Campylobacter spp. in theNetherlands [J]. J Antimicrob Chemother,2007,59(4):746-750
    [26] Kresse H., Belsey M., Rovini H. The antibacterial drugs market [J]. Nat Rev DrugDiscov,2007,6:19-20
    [27] Hooper D.C. Mechanisms of action and resistance of older and newer fluoroquinolones[J]. Clin Infect Dis,2000,31(suppl2): S24-S28
    [28] Martínez-Martínez L., Pascual A., Jacoby G.A. Quinolone resistance from a transferableplasmid [J]. Lancet,1998,351(9105):797-799
    [29] Tran J.H., Jacoby G.A. Mechanism of plasmid-mediated quinolone resistance [J]. PNAS,2002,99(8):5638-5642
    [30] Huang S., Dai W., Sun S., et al. Prevalence of plasmid-mediated quinolone resistanceand aminoglycoside resistance determinants among carbapeneme non-susceptibleEnterobacter cloacae [J]. PLoS One,2012,7(10): e47636
    [31] Liu B., Wang X., Liao X., et al. Plasmid-mediated quinolone resistance determinantsoqxAB and aac(6’)-Ib-cr and extended-spectrum β-lactamase gene blaCTX-M-24co-located onthe same plasmid in one Escherichia coli strain from China [J]. J Antimicrob Chemother,2011,66(7):1638-1639
    [32]张致平.喹诺酮类抗菌药研究的新进展[J].国外医药抗生素分册,2001,22(6):241
    [33] Gellert M., Mizuuchi K., O'Dea M.H., et al. DNA gyrase: an enzyme that introducessuperhelical turns into DNA [J]. PNAS,1976,73(11):4474-4478
    [34] Levine C., Hiasa H., Marians K.J. DNA gyrase and topoisomerase IV: biochemicalactivities, physiological roles during chromosome replication, and drug sensitivities [J].Biochim Biophys Acta,1998,1400(1-3):29-43
    [35] Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreasedaccumulation and DNA gyrase protection [J]. J Antimicrob Chemother,2003,51(5):1109-1117
    [36] Yoshida H., Bogaki M., Nakamura M., et al. Quinolone resistance-determining region inthe DNA gyrase gyrA gene of Escherichia coli [J]. Antimicrob Agents Chemother,1990,34(6):1271-1272
    [37] Jacoby G.A. Mechanisms of resistance to quinolones [J]. Clin Infect Dis,2005,41(suppl2): S120-S126
    [38] Weigel L.M., Steward C.D., Tenover F.C. gyrA mutations associated withfluoroquinolone resistance in eight species of Enterobacteriaceae [J]. Antimicrob AgentsChemother,1998,42(10):2661-2667
    [39] Everett M.J., Jin Y.F., Ricci V., et al. Contributions of individual mechanisms tofluoroquinolone resistance in36Escherichia coli strains isolated from humans and animals[J]. Antimicrob Agents Chemother,1996,40(10):2380-2386
    [40] White D.G., Piddock L.J., Maurer J.J., et al. Characterization of fluoroquinoloneresistance among veterinary isolates of avian Escherichia coli [J]. Antimicrob AgentsChemother,2000,44(10):2897-2899
    [41] Bagel S., Hullen V., Wiedemann B., et al. Impact of gyrA and parC mutations onquinolone resistance, doubling time, and supercoiling degree of Escherichia coli [J].Antimicrob Agents Chemother,1999,43(4):868-875
    [42] Ozeki S., Deguchi T., Yasuda M., et al. Development of a rapid assay for detecting gyrAmutations in Escherichia coli and determination of incidence of gyrA mutations in clinicalstrains isolated from patients with complicated urinary tract infections [J]. J Clin Microbiol,1997,35(9):2315-2319
    [43] Friedman S.M., Lu T., Drlica K. Mutation in the DNA gyrase A gene of Escherichia colithat expands the quinolone resistance-determining region [J]. Antimicrob Agents Chemother,2001,45(8):2378-2380
    [44] Komp Lindgren P., Karlsson A., Hughes D. Mutation rate and evolution offluoroquinolone resistance in Escherichia coli isolates from patients with urinary tractinfections [J]. Antimicrob Agents Chemother,2003,47(10):3222-3232
    [45] Heisig P. Genetic evidence for a role of parC mutations in development of high-levelfluoroquinolone resistance in Escherichia coli [J]. Antimicrob Agents Chemother,1996,40(4):879-885
    [46] Bachoual R., Tankovic J., Soussy C.J. Analysis of the mutations involved influoroquinolone resistance of in vivo and in vitro mutants of Escherichia coli [J]. MicrobDrug Resist,1998,4(4):271-276
    [47] Breines D.V., Ouabdesselam S., Ng E.Y., et al. Quinolone resistance locus nfxD ofEscherichia coli is a mutant allele of the parE gene encoding a subunit of Topoisomerase IV[J]. Antimicrob Agents Chemother,1997,41(1):175-179
    [48] Li X., Nikaido H. Efflux-mediated drug resistance in bacteria: an update [J]. Drugs,2009,69(12):1555-1623
    [49] Poole K. Efflux-mediated antimicrobial resistance [J]. J Antimicrob Chemother,2005,56(1):20-51
    [50] Alekshun M.N., Levy S.B. Molecular mechanisms of antibacterial multidrug resistance[J]. Cell,2007,128(6):1037-1050
    [51] Higgins C.F. Multiple molecular mechanisms for multidrug resistance transporters [J].Nature,2007,446(7137):749-757
    [52] Van Bambeke F., Glupczynski Y., Plésiat P., et al. Antibiotic efflux pumps in prokaryoticcells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy[J]. J Antimicrob Chemother,2003,51(5):1055-1065
    [53] Lautenbach E., Metlay J.P., Weiner M.G., et al. Gastrointestinal tract colonization withfluoroquinolone-resistant Escherichia coli in hospitalized patients: changes over time in riskfactors for resistance [J]. Infect Control Hosp Epidemiol,2009,30(1):18-24
    [54]赵庆英,刘德梦.大肠埃希菌耐药机制研究进展[J].国外医药抗生素分册,2010,31(4):190-192
    [55] Martínez-Martínez L., Cano M.E., Rodríguez-Martínez J.M., et al. Plasmid-mediatedquinolone resistance [J]. Expert Rev Anti Infect Ther,2008,6(5):685-711
    [56] Hata M., Suzuki M., Matsumoto M., et al. Cloning of a novel gene for quinoloneresistance from a transferable plasmid in Shigella flexneri2b [J]. Antimicrob AgentsChemother,2005,49(2):801-803
    [57] Jacoby G.A., Walsh K.E., Mills D.M., et al. qnrB, another plasmid-mediated gene forquinolone resistance [J]. Antimicrob Agents Chemother,2006,50(4):1178-1182
    [58] Wang M., Guo Q., Xu X., et al. New plasmid-mediated quinolone resistance gene, qnrC,found in a clinical isolate of Proteus mirabilis [J]. Antimicrob Agents Chemother,2009,53(5):1892-1897
    [59] Cavaco L.M., Hasman H., Xia S., et al. qnrD, a novel gene conferring transferablequinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strainsof human origin [J]. Antimicrob Agents Chemother,2009,53(2):603-608
    [60] Strahilevitz J., Jacoby G.A., Hooper D.C., et al. Plasmid-mediated quinolone resistance:a multifaceted threat [J]. Clin Microbiol Rev,2009,22(4):664-689
    [61]王明华. qnr介导细菌对喹诺酮类耐药机制的研究[D].上海:复旦大学华山医院,2010
    [62] Tran J.H., Jacoby G.A., Hooper D.C. Interaction of the plasmid-encoded quinoloneresistance protein Qnr with Escherichia coli DNA gyrase [J]. Antimicrob Agents Chemother,2005,49(1):118-125
    [63] Rowe-Magnus D.A., Mazel D. The role of integrons in antibiotic resistance gene capture[J]. Int J Med Microbiol,2002,292(2):115-125
    [64] Mammeri H., Van De Loo M., Poirel L., et al. Emergence of plasmid-mediatedquinolone resistance in Escherichia coli in Europe [J]. Antimicrob Agents Chemother,2005,49(1):71-76
    [65] Wang M., Tran J.H., Jacoby G.A., et al. Plasmid-mediated quinolone resistance inclinical isolates of Escherichia coli from Shanghai, China [J]. Antimicrob Agents Chemother,2003,47(7):2242-2248
    [66] Garnier F., Raked N., Gassama A., et al. Genetic environment of quinolone resistancegene qnrB2in a complex sul1-type integron in the newly described Salmonella entericaserovar Keurmassar [J]. Antimicrob Agents Chemother,2006,50(9):3200-3202
    [67] Kehrenberg C., Friederichs S., de Jong A. et al. Identification of the plasmid-bornequinolone resistance gene qnrS in Salmonella enterica serovar Infantis [J]. J AntimicrobChemother,2006,58(1):18-22
    [68] Cambau E., Lascols C., Sougakoff W., et al. Occurrence of qnrA-positive clinicalisolates in French teaching hospitals during2002-2005[J]. Clin Microbiol Infect,2006,12(10):1013-1020
    [69] Cattoir V., Weill F.-X., Poirel L., et al. Prevalence of qnr genes in Salmonella in France[J]. J Antimicrob Chemother,2007,59(4):751-754
    [70] Corkill J.E., Anson J.J., Hart C.A. High prevalence of the plasmid-mediated quinoloneresistance determinant qnrA in multidrug resistant Enterobacteriaceae from blood cultures inLiverpool, UK [J]. J Antimicrob Chemother,2005,56(6):1115-1117
    [71] Tausova D., Dolejska M., Cizek A., et al. Escherichia coli with extended-spectrumβ-lactamase and plasmid-mediated quinolone resistance genes in great cormorants andmallards in Central Europe [J]. J Antimicrob Chemother,2012,67(5):1103-1107
    [72] Jiang Y., Zhou Z., Qian Y., et al. Plasmid-mediated quinolone resistance determinantsqnr and aac(6’)-Ib-cr in extended-spectrum β-lactamase-producing Escherichia coli andKlebsiella pneumoniae in China [J]. J Antimicrob Chemother,2008,61(5):1003-1006
    [73] Fortini D., Fashae K., García-Fernández A., et al. Plasmid-mediated quinolone resistanceand β-lactamases in Escherichia coli from healthy animals from Nigeria [J]. J AntimicrobChemother,2011,66(6):1269-1272
    [74] García-Fulgueiras V., Bado I., Mota M.I., et al. Extended-spectrum β-lactamases andplasmid-mediated quinolone resistance in enterobacterial clinical isolates in the paediatrichospital of Uruguay [J]. J Antimicrob Chemother,2011,66(8):1725-1729
    [75] Liassine N., Zulueta-Rodriguez P., Corbel C., et al. First detection of plasmid-mediatedquinolone resistance in the community setting and in hospitalized patients in Switzerland [J].J Antimicrob Chemother,2008,62(5):1151-1152
    [76] Pomba C., da Fonseca J.D., Baptista B.C., et al. Detection of the pandemic O25-ST131human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2andaac(6’)-Ib-cr genes in a dog [J]. Antimicrob Agents Chemother,2009,53(1):327-328
    [77] Chmelnitsky I., Navon-Venezia S., Strahilevitz J., et al. Plasmid-mediated qnrB2andcarbapenemase gene blaKPC-2carried on the same plasmid in carbapenem-resistantciprofloxacin-susceptible Enterobacter cloacae isolates [J]. Antimicrob Agents Chemother,2008,52(8):2962-2965
    [78] Espedido B.A., Partridge S.R., Iredell J.R. blaIMP-4in different genetic contexts inEnterobacteriaceae isolates from Australia [J]. Antimicrob Agents Chemother,2008,52(8):2984-2987
    [79] Hernández A., Sánchez M.B., Martínez J.L. Quinolone resistance: much more thanpredicted [J]. Front Microbiol,2011,2:22
    [80] Rodríguez-Martínez J.M., Velasco C., Pascual A., et al. Correlation of quinoloneresistance levels and differences in basal and quinolone-induced expression from threeqnrA-containing plasmids [J]. Clin Microbiol Infect,2006,12(5):440-445
    [81] Xu X., Wu S., Ye X., et al. Prevalence and expression of the plasmid-mediated quinoloneresistance determinant qnrA1[J]. Antimicrob Agents Chemother2007,51(11):4105-4110.
    [82] Wang M., Jacoby G.A., Mills D.M., et al. SOS regulation of qnrB expression [J].Antimicrob Agents Chemother,2009,53(2):821-823
    [83] Da Re S., Garnier F., Guérin E., et al. The SOS response promotes qnrBquinolone-resistance determinant expression [J]. EMBO reports,2009,10(8):929-933
    [84] Robicsek A., Strahilevitz J., Jacoby G.A., et al. Fluoroquinolone-modifying enzyme: anew adaptation of a common aminoglycoside acetyltransferase [J]. Nat Med,2006,12:83-88
    [85] Yamane K., Wachino J., Suzuki S., et al. New plasmid-mediated fluoroquinolone effluxpump, QepA, found in an Escherichia coli clinical isolate [J]. Antimicrob Agents Chemother,2007,51(9):3354-3360
    [86] Cattoir V., Poirel L., Aubert C., et al. Unexpected occurrence of plasmid-mediatedquinolone resistance in environmental Aeromonas spp.[J]. Emerg Infect Dis,2008,14(2):231-237
    [87] Ma J., Zeng Z., Chen Z., et al. High prevalence of plasmid-mediated quinoloneresistance determinants qnr, aac(6’)-Ib-cr, and qepA among ceftiofur-resistantEnterobacteriaceae isolates from companion and food-producing animals [J]. AntimicrobAgents Chemother,2009,53(2):519-524
    [88] Yang B., Qiao L., Zhang X., et al. Serotyping, antimicrobial susceptibility, pulse field gelelectrophoresis analysis of Salmonella isolates from retail foods in Henan Province, China [J].Food Control,2013,32(1):228-235
    [89] Yang H., Chen H., Yang Q., et al. High prevalence of plasmid-mediated quinoloneresistance genes qnr and aac(6’)-Ib-cr in clinical isolates of Enterobacteiaceae from nineteaching hospitals in China [J]. Antimicrob Agents Chemother,2008,52(12):4268-4273
    [90] Robicsek A., Strahilevitz J., Sahm D.F., et al. qnr prevalence in ceftazidime-resistantEnterobacteiaceae isolates from the United States [J]. Antimicrob Agents Chemother,2006,50(8):2872-2874
    [91] Cattoir V., Poirel L., Nordmann P. Plasmid-mediated quinolone resistance pump QepA2in an Escherichia coli isolate from France [J]. Antimicrob Agents Chemother,2008,52(10):3801-3804
    [92] DeNap J.C., Hergenrother P.J. Bacterial death comes full circle: targeting plasmidreplication in drug-resistant bacteria [J]. Org Biomol Chem,2005,3(6):959-966
    [93] Spengler G., Molnár A., Schelz Z., et al. The mechanism of plasmid curing in bacteria [J].Current Drug Targets,2006,7(7):823-841
    [94] Mesas J.M., Rodriguez M.C., Alegre M.T. Plasmid curing of Oenococcus oeni [J].Plasmid,2004,51(1):37-40
    [95] Keyhani J., Keyhani E., Attar F., et al. Sensitivity to detergents and plasmid curing inEnterococcus faecalis [J]. J Ind Microbiol Biotechnol,2006,33(3):238-242
    [96]李基棕,周碧君,马喆,等.猪场环境大肠埃希菌耐药质粒消除[J].研究动物医学进展,2011,32(4):36-40
    [97]沈永恕,张春辉,荆新蕊,等.大肠埃希氏细菌中ESBLs耐药质粒的传播与消除研究[J].西北农林科技大学学报,2010,38(2):41-46
    [98] Tarr P.I. Escherichia coli O157:H7: clinical, diagnostic and epidemiological aspects ofhuman infection [J]. Clin Infect Dis,1995,20(1):1-10
    [99] Well J.G., Davis B.R., Wachsmuth I.K., et al. Laboratory investigation of hemorrhagiccolitis outbreaks associated with a rare Escherichia coli serotype [J]. J Clin Microbiol,1983,18(3):512-520
    [100]席美丽.食源性革兰氏阴性肠道病原菌PFGE分型和大肠杆菌耐药性研究[D].杨凌:西北农林科技大学,2009
    [101] Jiang X., Shi L. Distribution of tetracycline and trimethoprim/sulfamethoxazoleresistance genes in aerobic bacteria isolated from cooked meat products in Guangzhou, China[J]. Food Control,2013,30(1):30-34
    [102] Yokoigawa K., Inoue K., Okubo Y., et al. Primers for amplifying an alanine racemasegene fragment to detect E. coli strains in foods [J]. J Food Sci,1999,64(4):571-575
    [103] Tenover F.C. Mechanisms of antimicrobial resistance in bacteria [J]. Am J Med,2006,119(6A): S3-S10
    [104] Carattoli A. Resistance plasmid families in Enterobacteriaceae [J]. Antimicrob AgentsChemother,2009,53(6):2227-2238
    [105]宋立,宁宜宝,沈建忠,等.中国不同年代食品动物大肠杆菌耐药性调查研究[J].中国科学,2009,39(7):692-698
    [106]郑巧敏,张秀霞,朱涛,等.大肠埃希菌耐药性水平传播实验研究[J].中国微生态学杂志,2008,20(1):44-48
    [107] Chen S., Zhao S., White D.G., et al. Characterization of multiple-antimicrobial-resistantSalmonella serovars isolated from retail meats [J]. Appl Environ Microbiol,2004,70(1):1-7
    [108] Wang H.H., Manuzon M., Lehman M., et al. Food commensal microbes as a potentiallyimportant avenue in transmitting antibiotic resistance genes [J]. FEMS Microbiol Lett,2006,254(2):226-231
    [109] Li X.H., Shi L., Yang W.Q., et al. New array of aacA4-catB3-dfrA1gene cassettes and anoncoding cassette from a class-1-integron-positive clinical strain of Pseudomonasaeruginosa [J]. Antimicrob Agents Chemother,2006,50(6):2278-2279
    [110] Sandvang D., Aarestrup F.M., Jensen L.B. Characterization of integrons and antibioticresistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104[J].FEMS Microbiol Lett,1998,160(1):37-41
    [111]李灶平.食品中大肠埃希氏、沙门氏菌耐药性与整合子的关系研究[M].四川:四川大学,2004
    [112]文细毛,任南,徐秀华,等.全国医院感染监控网医院感染病原菌分布及耐药性分析[J].中华医院感染学杂志,2002,12(4):241-244
    [113]杜广辉,朱旭慧,袁晓奕,等.泌尿系疾病患者感染标本中大肠杆菌耐药性的检测[J].中华泌尿外科杂志,2006,27(4):278-280
    [114]李涛,熊自忠,徐元宏,等.临床分离大肠埃希菌耐药性监测[J].中华医院感染学杂志,2005,15(2):207-209
    [115] Hawser S.P., Bouchillon S.K., Hoban D.J., et al. Incidence and antimicrobialsusceptibility of Escherichia coli and Klebsiella pneumoniae with extended-spectrumβ-lactamases in community-and hospital-associated intra-abdominal infections in Europe:results of the2008study for monitoring antimicrobial resistance trends (SMART)[J].Antimicrob Agents Chemother,2010,54(7):3043-3046
    [116] Partridge S.R., Recchia G.D., Scaramuzzi C., et al. Definition of the attI1site of class1integrons [J]. Microbiol,2000,146(11):2855-2864
    [117]刘渠,林琳,刘衡川,等.食品中大肠埃希菌整合子与耐药性的关系研究[J].中国卫生检验杂志,2005,15(3):276-279
    [118] Phongpaichit S., Tunyapanit W., Pruekprasert P. Antimicrobial resistance, class1integrons and extended-spectrum β-lactamases in Escherichia coli clinical isolates frompatients in South Thailand [J]. J Health Sci,57(3):281-288
    [119] Navia M.M., Ruiz J., Vila J. Molecular characterization of the integrons in Shigellastrains isolated from patients with traveler’s diarrhea [J]. Diagn Microbiol Infect Dis,2004,48:175-179
    [120] Beatriz G., Sara M.S., Jose M.A. Multidrug resistance is mediated by large plasmidscarrying a class I integron in the emergent Salmonella enterica serotype [J]. AntimicrobAgents Chemother,2001,45(4):1305-1308
    [121] Dawes F.E., Kuzevski A., Bettelheim K.A., et al. Distribution of class1integrons withIS26-mediated deletions in their3’-conserved segments in Escherichia coli of human andanimal origin [J]. PLoS One,2010,5(9): e12754
    [122] Isabelle P., Daniela C., Paul H.R. Direct sequencing and PCR mapping of integronsreveals multiple class1integrons in the multiresistant stain Enterobacter cloacaeSCH880407941[J]. FEMS Mcirobiol Lett,2003,221(1):59-62
    [123]李家泰,李耘,王进.我国医院和社区获得性感染革兰阴性杆菌耐药性监测研究[J].中华医学杂志,2003,83(12):1035-1045
    [124]陈民钧,王辉.中国重症监护病房革兰阴性菌耐药性连续7年监测研究[J].中华医学杂志,2003,83(5):375-381
    [125]蒋琰.肠杆菌科细菌质粒介导喹诺酮耐药机制研究[D].杭州:浙江大学,2009
    [126]陶文琴,曾振灵,陈杖榴,等.养殖场分离的耐氟喹诺酮类药物的大肠杆菌基因突变研究[J].中国农业科学,2006,39(8):1667-1673
    [127] Robicsek A., Jacoby G.A., Hooper D.C. The worldwide emergence ofplasmid-mediated quinolone resistance [J]. Lancet Infect Dis,2006,6(10):629-640
    [128] Poirel L., Cattoir V., Nordmann P. Is plasmid-mediated quinolone resistance a clinicallysignificant problem?[J]. Clin Microbiol Infect,2008,14(4):295-297
    [129] Veldman K., Cavaco L.M., Mevius D., et al. International collaborative study on theoccurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichiacoli isolated from animals, humans, food and the environment in13European countries [J]. JAntimicrob Chemother,2011,66(6):1278-1286
    [130] Kanamori H., Yano H., Hirakata Y., et al. Molecular characteristics ofextended-spectrum beta-lactamases and qnr determinants in Enterobacter species from Japan[J]. PLoS One,2012,7(6): e37967
    [131] Picao R.C., Poirel L., Demarta A., et al. Plasmid-mediated quinolone resistance inAeromonas allosaccharophila recovered from a Swiss lake [J]. J Antimicrob Chemother,2008,62(5):948-950
    [132]张嵘,蔡加昌,周宏伟,等.水环境分离细菌及临床分离弗劳地柠檬酸杆菌中喹诺酮耐药基因qnr及aac(6’)-Ib-cr的检测[J].中华微生物学和免疫学杂志,2010,30(4):371-376
    [133] Poirel L., Cattoir V., Nordmann P. Plasmid-mediated quinolone resistance; interactionsbetween human, animal, and environmental ecologies [J]. Front Microbiol,2012,3:24
    [134] Yue L., Jiang H.X., Liao X.P., et al. Prevalence of plasmid-mediated quinoloneresistance qnr genes in poultry and swine clinical isolates of Escherichia coli [J]. VetMicrobiol,2008,132(3):414-420
    [135] Jiang H., Tang D., Liu Y., et al. Prevalence and characteristics of β-lactamase andplasmid-mediated quinolone resistance genes in Escherichia coli isolated from farmed fish inChina [J]. J Antimicrob Chemother,2012,67(10):2350-2353
    [136] Avsaroglu M.D., Helmuth R., Junker E., et al. Plasmid-mediated quinolone resistanceconferred by qnrS1in Salmonella enterica serovar Virchow isolated from Turkish food ofavian origin [J]. J Antimicrob Chemother,2007,60(5):1146-1150
    [137] Rodriguez-Martínez J.M., Pascual A., García I., et al. Detection of theplasmid-mediated quinolone resistance determinant qnr among clinical isolates of Klebsiellapneumoniae producing AmpC-type β-lactamase [J]. J Antimicrob Chemother,2003,52(4):703-706
    [138]李涛,熊自忠,沈继录,等.大肠埃希菌与克雷伯菌属细菌qnr基因的检测[J].检验医学,2005,20(2):112-114
    [139]王春新,蔡培泉,黄支密,等.阴沟肠杆菌喹诺酮类耐药qnr基因的发现[J].中华微生物学和免疫学杂志,2006,26(2):295-297
    [140]黄俊,李从荣,吕霞.质粒介导喹诺酮耐药基因qnr在大肠埃希菌中流行现状及耐药特征[J].现代检验医学杂志,2007,22(6):42-44
    [141]熊自忠,魏艳艳,王慧,等.临床分离阴沟肠杆菌中质粒介导喹诺酮耐药qnrB和qnrS基因的检测[J].中国感染与化疗杂志,2007,7(6):456-458
    [142]杨虹,王辉,彭黎明,等.中国九家教学医院肠杆菌科细菌质粒介导的喹诺酮耐药机制研究[J].中华检验医学杂志,2008,31(9):969-974
    [143]肖方,李新生,张素梅,等.质粒介导的喹诺酮类耐药基因在鸡源大肠杆菌中的流行[J].华北农学报,2010,25(1):222-225
    [144] Tamang M.D., Seol S.Y., Oh J.Y., et al. Plasmid-mediated quinolone resistancedeterminants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae in a Koreanhospital [J]. Antimicrob Agents Chemother,2008,52(11):4159-4162
    [145] Strahilevitz J., Engelstein D., Adler A., et al. Changes in qnr prevalence andfluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae and Enterobacter spp.collected from1990to2005[J]. Antimicrob Agents Chemother,2007,51(8):3001-3003
    [146]李红,宋诗铎,王玉宝,等.肠杆菌科临床株质粒介导的喹诺酮类耐药机制的研究[J].中华检验医学杂志,2007,30(11):1256-1259
    [147] Liu J.H., Deng Y.T., Zeng Z.L., et al. Coprevalence of plasmid-mediated quinoloneresistance determinants QepA, Qnr, and AAC(6’)-Ib-cr among16S rRNA methylaseRmtB-producing Escherichia coli isolates from pigs [J]. Antimicrob Agents Chemother,2008,52(8):2292-2293
    [148] Saenz Y., Zarazaga M., Brinas L., et al., Mutations in gyrA and parC genes in nalidixicacid-resistant Escherichia coli strains from food products, humans and animals [J]. JAntimicrob Chemother,2003,51(4):1001-1005
    [149] Yoshida H., Bogaki M., Nakamura M., et al. Quinolone resistance-determining regionin the DNA gyrase gyrB gene of Escherichia coli [J]. Antimicrob Agents Chemother,1991,35(8):1647-1650
    [150] Heddle J., Maxwell A. Quinolone-binding pocket of DNA gyrase: role of GyrB [J].Antimicrob Agents Chemother,2002,46(6):1805-1815
    [151] Ruiz J., Casellas S., Jimenez de Anta M.T., et al. The region of the parE gene,homologous to the quinolone-resistant determining region of the gyrB gene, is not linked withthe acquisition of quinolone resistance in Escherichia coli clinical isolates [J]. J AntimicrobChemother,1997,39(6):839-840
    [152]李学如,孟涛,王艳.铜绿假单胞菌耐药机理研究进展[J].国外医药抗生素分册,2004,25(3):105-108
    [153] Baker-austin C., Wright M.S., Stepanauskas R. Co-selection of antibiotic and metalresistance [J]. Trends Microbiol,2006,4(4):176-182
    [154] Zhang X., Zhang T., Fang H.H.P. Antibiotic resistance genes in water environment [J].Appl Microbiol Biotechnol,2009,82(3):397-414
    [155] Massoudieh A., Mathew A., Lambertini E., Nelson K.E., Ginn T.R. Horizontal genetransfer on surfaces in natural porous media: conjugation and kinetics [J]. Vadose Zone J,2007,6(2):306-315
    [156] Roy P.H. Horizontal transfer of genes in bacteria [J]. Microbiol Today,1999,26(99):168-170
    [157]江凌晓,俞守义.基因水平转移[J].中国地方病学杂志,2004,23(5):509-511
    [158]薛仁镐,谢宏峰,金圣爱,等.碱裂解法提取细菌质粒DNA的改良[J].生物技术,2005,15(3):44-46
    [159] Meyers J.A., Sanchez D., Elwell L.P., et al. Simple agarose gel electrophoretic methodfor the identification and characterization of plasmid deoxyribonucleic acid [J]. J Bacteriol,1976,127(3):1529-1537
    [160]朱利,俞守义.浅谈细菌基因的水平转移[J].中国预防医学杂志,2004,5(6):498-500
    [161] Goodman A.E., Hild K.C., Marshall K.C., et al. Conjugative plasmid transfer betweenbacteria under simulated marine oligotrophic conditions [J]. Appl Environ Microbiol,1993,59(4):1035-1040
    [162] Bails E., Vatopoulos A.C., Kanelopoulou M., et al. Indications of in vivo transfer of anepidemic R plasmid from Salmonella enteritidis to Escherichia coil of the normal human gutflora [J]. J Clin Microbiol,1996,34(4):977-979
    [163] Maloy S.R., Stewart V.J., Taylor R.K.医用细菌遗传学实验指南[M].徐建国译.北京:科学出版社,1998:234-240
    [164] Salyers A.A., Moon K., Schlesinger D. The Human intestinal tract-a hotbed ofresistance gene transfer? Part II [J]. Clin Microbiol Newsl,2007,29(4):25-30
    [165] Rowe-Magnus D.A., Mazel D. Resistance gene capture [J]. Curr Opin Microbiol,1999,2(5):483-488
    [166] Wang A., Yang Y., Quan L., et al. Presence of qnr gene in Escherichia coli andKlebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China [J].BMC Infect Dis,2008,8:68
    [167] Jeong J.Y., Yoon H.J., Kim E.S., et al. Detection of qnr in clinical isolates ofEscherichia coli from Korea [J]. Antimicrob Agents Chemother,2005,49(6):2522-2524
    [168] Chopra I., O’Neill J.A., Keith M. The role of mutators in the emergence ofantibiotic-resistant bacteria [J]. Drug Resist Updates,2003,6(3):137-145
    [169]王晓泉,焦新安,刘晓文,等.江苏部分地区食源性和人源性沙门氏菌的多重耐药性研究[J].微生物学报,2007,47(2):221-227
    [170]宁永忠,王辉,张捷.质粒介导的喹诺酮类药物耐药研究进展[J].中华检验医学杂志,2007,30(6):710-714
    [171] Li X.Z. Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms[J]. Int J Antimicrob Agents,2005,25(6):453-463
    [172] Rivas R., Vizcaíno N., Buey R.M., et al. An effective, rapid and simple method for totalRNA extraction from bacteria and yeast [J]. J Microbiol Methods,2001,47(1):59-63
    [173] Miskin I.P., Farrimond P., Head I.M. Identification of novel bacterial lineages as activemembers of microbial populations in a freshwater sediment using a rapid RNA extractionprocedure and RT-PCR [J]. Microbiol,1999,145(8):1977-1987
    [174] Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction [J]. Anal Biochem,1987,162(1):156-159
    [175]陈星,潘迎捷,孙晓红,等.细菌总RNA提取方法的研究进展[J].湖南农业科学,2010,21(5):9-11
    [176] Favre N., Bordmann G., Rudin W. Comparison of cytokine measurements using ELISA,ELISPOT and semi-quantitative RT-PCR [J]. J Immunol Methods,1997,204(1):57-66
    [177] Meadus W.J. A semi-quantitative RT-PCR method to measure the in vivo effect ofdietary conjugated linoleic acid on porcine muscle PPAR gene expression [J]. Biol Proced,2003,5(1):20-28
    [178] Heid C.A., Stevens J., Livak K.J., et al. Real time quantitative PCR [J]. Genome Res,1996,6:986-994
    [179] Yin J.L., Shackel N.A., Zekry A., et al. Real-time reverse transcriptase-polymerasechain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expressionwith fluorogenic probes or SYBR Green I [J]. Immunol Cell Biol,2001,79:213-221
    [180] Maeda H., Fujimoto C., Haruki Y., et al. Quantitative real-time PCR using TaqMan andSYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis,Prevotella intermedia, tetQ gene and total bacteria [J]. FEMS Immunol Med Microbiol,2003,39(1):81-86
    [181] Beaber J.W., Hochhut B., Waldor M.K. SOS response promotes horizontaldissemination of antibiotic resistance genes [J]. Nature,2004,427,72-74
    [182] Guerin é., Cambray G., Sanchez-Alberola N., et al. The SOS response controls integronrecombination [J]. Science,2009,324(5930):1034
    [183] Kimmitt P.T., Harwood C.R., Barer M.R. Toxin gene expression by shigatoxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response [J].Emerg Infect Dis,2000,6(5):458-465
    [184] Thomas C.M., Nielsen K.M. Mechanisms of, and barriers to, horizontal gene transferbetween bacteria [J]. Nat Rev Microbiol,2005,3(9):711-721
    [185] Bruce R.L., John W.M., Ronald A.S. Analysis of plasmids in Nosocomial strains ofmultiple-antibiotic-resistant Staphylococcus aureus [J]. Antimicrob Agents Chemother,1983,23(6):817-826
    [186] Carattoli A., García-Fernández A., Varesi P., et al. Molecular epidemiology ofEscherichia coli producing extended-spectrum β-lactamases isolated in Rome, Italy [J]. JClin Microbiol,2008,46(1):103-108
    [187] Suh Yah C. Plasmid-encoded multidrug resistance: a case study of Salmonella andShigella from enteric diarrhea sources among humans [J]. Biol Res,2010,43(2):141-148
    [188] Liu X., Wang D., Wang H., et al. Curing of plasmid pXO1from Bacillus anthracisusing plasmid incompatibility [J]. PLoS One,2012,7(1): e29875
    [189] Jacoby G.A., Chow N., Waites K.B. Prevalence of plasmid-mediated quinoloneresistance [J]. Antimicrobial Agents and Chemotherapy,2003,47(2):559-562
    [190] Uraji M., Suzuki K., Yoshida K. A novel plasmid curing method using incompatibilityof plant pathogenic Ti plasmids in Agrobacterium tumefaciens [J]. Genes Genet Syst,2002,77(1):1-9
    [191] EI-Mansi M., Anderson K.J., Inche C.A., et al. Isolation and curing of the Klebsiellapneumoniae large indigenous plasmid using sodium dodecyl sulphate [J]. Res Microbiol,2000,151(3):201-208
    [192] Gutierrez J.A., Crowley P.J., Brown D.P., et al. Insertional mutagenesis and recovery ofinterrupted genes of Streptococcus mutans by using transposon Tn917: preliminarycharacterization of mutants displaying acid sensitivity and nutritional requirements [J]. JBacteriol,1996,178(14):4166-4175
    [193] Iqbal A., Ahmed S., Ali S.A., et al. Isolation and partial characterization of Bac201: Aplasmid-associated bateriocin-like inhibitory substance from Staphyloccoccus aureus AB201[J]. J Basic Microbiol,1999,39(5,6):325-336
    [194]王云,朱巯兰,关显智.不同因素对奇异变形杆菌R质粒消除的影响[J].中国微生态学杂志,1994,6(1):35-37
    [195]刘渠,白松涛,叶梅君,等. G+球菌及G-杆菌质粒消除方法的研究[J].中国卫生检验杂志,1998,8(5):275-278
    [196]贾爱卿,刘维红,郭爱珍,等.一株猪源鼠伤寒沙门氏菌的耐药性鉴定及其消除[J].微生物学报,2006,46(5):789-795
    [197] Sengupta M., Austin S. Prevalence and significance of plasmid maintenance functionsin the virulence plasmids of pathogenic bacteria [J]. Infect Immun,2011,79(7):2502-2509
    [198] Brandi L., Falconi M., Ripa S. Plasmid curing effect of trovafloxacin [J]. FEMSMicrobiol Lett,2000,184(2):297-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700