用户名: 密码: 验证码:
兔BMSCs和纳米仿生支架构建功能性管状组织工程骨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     运用组织工程骨是修复因创伤(烧伤)、炎症、肿瘤导致的各种骨缺损的主要发展方向,而其中培养具有正常骨的基本形态和基本功能的功能骨是研究工作的主要目标。近年来,骨组织工程的研究在种子细胞,支架材料,培养手段等方面取得了很大进展,干细胞培养和纳米材料技术在骨组织工程中得到运用。目前组织工程骨的构建大多仍沿袭直接将单个种子细胞种植于支架在体内成骨这一基本模式,将组织工程骨广泛运用于临床仍需克服大量技术问题,主要包括:种子细胞的体外规模化扩增方法;支架材料的选择;种子细胞与支架材料有效均匀的结合;大块组织工程骨的中心供养;组织工程骨的体外最佳培养时间及方法;组织工程骨中支架材料的降解残留问题;体内组织工程骨的血管化;不同形态组织工程骨的构建等。构建具有正常骨的基本形态和基本功能的功能性组织工程骨是目前骨组织工程研究的热点问题,也是组织工程骨广泛运用的基础。
     目的
     采用2周-8周兔的骨髓间充质干细胞(Bone marrow cellsBMSCs)作为种子细胞,电纺纳米仿生材料聚已内酯-Ⅰ型小牛胶原(polycaproactone collagenⅠPCL-CO)作为支架材料,运用细胞成膜技术将兔BMSCs膜与PCL-CO在旋转式组织反应器中培养形成管状骨后埋植于裸鼠皮下,进而组织工程出血管化的功能骨。通过力学测试、组织切片、免疫组化及现代分子生物学等方法分析组织工程管状功能骨的机械强度,组织结构及细胞功能,此组织工程方法为进一步在临床上运用组织工程骨修复骨缺损奠定实验基础。
     方法
     1.采用密度梯度离心及贴壁培养相结合的方法分离兔的BMSCs,进行纯化扩增,对其细胞生物学特性进行观察;使用传代2-3期细胞进行三相诱导成为成骨细胞,脂肪细胞及软骨细胞。
     2.电纺合成电纺纳米纤维PCL-CO采用细胞活力检测,电镜检测,激光共聚焦显微镜检测电纺纳米纤维PCL-CO的基本结构,生物相容性。
     3.将经成骨诱导后两周的兔BMSCs细胞膜片(cell-sheet)与电纺纳米纤维PCL-CO膜复合,在旋转式组织反应器中继续诱导分化动态培养4周及8周后,进行组织切片HE、茜素红、番红-快绿染色(safaranin-O/fast green)和免疫组化检测Ⅰ型胶原、OCN、OPN、Ⅱ型胶原表达及组织生物力学测试。
     4.将经过在旋转式组织反应器中诱导分化动态培养8周形成的管状功能骨植入裸鼠皮下,观察局部组织反应情况,分别于植入后4周、8周取出,进行组织切片和免疫组化检测Ⅰ型胶原、OCN表达及生物力学测试。
     结果
     1.采用密度梯度离心及贴壁培养相结合的方法可分离得到纯化2周-8周兔的BMSCs细胞在合适的诱导条件下,体现出三相分化能力,在相应的诱导中,细胞表现出特异的生理生化反应以及特异蛋白和组织学特征。
     2.电纺纳米纤维PCL-CO有良好的物理特性及细胞相容性。
     3.BMSCs细胞膜片与电纺纳米纤维PCL-CO膜复合以后,在成骨诱导下及生物反应器中,可以形成有机械强度的和骨特异蛋白表达的组织。
     4.体外培养的人工组织可以在体内形成高度血管化的管状骨,机械强度可超过200MPa,组织中含有软骨及松质骨结构,大部新生骨组织为软骨内成骨。
     结论
     1.采用密度梯度离心及贴壁培养相结合的方法分离的2周-8周龄的兔BMSCs在合适的培养条件下,具有细胞性状稳定,纯化扩增较容易,在特定的诱导条件下,能向成骨细胞、软骨细胞、脂肪细胞等不同细胞分化,是理想的组织工程种子细胞。
     2.采用电纺技术合成的纳米纤维PCL-CO对兔BMSCs细胞的增殖活性无影响,对BMSCs的吸附性较好,是一种较理想的组织工程材料。
     3.运用Cell-sheet技术在生物反应器的动态培养下,兔BMSCs细胞膜片结合纳米可降解电纺纤维支架技术培养出不断生长的组织工程骨,该方法及技术系在骨组织工程的首次尝试。
     4.兔BMSCs细胞膜片/纳米PCL-CO组织工程骨埋入裸鼠皮下后能够以软骨成骨的方式形成高度血管化的管状骨。
     5.将兔BMSCs细胞膜片/纳米PCL-CO组织工程骨埋入裸鼠皮下成骨模型,可以为研究预构复合组织骨瓣(皮瓣复合组织工程骨骨瓣)提供试验基础。
Background
     Bone tissue engineering research hold great potential for treating bone defect caused by trauma(burns),inflammation and tumor.The main objective of the study was to tissue engineer the functional bones which have the mechanical force and function of normal bones.In recent years,the vast progress of the cell seeding technology and scaffold materials research have made functional bone tissue engineering possible.Currently,the construction of bone tissue engineering still follows the basic model that single cell suspension were seeded into scafolds directly differentiate into bone in vivo.Moreover,the application of engineered bone in clinical encountered numerous technical problems.These problems consisted of the large-scale amplification of seed cells in vitro,the selcetion of the scaffold materials, the effective and uniform combination of the seeded cells and the scaffold materials,the central support large piece of tissue engineering bone,the optimal cultivation techniques,degradation of the scaffold, vascularization of the tissue engineering bones in vivo,the construction of the tissue engineered bones of different forms,etc.The reconstitution of functional bones with suitable mechanical force in vitro is the key points of the bone tissue enginerring research.
     Objective
     The rabbit(from 2 weeks to 8weeks) BMSCs(bone marrow stromal cells) were used as seeded cells in this study,and the electric nano-biomimetic material PCL-CO(polycaprolactoone-collagenⅠ) was used as scaffold materials.The cell sheet technique will transformed the BMSCs membrane and PCL-CO to tubular functional bones in the rotary bio-reactor.The tubular functional bones were implanted subcutaneously in the nude mice.Diffrent analysis from the mechanical testing,histological section,immunohistochemistry to molecular biology were applied in study.The research results would play an important role in bone defects repair and functional tissue engineering area.
     Methods
     1.Rabbit BMSCs were purified and amplified with the density gradient centrifugation and adherent culture method.Cells were well characterized by cell growth,cell morphology and multi-induction potential and so on.Passage of 2-3 cells were directly differneitated into osteoblasts,adipocytes and chondrocytes.
     2.Characterization of the electric spinning nanofiber PCL-CO's basic structure,biocompatibility through cell viability testing,electron microscopy,laser scanning confocal microscope,etc.
     3.The compound of the cell sheet of the rabbit BMSCs and the electrospin PCL-CO nanofibers were contructed,differentiated and dynamically cultivated in rotary tissue reactor for 4 and 8 weeks. Utilization of histological section,HE stain,alizarin stain, safranine-O/fast green stain and immunohistochemistry to detect the expression of collagen typeⅠ、collagen typeⅡ、OCN and OPN. Samples were underwent biomechanics analysis as well.
     4.Implantation the in vitro engineered tubular bones subcutaneously in the nude mice and observation of regional tissue reaction.After 4 and 8 weeks implantation,samples were analysised by histological section and immunohistochemistry as well as biomechanics test.
     Results
     1.Protocol of the combination of the density gradient centrifugation and adherent culture method could be applied to isolate and purify rabbit BMSCs,which presented the ability of three-stage differentiation under appropriate induction conditions.Cells showed specific physiological, biochemical reactions as well as the specific protein and histological characteristics.
     2.Electric spinning nanofiber PCL-CO possed satisfactory physical characteristic and cell compatibility.
     3.The compound of the cell sheet of BMSCs and PCL-CO membrane formed the tissue with suitable mechanical strength and the expression of bone-specific proteins under the osteogenesis induction in bioreactor.
     4.The artificial tissue grew into vascularized tubular bones with the mechanical strength more than 200MPa in nude mice.The tissue contained cancellous bone structure and chondrocytes,indicating endochondral ossification.
     Conclusions
     1.The rabbit BMSCs isolated by the method of the combination of the density gradient centrifugation and adherent culture method posseed stable cell trait,and it was easy to be purified and amplified.It should be the ideal seed cells since it could be differentiated into osteoblast, cartilage cells,fat cells.
     2.PCL-CO had no negative effects on the proliferative activity of rabbit BMSCs and it presented good biocompatility.It may be one of ideal tissue engineering materials for bone.
     3.Under dynamic culture in a rotary bioreactor through cell-sheet technique,the co-constructed complex of BMSCs sheet and PCL-CO membrane formed growing tubular bone-like tissue.
     4.The enginerred bones implanted subcutaneously in the nude mice formed highly vascularized tubular bones by the way of cartilaginous osteogenesis,containing both cartilage and cancellous bone structure.
     5.The model of function bone engineering with the rabbit BMSs cell sheet and nano-PCL-CO subcutaneous tissue engineering bone provided an experimental basis for clinical bone defeat repair and prefabricating composite flaps(skin flap/tissue engineering bone flaps).
引文
[1] Janet Rubin, Clinton Rubin, Christopher Rae Jacobs. Molecular pathways mediating mechanical signaling in bone. Gene,2006,367(1):1-16
    [2] Lewandrowski K, Gresser JD, Wise DL,et al. Bioresorbable bone graft substitutes of different osteoconductivities: a histologic evaluation of osteointegration of polypropylene glycol- co-fumaric acid)-based cement implants in rats. Biomaterials, 2000,21(8):757-764
    [3] Syed-Picard FN, Larkin LM, Shaw CM. Three-dimensional engineered bone from bone marrow stromal cells and their autogenous extracellular matrix. Tissue Eng Part A, 2009 ,15(1):187-195
    [4] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng ,2001,7(2): 211-228
    [5] Nakahara J, Bruder SP, Haynesworth SE, et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone, 1990, 11(3): 181-188
    [6] De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane.Arthritis Rheum, 2001,44(8): 1928-1942
    [7] Jankowski RJ, Deasy BM, Huard J. Muscle-derived stem cells.Gene Ther, 2002, 9(10): 642-647
    [8] Karp JM, Ferreira LS, Khademhosseini A, et al. Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro.Stem Cells,2006,24(4): 835-843
    [9] De Coppi P, Bartsch Jr G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy .Nat Biotechnol ,2007,25(1): 100-106
    [10]Sarugaser R, Lickorish D, Baksh D,et al.Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells, 2005,23(2):220-229
    [11]Chim H , Schantz J T. Human circulating peripheral blood mononuclear cells for calvarial bone tissue engineering. Plast Reconstr Surg ,2006,117(2): 468-478
    [12]Jahoda CA, Whitehouse J, Reynolds AJ. HoleHair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol, 2003,12(6):849-859
    [13]Gronthos S, Mankani J ,Brahim p,et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo.Proc Natl Acad Sci U S A,97:13625,2000
    [14]章军辉,陈永强,汤亭亭,等.透明质酸复合BMP-2转染BMSCs修复兔桡骨干骨缺损.中华骨科杂志,2005,25(10):608-612
    [15]Yoshikawa H,Myoui A.Bone tissue engineering with porous hydroxyapatite ceramics.J Artif Organs,2005,8(3):131-136
    [16]Gupta D,Venugopal J,Mitra S,et al.Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts.Biomaterials,2009,30(11):2085-2094
    [17]Ito Y,Tanaka N,Fujimoto Y,et al.Bone formation using novel interconnected porous calcium hydroxyapatite ceramic hybridized with cultured marrow stromal stem cells derived from Green rat.J Biomed Mater Res A,2004,69(3):454-461
    [18]Tang H,Xu Z,Liu C.Preparation of CPC for tissue engineering artificial rib and a study on proliferation and adhesion of BMSCs on CPC.Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2008,22(10):1238-1241
    [19]Matsuno T,Hashimoto Y,Adachi S,et al.Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering.Dent Mater J,2008,27(6):827-834
    [20]Liu G,Sun J,Li Y,Zhou H,et al.Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering:an in vitro and in vivo study.Calcif Tissue Int,2008,83(3):176-185
    [21]Zhang ZY,Teoh SH,Chong WS et al.A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering.Biomaterials,2009,30(14):2694-2704
    [22]A Champa Jayasuriya,Nabil A,et al.Evaluation of bone matrix and demineralized bone matrix incorporated PLGA matrices for bone repair.J Mater Sci Mater Med,2009 Mar 29[Epub ahead of print]
    [23]Ronneberger B,Kao WJ,Anderson JM,Kissel T.In vivo biocompatibility study of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to central poly(oxyethylene) B blocks.J Biomed Mater Res,1996,30(1):31-40
    [24]王根林,杨惠林,蔡鑫,等.丝素蛋白/羟基磷灰石复合材料吸水率的测定及其在SD大鼠体内的降解.中国组织工程研究与临床康复,2008,36(12):7057-7060
    [25]U Kneser D,J Schaefer,E polykandriotis et al.Tissue engineering of bone :the reconstructive surgeon,point of view J cell Mol Med,2006,10(1)7-19
    [26]Srouji S, Kizhner T, Suss-Tobi E, et al. 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. J Mater Sci Mater,2008, 19(3):1249-1255
    [27]Wu L, Li H, Li S, et al. Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. J Biomed Mater Res A,2009 Feb 20. [Epub ahead of print]
    [28]Masrudin SS, Ghafar NA, Saidi M, et al. Scanning electron microscopy of cornea re-epithelization after transplanted with bilayered corneal construct. Med J Malaysia, 2008, 63(7); Suppl A: 109-110
    [29]Lane JM,Yasko AW, Tomin E, et al. Bone marrow and recombinant human bone morphogenetic protein-2 in osseous repair. Clin Orthop,l 999,361(3):216-227
    [30] Fulin Chen, Yefang Zhou, Saey Tuan , et al. Engineering tubular bone constructs. Journal of Biomechanics,2007,40(3) .73-79
    [31]Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science ,2007,318(5858): 1917-1920
    [32]FriedensteinA J,G orskajaJ F ,Kulagina N. Fibroblast precursor sinnormalan dirradiated mouse hematopoietic organs.Exp Hematol, 1976,4(3): 267-272
    [33]FriedensteinA J ,C hailakhyanR K ,GerasimovUV.Bone marrow osteogenics tem cells:in vitro cultivation and transplantation in difusion chambers.Cel Tissue Kinet,1987,20(3): 263-272
    [34]Caplan Al. Mesenchymal stem cells and gene therapy. Clin Orthop,2000,379 (Suppl) :67-70
    [35]Pittenger M F, Mackay AM, Beck SC, et al. Multilineage potential of adult humanmesenchymalst em cells.Science, 1999,284(5411): 143-147
    [36]Jiang Y,Jahagirdar BN,R einhardtR L,et al .Pluipotency of mesenchymal stem cells derived from adult marorw.Nature,2002,418( 6893):41-49
    [37]Yamamoto N,Terai S, Ohata S ,et al .A subpopulaion of bone marrow cells depleted by a novel antibody,anti-Live 8,is useful for cell therapy to repair damaged liver. Biochemical and Biophysical Research Communication, 2004, 313(4): 1110-1118
    [38]Zhang W,Ge W,Li C,et al.Effects of mesenchymal stem cells on differentiation, maturation,and function of human monocyte-derived dendritic cells.Stem Cells, 2004,13(2);263-271
    [39]Spaggiari GM,Capobianco A,BeccheRi S,et al.Mesenchymal stem cell natural killer cell interactions;evidence that activated NK cells are capable of killing MSCs.whereas MSCs can inhibit IL-2 induced NK cell proliferation.Blood,2006107(12);1484-1497
    [40]Corcione A,Benvenuto F,Ferretti E,et al.Human mesenchymalstem cells moduhte B-cell functions.Blood,2006,107(1):367-372
    [41]D'Ippolito G,Schiller PC,Ricordi C,et al..Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow.J Bone Miner Res,1999,14(7):1115-1122
    [42]Bonyadi M,Waldman SD,Liu D,et al.Mesenchymal precursor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice.Proc Natl Acad Sci USA,2003,100(10):5840-5845
    [43]K Stenderup,J Justesen,E F Eriksen,et al.Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis.J Bone Miner Res,2001,16(7):1120-1129
    [44]Olmsted-Davis,Elizabeth A,Gugala,et al.Primitive adult hematopoietic stem cells can function as osteoblast precursors.Proc Natl Acad Sci U S A,2003;100(26);15877-15882
    [45]Conger PA,Minguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.J Cell Physiol,1999,181(1):67-73
    [46]赛音其木格,侯相麟,赵丽,等.成人骨随间充质干细胞分化为成骨细胞的研究.临床血液学杂志,2005,18(4):200-203
    [47]易敬林,杨海军,丁伟荣,等.人BMSCs的分离培养及其生物学特性的研究.江西医学院学报,2005,45(6):1-5
    [48]Braissant,FoufeHe F,Scotto C,et al.Differential expression of pemxisome proliferator-activated receptors(PPARs);Tissue distribution of PPAR-α,-β,and-γ,in the adult rat.Endocrinology,1996,137(2);354-366
    [49]Yontonoz P,Hu E,Devine J,et al.PPART2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene.Mol Cell Biol,1995,15(1);351-357
    [50]Rosen E D,Sarraf P,Troy A E,et al.PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro.Mol Cell,1999,4(4);611-617
    [51]Brown,Jonathan D,Plutzky,et al.Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets.Circulation,2007,115(4): 518-553
    [52]Fajas L,Auboeuf D,Raspe E,et al.The organization promoter analysis and expression of the human PPARgamma gene.J Biol Chem,1997,272(30):18779-18789
    [53]Fajas L,Sehoonjans K,Gelman L,et al.Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1:implications for adipocyte differentiation and metabolism.Mol Cell Biol,1999,19(8):5495-5503
    [54]邵景范,黎润光,魏明发,等.小儿BMSCs生物学特性及多向分化潜能.中国组织工程研究与临床康复,2008,12(12):2369-2373
    [55]Worster AA,Toland BD,FortierLA,et al.Chondrocytic differentiation of mesenchymal stem cells,sequentially exposed to transforming growth factor-beta 1 in monolayer and insulin-like growth factor-Ⅰ in a three dimensional matrix.J orthop Res,2001,19(4):738-749
    [56]Johnstone B,Hering TM,Caplan AI,et al.In vitro chondrogenesis of bone marrow derived mesenchymal progenitor cell.ExP Cell Res,1998,238(1):265-272
    [57]Schulze-Tanzil G,de Souza P,Castrejon HV,et al.Redifferentiation of dedifferentiated human chondrocytes in high-density cultures.Cell and tissue research,2002,308(3):371-379
    [58]Morimichi Mizuno,Yoshinori.Osteoblast-related gene expression of bone marrow cell during the osteoblastic differentiation induced by type Ⅰ collagen.Biochem,2001,129(1):133-142
    [59]Gronthos S,chen S,Wang CY,et al.Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1;osterix,and osteocalcin.J Bone Miner Res,2003,18(4):716-722
    [60]SodekJ,ChenJ,NagataT,et al.Regulation of osteopontin expression in osteblasts.Ann Ny Acad Sci,1995,21(3):223-241
    [61]郝伟,胡蕴玉,姜明,等.基于脂肪干细胞Ⅰ型胶原凝胶PLGA-β-TCP支架的新型仿生骨组织工程复合体的构建及生物学性能.第四军医大学学报,2008,29(7):584-587
    [62]段志霞,郑启新,郭晓东.等.骨形成蛋白2活性多肽体外定向诱导BMSCs向成骨方向分化的剂量依赖性研究.中国修复重建外科杂志,2007,21(10):1118-1122
    [63]Chen B,Lin H,Wang J.et al.Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2 . Biomaterials,2007,28(6): 1027-1035
    [64]Langer R S, Vacanti J P.Science America, 1999,280(4):86 - 89
    [65]Joseph Yang,Masayuki Yamato, Tatsuya Shimizu,et al,Reconstruction of functional tissues with cell sheet engineering. Biomaterials , 2007,28(9) :5033-5043
    [66]Hayashida Y, Nishida K, Yamato M, et al. Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest Ophthalmol Vis Sci,2005, 46(5):1632-1639
    [67]Sekine H, Shimizu T, Kosaka S, et al. Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant, 2006,25(3):324 - 332
    [68]Kanzaki M, Yamato M, Hatakeyama H, et al. Tissue engineered epithelial cell sheets for the creation of a bioartificial trachea. Tissue Eng ,2006,12(5): 1275 - 1283
    [69]L'Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med,2006,12(3):361 - 365
    [70]Ouyang Hong Wei, Cao Tong,Zou Xiao Hui,et al. Mesenchymal Stem Cell Sheets Revitalize Nonviable Dense Grafts: Implications for Repair of Large-Bone and Tendon Defect. Transpiantion, 2006, 82(2); 170-174
    [71 ]M M Stevens, J H george. Exploring and Engineering the Cell Surface Interface. Science, 2005,310 (5751) :1135-1138
    [72]Li WJ, Laurencin CT, Caterson EJ, et al. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res, 2002,60(8):613 - 621
    [73]Wan-Ju Li ,Richard Tulia, Xiao xue Huang, et,al. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 2005,26 (12) :5158 - 5166
    [74]Vunjak.Novakovia G,Martin I, et,al.Bioreactor cultivation conditions modulate the comopisition and mechanical properties of tissue engineer cartilage. J orthop Res,1999,17(2):130-138
    [75]Pei M,Solchga LA,Seidel J,et al.Bioreactors mediate the effectiveness of tissue engineering scoffolds .FASEB J,2002,16(3): 1691-1694
    [76]Kushida A, Yamato M, Konno C, et al. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res, 1999, 45(4):355 - 362
    [77]Heather E. Canavan, Xuanhong Cheng , et al. Cell sheet detachment affects the extracellular matrix: A surface science study comparing thermal liftoff,enzymatic, and mechanical methods. J Biomed Mater Res A ,2005 ,75(1): 1-13
    [78]Joseph Yang, Masayuki Yamato,et al. Cell delivery in regenerative medicine: The cell sheet engineering approach. Journal of controlled release, 2006, 116(2): 193-203
    [79]Yang Joseph, Yamato Masayuki, et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds.Biomaterials, 2005, 33(26): 6415-6422
    [80]Hitani, Kouichiro, Yokoo, Seiichi, et al.Transplantation of a sheet of human corneal endothelial cell in a rabbit model. Mol Vis, 2008,14(1): 1-9
    [81]Kubo, Hirotsugu, Shimizu, et al. Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device. Biomaterials,2007,28(24): 3508-3516
    [82]Flores, Mara Gomez, Yashiro, et al. Periodontal ligament cell sheet promotes periodontal regeneration in athymic rats. J Clin Periodontol,2008, 35(12): 1066-1072
    [83]Ohashi,Kazuo,Yokoyama,Takashi,et al.Engineering two-dimensional and three-dimensional functional hepatic tissues in vivo using cell sheet engineering technologic Xenotransplantation,2007,14(5):385
    [84]Lee, Jeong Ik, Nishimura, Ryohei, Sakai, Hideaki, et alA newly developed immunoisolated bioartificial pancreas with cell sheet engineering.Cell Transplant, 2008, 17(1-2);51-59
    [85]Okano, N Yamada, M Okuhara, et al.Mechanism of cell detachment from temperature-modulated hydrophilic-hydrophobic polymer surfaces. Biomaterials,1995,16(4) :297-303
    [86]Kim, Young Shin, Lim, et al. Thermoresponsive terpolymeric films applicable for osteoblastic cell growth and noninvasive cell sheet harvesting. Tissue Eng,2005, 11(1-2): 30-40
    [87]Mie Masayasu, Mizushima, Yasunori, et al.EiryNovel extracellular matrix for cell sheet recovery using genetically engineered elastin-like protein. J Biomed Mater Res B Appl Biomater, 2008, 86(1): 283-90
    [88]Zhou Y,Chen F,Ho ST,et al.Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts.Biomaterials,2007,28(5):814-24
    [89]Akahane,Manabu,Nakamura,et al.Osteogenic matrix sheet-cell transplantation using osteoblastic cell sheet resulted in bone formation without scaffold at an ectopic site.J Tissue Eng Regen Med,2008,4(2):196-201
    [90]kynug-min choi,Yong-Kwon seo,Hee-Hoon Yoon,et al.Effect of ascorbic acid on bone marrow -derived msesenchymal stem cell proliferation and differentiation.Journal of bioscience and bioengineering,2008,105(6):586-594
    [91]H S Nalwa.Nanostructured Biomaterials and their Applications in Nanotechnology.American Scientific Publishers.2005.1
    [92]Ma Kun,Chan,Casey K,et al.Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells.Biomaterials,2008,29(1):2096-2110
    [93]Formhals A.Process and aparatus for preparing artificial threads patent 1,975,504.1934.
    [94]Rho,Kyong Su,Jeong,et al.Electrospinning of collagen nanofibers:effects on the behavior of normal human keratinocytes and early-stage wound healing.Biomaterials,2006,27(8):1452-1461
    [95]Ki,Chang Seok,Park,et al.Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning implications for bone regeneration.Biotechnol Lett,2008,30(3):405-410
    [96]Boland,Eugene D,Matthews,et al.Electrospinning collagen and elastin:preliminary vascular tissue engineering.Front Biosci,2004,,9(1):1422-1432
    [97]Young CS,Abukawa H,Asrican R,et al.Tissue-engineered hybrid tooth and bone.Tissue Eng,2005,11(10):1599-1610
    [98]Brendon M.Bakera,Albert O,et al.The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers.Biomaterials,2008,29(15):2348-2358
    [99]朱梅湘,穆畅道,林炜,等.胶原作为生物医学材料的优势与应用.化学世界,2003,44(3);161-164
    [100]DeLustro,F'Condell RA,Nguyen MA.et al.A comparative study of the biologic and immunologic response to medical devices derived from dermal collagen.Biomed Mater Res,1986,20(1):109-120
    [101]Lynn AK,Yannas IV,Bonfield W.Antigenicity and immunogenicity of collagen.J Biomed Mater Res B Appl Biomater,2004,71(2):343-354
    [102]Li WJ,Laurencin CT,Caterson EJ,et al.Electrospun nanofibrous structure:a novel scaffold for tissue engineering.J Biomed Mater Res,2002,60(4):613-619
    [103]Tolar J,Nauta AJ,Osborn MJ,et al.Osteosarcoma derived from cultured mesenchymal stem cell.Blood,2006,108(11):722A-722A
    [104]RubioD,Garcia CastroJ,MartinMC,et al.Spontaneous human adult stem cell transfomration.Cancer Res,2005,65(10):3035-3039
    [105]Ber DL,GoldsteinSA.GuilakE.Funclional tissueengineenng:the role of biomechnics.J Bioemch Eng,2000,122(6):507-575
    [106]Vunjak-Novakovic G,Meinel L,Altman G,et al.Bioreactor cultivation of osteochondral grafts.Orthod Craniofac Res,2005,8(3):209-218
    [107]Singh H,Hutmacher DW.Bioreactor Studies and Computational Fluid Dynamics.Adv Biochem Eng Biotechnol,2009,112(2):231-249
    [108]Jessup J M,Frantz M,Sonmez-Alpan,et al.Microgravity culture reduces apoptosis and increases the differentiation of a human colorectal carcinoma cell line.In Vitro Cell Dev Biol Anim,2000,36(6):367-373
    [109]Kavlock KD,Goldstein AS Effect of pulsatile flow on the osteogenic differentiation of bone marrow stromal cells in porous scaffolds.Biomed Sci Instrum,2008,44(5):471-476
    [110]Mauney,J R,Sjostorm,S,Blumberg,J,et al.Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro.Calcif Tissue Int,2004,74(5):458-468
    [111]Weibiao H,Carlsen B,Rudkn G,et al.Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 proosteoblastic cells.Bone,2004,34(5);799-808
    [112]Kang M I,Lee W Y,Oh K W,et al.The short-term changes of bone mineral metabolism folloing bone marrow transplantation.Bone,2000,26(4):275-279
    [113]孙永华,尹大庆,赵西茹,等.游离大网膜移植保留烧伤手骨一例报告.中华整形烧伤外科杂志,1985,2(1);43
    [114]肖目张,黄晓元.带血管骨膜瓣移植修复烧伤坏死管状骨的实验研究.中华烧伤杂志,2003,19(6);329-331
    [115]唐六丁,赵为民,李秉哲.股骨人工假体之间的界面生物力学分析.医用生物力学,2004,19(2);112-116
    [116]Lewis G.Perculaneous vertebroplasty and kyphoplasty for the stand-alone augmentation of osteoparosis-induced vertebral compression fracture present status and futuredirections.J Biomed mater Res B Appl Biomater,2007,8(2):371-386
    [117]L Gibson,M Ashby.Cellular solids.Structure and properties,Pergamon Press,Sydney,1988,316-331
    [118]徐国富,牟申周,周灵平,等.仿生增强制备聚乳酸基骨组织工程复合材料.湖南大学学报,2006,33(2):86-89
    [119]Toruhirano,Davidburr,Charlesh,et al.Anabolic Effects of Human Biosynthetic Parathyroid Hormone Fragment(1-34) LY333334 on Remodeling and Mechanical Properties of Cortical Bone in Rabbits.Journal of Bone and Mineral Research,1999,14(2):536-545
    [120]Masas M,Nomi,Anthony Atala,et al.Principals of neovascularization for tissue engineering.Mol Aspects Med,2002,23(2):463-483
    [121]许建中.骨组织工程的研究与开发进展.第三军医大学学报,2005,27(16):1625-1627
    [122]Wlodarski K H.Properties and origin of osteoblass.Clinortho P,1990,252(2):276-293
    [1]Langer R,Vacanti JP.Tissue engineering.Science,1993,260(5110):920-926
    [2]Puelacher WC,Vacanti JP,Ferraro NF,et al.Femoral shaft reconstruction using tissue-engineered growth of bone.Int J Oral Maxillofac Surg,1996,25(3):223-8
    [3]Vacanti CA,Langer R,Schloo B,et al.Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation.Plast Reconstr Surg,1991,88(5):753-759
    [4]Shinoka T,Breuer CK,Tanel RE,et al.Tissue engineering heart valves:valve leaflet replacement study in a lamb model.Ann Thorac Surg,1995,60(6 Suppl):S513-516
    [5]Cao Y,Vacanti JP,Paige KT,et al.Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear.Plast Reconstr Surg,1997,100(2):297-302
    [6]Tunggal P,Smyth M,Paulsson M,et al.Laminins:structure and genetic regulation,Microsc Res Tech,2000,51(2):214-227
    [7]Lebaron RG,Athanasiou KA.Extracellular matrix cell adhesion peptides:functional applications in orthopedic materials.Tissue Eng,2000,6(1):85-103
    [8]Ruppn P A,Little C D.integrins invascular development.Cirs Res,2001,89(2):566-572
    [9]Arbos MA,Ferrando JM,Quiles Ml,et al.Improved surgical mesh integration into the rat abdominal wall arginine administration.Biomaterials,2006,27(5):758-768
    [10]Kushida A,Yamato M,Konno C,et al.Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces.Biomed Mater Res,1999,45(4):355-362
    [11]Yamada N,Okano T,Sakai H,et,al.Thermo-responsive polymeric surfaces;control of attachment and detachment of cultured cells.Makromol Chem Rapid Commun,1990,11(2):571-576
    [12] Joseph Yang, Masayuki, Yamato,et al. Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials , 2005,26 (12) :6415-6422
    [13] Yamato M, Utsumi M, Kushida A,et al. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng,2001,7(4):473-480
    [14] Nishida K, Yamato M, Hayashida Y, et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature responsive cell culture surface. Transplantation, 2004,77(3):379-385
    [15] Kushida A, Yamato M, Isoi Y,et al.A noninvasive transfer system for polarized renal tubule epithelial cell sheets using temperature-responsive culture dishes. Eur Cell Mater,2005,10(1):23-30
    [16] Hasegawa M, Yamato M, Kikuchi A, et al. Human periodontal ligament cell sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng, 2004,10(5)505-508
    [17] Ouyang HW, Cao T, Zou XH,et al. Mesenchymal stem cell sheets revitalize nonviable dense grafts: implications for repair of large-bone and tendon defects. Transplantation,2006,82(2): 170-174
    [18] Haraguchi Y, Shimizu T, Yamato M,et al. Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials, 2006,27(27): 4765 - 4774
    [19] Yamato M, Utsumi M, Kushida A,et al. Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature. Tissue Eng,2001,7(4):473-480
    [20] Zhou Y, Chen F, Ho ST,et al. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials,2007,28(5):814-824
    [21] Nagele U, Maurer S, Feil G,et al. In vitro investigations of tissue-engineered multilayered urothelium established from bladder washings. Eur Urol,2008,54(6):1414-1422
    [22] Nishida K, Yamato M, et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature responsive cell culture surface. Transplantation,2004,7(3):379-385.
    [23] Koizumi, Noriko, Sakamoto, et al.Cultivated corneal endothelial transplantation in a primate:possible future clinical application in corneal endothelial regenerative medicine.Cornea,2008,27(1):48-55
    [24]Harimoto M,Yamato M,Kikuchi A,et al.Novel approach for achieving double-layered cell sheets co-culture:overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes.Biomed J Mater Res,2002,62(3):464 - 470
    [25]Iubbell J A.Materials as morphogenetic guides in tissue enrineering.Cur Opin in Biote,2003,14(3):551-558
    [26]Powll HM,Boyce ST.Wound closure with EDC cross-linked cultured skin substitutes grafted to athymic mice.Biomate,2007,28(4):1084-1092
    [27]Wang TW,Sun JS,Wu HC,et al.The effect of gelatin-chondroitin sulfate -hyalauronicacid skin substitute on wound healing in SCID mice.Biomate,2006,27(6):5689-5697.
    [28]Ma L,Gao CY,Mao ZW,et al.Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent.Jof Biomate Sci PolyEdi,2003,14(8):861-874.
    [29]Chen GP,Sato T,Ohgushi H,et al.Culturing of skin fibroblasts in athin PLGA-collagen hybrid mesh.Biomate,2005,26(3):2559-2566
    [30]Venugopal JR,zhang YZ,Ramakrishna S.Invitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane.Art Org,2006,30(6):440-446.
    [31]陈璧,姜笃银,贾赤字,等.复合皮移植的实验研究与临床应用.中华烧伤杂志,2004,20(6):347-350
    [32]京萨,柴家科,陈敏亮,等.自制异种猪去细胞真皮修复切除疤痕区创面的愈合质量.中国临床康复,2005,22(9):128-129
    [33]马忠峰,柴家科,杨红明,等.表皮细胞膜片与猪去细胞真皮基质复合的移植.中华实验外科杂志,2005,22(3):366-367
    [34]Yamato M,Utsumi M,Kushida,et al.Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte sheets without dispase by reducing temperature.Tissue Eng,2001,7(4):473-480
    [35]张群.从笑庆.张伟,等.毛囊干细胞细胞膜片的构建研究.组织工程与重建外科杂志,2008,4(1):9-11
    [36]韩军涛,王洪涛,谢松涛,等.自体细胞来源的组织工程皮肤及其实验研究.科学技术与工程,2008,8(2):4484-4488
    [37] Ng, Kee Woei, Hutmacher, et al. Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices Biomaterials, 2006, 27(5):4591-4598
    [38] Sorrell, J Michael,Barber,et al.A self-assembled fibroblast-endothelial cell co-culture system that supports in vitro vasculogenesis by both human umbilical vein endothelial cells and human dermal microvascular endothelial cells. Cells Tissues Organs, 2007,186(3): 157-168
    [39] Sorrell JM, Baber MA, Caplan AI. Human dermal fibroblast subpopulations; differential interactions with vascular endothelial cells in coculture: nonsoluble factors in the extracellular matrix influence interactions ,2008,16(2):300-309
    [40] Vacanti CA,Upton J.Tissue-engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices. Clin Plast Surg, 1994,21(3):445-462
    [41] Kim WS.Vacanti CA,Upton J,et al .Bone defect repair with tissue engineered cartilage. Plast Reconstr Surg ,1994,94(5):580-584
    [42] Shang Q,Wang Z,Liu W,et al.Tissue-engineered bone repair of sheep cranial defects with autologous bone nlarrow stromal cells. J Craniofac Surg, 2001,12(6):586-593
    [43] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human-adipose tissue: implications for cell-based therapies. Tissue Eng,2001,7(2): 211-228
    [44] Nakahara J, Bruder SP, Haynesworth SE, et al. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone, 1990, 11(2):181-188
    [45] De Bari C, Dell'Accio F, Tylzanowski P,et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 2001,44(8): 1928-1942
    [46] Jankowski RJ, Deasy BM, Huard J. Muscle-derived stem cells. Gene Ther, 2002, 9(8): 642-647
    [47] Ahn SE, Kim S, Park KH, et al. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells.Biochem Biophys Res Commun, 2006,340 (2): 403-408
    [48] PrusaA HengstschlagerM.Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit, 2002,8(11): 253-257
    [49] Sarugaser R, Lickorish D, Baksh D,et al. Human umbilical cord perivascular (HUCPV) cells:a source of mesenchymal progenitors.Stem Cells,2005,23(2):220-229
    [50]Chim H,Schantz,J T.Human circulating peripheral blood mononuclear cells for calvarial bone tissue engineering.Plast Reconstr Surg,2006,117(3):468-478
    [51]Jahoda C A,Whitehouse J,Reynolds A J.Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages.Exp Dermatol,2003,12(6):849-859
    [52]Carnes DL,Maeder C L,Graves DT.Cells with osteoblastic phenotypes can be explanted from human gingival and periodontal ligament.J Periodontol,1997,68(7):701-711
    [53]Lieberman JR,Daluiski A,Stevenson S,et al.The effect of regional gene therapy with bone morphogenetic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats.J Bone Joint Surg Am,1999,81(7):905-917
    [54]Shimizu K,Ito A,Yoshida T,et al.Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.J Biomed Mater Res B Appl Biomater.,2007,82(2):471-480
    [55]Chen F,Zhou Y,Barnabas ST,et al.Engineering tubular bone constructs.J Biomech,2008,41(10):2332-2335.
    [56]Gao Z,Chen F,Zhang J,et al.Vitalisation of tubular coral scaffolds with cell sheets for regeneration of long bones:a preliminary study in nude mice.Br J Oral Maxillofac Surg.,2009,47(2):116-122
    [57]Akahane M,Nakamura A,Ohgushi H,et al.Osteogenic matrix sheet-cell transplantation using osteoblastic cell sheet resulted in bone formation without scaffold at an ectopic site.Tissue Eng Regen,2008,2(4):196-201
    [58]Griffith M,Osborne R,Munger R,et al.Functiong human corneal equivalents constructed from cell line.science,1999,286(5447):2169
    [59]Dan Ferber.Tissue engineering:Growing human cornea in the lab.Science,1999,286(5447):2051-2053
    [60]Talbot M,Carrier P,Giasson CJ,et al.Autologons transplantation of rabbit limb Repithelia cultured on fibrin gels for ocular surfsee reconstruction.Mol Vis,2006,12(2):65-75
    [61]梁晓东,陈建苏,郑佩娥,等.纤维蛋白胶与兔角膜3种细胞构建组织工程细胞片研究.中国病理生理杂志,2008,24(4):797-801
    [62]王亚冬,袁南荣,刘超,等.自体组织工程化角膜上皮修复角膜缘缺陷症.中国
    [63] Watanabe K, Yamato M, Hayashida Y, et al. Development of transplantable genetically modified corneal epithelial cell sheets for gene therapy. Biomaterials,2007,28(4):745-749
    [64] Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium.N Engl J Med ,2004,351(12): 1187-1196
    [65]Current progress and challenges in ocular surface reconstruction using cultivated epithelial sheet transplantation .Med J Malaysia ,2008,63 (Suppl A): 42-44
    [66] Hayashida Y, Nishida K, Yamato M, et al. Ocular surface reconstruction using autologous rabbit oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture surface. Invest Ophthalmol Vis Sci, 2005,46(5):1632-1639
    [67] Ide T, Nishida K, Yamato M, et al.Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials, 2006,27(4):607-614
    [68] P. Menasche, A Hagege, M Scorsin, et al. Myoblast transplantation for heart failure. Lancet,2001,357 (4):279-280
    [69] K Hamano, M Nishida, K Hirata, et al.Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results,pn Circ J ,2001, 65(4): 845-847
    [70] T Siminiak, R Kalawski, D Fiszer,et al.Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase Ⅰ clinical study with 12 months of follow-up. Am Heart J ,2004,148 (3):531-537
    [71] Zimmermann, W H,et al. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol. Bioeng,2000,68(1):106-114
    [72] Zimmermann, W.H. et al. Tissue engineering of a differentiated cardiac muscle construct. Circ Res.,2002, 90 (2):223-230
    [73] Haraguchi Y, Shimizu T, Yamato M,et al. Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials, 2006,27(27): 4765-4774
    [74] Sekiya S, Shimizu T, Yamato M, et al.Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun, 2006,341(2):573-582
    [75]Kikuchi A,Okano T.Longterm survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets.Tissue Eng,2006,12(3):499-507
    [76]Sekine H,Shimizu T,Kosaka S,et al.Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells.J Heart Lung Transplant,2006,25(3):324-332
    [77]Miyahara Y,Nagaya N,Kataoka M,et al.Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.Nat Med,2006,12(4):459-465
    [78]Sekine,Hidekazu,Shimizu,et al.Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts.Circulation,2008,118(4):145-152
    [79]Kobayashi,Hiroshi,Shimizu,et al.Fibroblast sheets co-cultured with endothelial progenitor cells improve cardiac function of infarcted hearts.J Artif Organs,2008,11(3):141-147
    [80]Sekine H,Shimizu T,Yang J,et al.Pulsatile myocardial tubes fabricated with cell sheet engineering.Circulation,2006,114(4):187-193
    [81]Kubo H,Shimizu T,Yamato M,et al.Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device.Biomaterials,2007,28(24):3508-3516
    [82]Bumgardner GL,Fasola C,Sutherland DE.Prospects for hepatocyte transplantation.Hepatology,1988,8(5):1158-1161
    [83]Ohashj K,Kay MA.Hepatocyte transplantation:clinical and experimental application.J Mol Med,2001,79(2):617-630
    [84]Hughes RD,Mitry RR,Dhawan A.Hepatocyte transplantation in the treatment of liver-diseases future seem bright after all.Pediatr Transplant,2008,12(1):4-5
    [85]Fukuda J.Sakai Y,Nakazawa K.Noval hepatocyte culture system developed using microfabrication and collagen/polyethylene glycolmicrocontact printing Biomaterials,2006,27(7):1061-1070
    [86]张博峰,赵云山,郭振华,等.以胶原凝胶为支架原位构建可注射型工程化肝.中国组织工程研究与临床康复,2008,12(36):7101-7104
    [87]Khaoustov VI,Darlington GJ,Soriano HE,et al.Induction of three-dimensional assembly of human liver cells by simulated microgravity.In Vitro Cellular and Developmental Biology.Animal,1999,35(4):501-509
    [88] Harimoto M, Yamato M, Hirose M, et al.Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J Biomed Mater Res,2002,62(3):464-470
    [89] Ogawa K, Ochoa ER, Borenstein J,et al.The generation of functionally differentiated three-dimensional hepatic tissue from two-dimensional sheets of progenitor small hepatocytes and nonparenchymal cells. Transplantation, 2004,77(12):1783-1789
    [90] Ohashi K, Yokoyama T, Yamato M, et al. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med, 2007,13(7):880 - 885
    [91] H F Lu, KN Chua, P C Zhang,et al. Three-dimensional co-culture of rat hepatocyte spheroids and NIH/3T3 fibroblasts enhances hepatocyte functional maintenance. Acta Biomater.,2005,1 (6):399-410
    [92] Ito A, Jitsunobu H, Kawabe Y, et al. Construction of heterotypic cell sheets by magnetic force-based 3-D coculture of HepG2 and NIH3T3 cells. J Biosci Bioeng,2007,104(5):371-378
    [93] RicardoM, PdaSilva, Paula M,et al. Poly(N-isopropylacrylamide) surface-grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation. Biotechnology and Bioengineering,2008, 101(6): 1321 -1331
    [94] Ito A, Honda H, Kamihira M. Construction of 3D tissue-like structure using functional magnetite nanoparticles. Yakugaku Zasshi, 2008, 128(1):21-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700