用户名: 密码: 验证码:
量子控制中的量子信息获取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子理论自二十世纪初诞生以来,就开始深刻的影响和改变着人类社会:它为人们了解和改造微观世界提供了理论基础,并推动了激光、半导体、核能等高科技的发展。量子理论在快速发展的同时,不断与其他学科交叉融合,量子信息学就是量子理论与信息科学相结合产生的一门新兴学科,它的迅速发展必将带来科学界的又一次革命。
     量子信息学以量子态作为信息单元,要处理量子信息就需要对量子态进行操控,因此以研究量子系统主动控制为主要内容的量子控制理论诞生了。随着理论的不断的完善,近些年来量子控制已经成为国际上的研究热点,并取得了很多喜人的成果。闭环控制一直是经典控制中的核心内容,量子控制在不断的发展过程中也开始从最初的开环控制向闭环控制逐步迈进,闭环控制又被称为反馈控制,系统信息的获取是反馈控制中的关键环节,是了解系统状态和做出控制决策的依据。量子系统遵循的量子力学规律与经典力学有着本质上的差别,经典的信息获取方法已经不再适用于量子系统,需要我们探索新的技术和方法来完成量子反馈控制中的信息获取任务。
     本文首先综述了量子控制的主要研究内容和量子反馈控制的最新研究进展,结合量子反馈控制的特点,分析了利用量子层析对量子态进行测量的可行性,并进一步提出了基于量子过程层析的量子控制系统辨识方案,设计了基于量子层析的量子反馈控制系统。文章的主要内容包括以下几个方面:
     (1)提出了基于量子层析的量子态测量方案。
     量子态作为量子信息的承载单元,是量子控制研究的主要对象。由于量子态遵循的是量子力学规律,量子不可克隆定理和不确定性关系使得对量子态的测量会产生“量子塌缩”现象,这给量子信息获取带来了极大的困难,我们试图利用量子层析技术来解决这一难题。量子层析一词来源于医学中的计算机辅助X射线断层摄影术CT,从名字中可以看出,它属于一种统计测量方法。根据量子力学的知识我们知道一个量子系统的密度矩阵包含了该系统的所有可知信息,如果可以得到系统的密度矩阵就可以说我们已经掌握了这个系统的状态信息。量子层析恰好可以通过测量未知量子态的大量全同样本的一组完备可观测量的平均值来重构量子态的密度矩阵,从而获取量子态信息。我们以偏振光子态为研究对象,设计了利用量子层析重构量子态密度矩阵的实验方案,并通过计算机仿真技术对实验的可行性进行了验证。结果表明,量子层析作为获取量子态信息的手段是有效和可行的。
     (2)设计了基于量子过程层析的量子控制系统辨识方案
     想要更好的设计量子控制系统,实现更为精确的主动控制,设计者需要了解控制系统的性能和参数。为解决这一问题,我们提出了基于量子过程层析的量子控制系统辨识。量子过程层析是一项基于量子层析的主要应用,在量子通讯领域中广泛应用于测定量子信道参数,主要过程如下:首先选择一组完备的输入量子态ρin,让其通过量子信道,然后利用量子层析测定输出量子态ρout,并根据输入与输出之间的关系确定量子信道的参数。借鉴这一思路,我们以电子自旋的控制磁场为对象,设计了控制系统辨识方案,同样利用计算机仿真技术对方案进行了模拟,结果证明,该方案能够有效的对量子控制系统进行参数辨识。
     (3)提出了基于量子层析的量子反馈控制策略
     随着量子反馈控制研究逐步成为热点,近年来已经取得了一些成果。但已有的反馈控制策略存在着一些缺陷,如马尔可夫量子反馈、贝叶斯量子反馈和含时延非马尔可夫量子反馈,用来反馈的信号都是经典信息,不能视为纯粹的量子反馈控制;而量子相干控制、基于克隆的反馈控制和基于量子隐形传态的反馈控制,虽然是以量子信息作为反馈信号,且在一定程度上可以保持量子系统的相干性,但这些系统的实现条件都是比较苛刻的,实用性不强,要想得到真正的应用还需要实验技术的进一步提高。为此,我们提出了基于量子层析的量子反馈控制策略,利用量子层析和量子过程层析两项技术的结合,可以同时实现量子控制系统中的量子态测量和控制系统参数辨识,形成一个以量子信息为反馈信号的量子反馈控制系统,既能根据被控对象的当前状态调整控制策略,又能按照辨识得到的控制系统参数来矫正控制系统的偏差,从而有效的降低系统外部干扰,完成对量子系统的精确控制。
Since the birth of quantum theory at the beginning of the twentieth century, it has changed and affected human society profoundly: it provides a theoretical basis for people to understand and rebuild the micro-world; also it promotes the laser, semiconductor, nuclear, and other high-tech development. With the rapid development quantum theory has integrated with other subjects. Quantum information science is a new discipline generated from the integration of quantum theory and information science, and its rapid development will bring another revolution in scientific community.
     Quantum state is an information unit in quantum information science, which need be manipulated in order to deal with quantum information, so the quantum control theory was born to study the active control of quantum systems. With the continuous improvement, quantum control has become a hot international research focus and many gratifying results have been achieved in recent years. Closed-loop control has been the core of classical control, so quantum control began to gradually move to closed-loop control from the initial open-loop control. Closed-loop control is also known as feedback control, in which the information acquisition, the basis for understanding the system status and making control decision, is the key. Quantum system follows the laws of quantum mechanics which is essentially different from classical mechanics, so the classic information acquisition method is no longer applicable to quantum system. We need to explore new technology and method for information acquisition in quantum feedback control.
     The main contents on quantum control and the latest development of quantum feedback control are summarized at the beginning of this paper. Then, combined with the character of quantum feedback control, the feasibility of measuring quantum states by quantum tomography is analyzed, and further quantum control system identification based on the quantum process tomography is proposed and quantum feedback control system based on quantum tomography is designed. This paper includes main aspects as following:
     (1) Quantum state measurement based on quantum tomography is proposed.
     Quantum state as a unit of quantum information is main research object in quantum control. Since quantum states follow the laws of quantum mechanics, quantum non-cloning theorem and uncertainty relationship result in "quantum collapse" phenomenon when quantum states are measured, which makes quantum information acquisition much difficult. We attempt to solve this problem by quantum tomography technology. The term, quantum tomography, comes from medical X-ray computer-aided tomography (CT), and it is a statistical measurement method. According to quantum mechanics we know that a quantum system density matrix contains all the system information, so the system information is totally obtained if the system density matrix can be acquired. Quantum tomography can reconstruct density matrix by measuring a large number of unknown quantum state in the same status to gain quantum state information. Taking example for polarized photon state, we design the experiment of quantum state density matrix reconstruction through quantum tomography, and validate the feasibility of experiment by computer simulation technology. The results show that quantum tomography is an effective and feasible method to obtain quantum state information.
     (2) The scheme for quantum control system identification based on quantum process tomography is designed.
     In order to design better quantum control systems and achieve more precise control, the performance and parameters of control system need to be understood well. To solve this problem, we propose a scheme of quantum system identification based on quantum process tomography. Quantum process tomography is a main application based on quantum tomography, which is widely used to determine quantum channel parameter in the field of quantum communication. The main process of quantum process tomography is as follows: first, let a set of selected complete input quantum statesρin pass through the quantum channel, and then quantum output statesρout are measured by quantum tomography, and quantum channel parameter is determined according to relationship between input and output states. Following this idea, taking example for magnetic field control of electron spin, we design the control system identification program which is simulated by computer simulation technology. The simulation results proved that this scheme is able to effectively identify quantum control system parameter.
     (3) Quantum feedback control based on quantum tomography is proposed.
     Quantum feedback control has gradually become a research focus and achieved some results in recent years. However, these feedback control strategy has some flaws, in Markovian quantum feedback, Bayesian quantum feedback and non-Markovian quantum feedback with delay, feedback signals are all classical information, so they can not be regarded as purely quantum feedback control; and for quantum coherent control, feedback control based on quantum cloning and teleportation, although quantum information is used as feedback signal and coherence of quantum systems is maintained in some extent, these systems are very difficult to realize. The realization of these systems is depended on further improvement of experimental techniques. We propose quantum feedback control strategy based on quantum tomography, in which quantum state measurement and quantum control system identification are realized, and quantum feedback control system using quantum information as feedback is formed. In this system, control strategy can be adjusted according to current system status and deviation of control system can be corrected according to control system parameters form identification so as to effectively reduce external interference and realize more precise control of quantum systems.
引文
[1]张永德.量子力学[M]. 2002,北京:科学出版社.
    [2] Bennett C H,Shor P W. Quantum Information Theory[J]. Information Theory, IEEE Transactions on, 1998. 44(6): p. 2724 - 2742.
    [3] Bennett C H,Divincenzo D P. Quantum Information and Computation[J]. Nature, 2000. 404(6775): p. 247 - 255.
    [4] Nielsen M A,Chuang I L. Quantum Computation and Quantum Information[M]. 2000, Cambridge: Cambridge University Press.
    [5] Ingarden R S. Quantum Information Theory[J]. Reports on Mathematical Physics|Reports on Mathematical Physics, 1976. 10(1): p. 43 - 72.
    [6] Hirota O,Tsushima H. Quantum Communication Theory and Its Applications[J]. Transactions of the Institute of Electronics, Information and Communication Engineers, 1989. 72(5): p. 460 - 470.
    [7] Deutsch D. Quantum Computation[J]. Physics World, 1992. 5(6): p. 57 - 61.
    [8] Bennett C H, Bessette F, Brassard G, et al. Experimental Quantum Cryptography[J]. Lecture Notes in Computer Science, 1991. 473: p. 253 - 265.
    [9] Wiedemann D. Quantum Cryptography[J]. SIGACT News|SIGACT News, 1986. 18(2): p. 48 - 51.
    [10] Scarani V, Iblisdir S, Gisin N, et al. Quantum Cloning[J]. Reviews of Modern Physics, 2005. 77: p. 1225 - 1256.
    [11] Shor P W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring[C]. Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, 1994.p.124 - 134.
    [12] Bouwmeester D, Pan J W, Mattle K, et al. Experimental Quantum Teleportation[J]. Nature, 1997. 390(6660): p. 575 - 579.
    [13] Pan J W, Bouwmeester D, Weinfurter H, et al. Experimental Entanglement Swapping: Entangling Photons That Never Interacted[J]. Physical Review Letters, 1998. 80(18): p. 3891 - 3894.
    [14] Lahti P J. Quantum Measurement[J]. International Journal of Theoretical Physics, 1993. 32(10): p. 1777 - 1788.
    [15] Wheeler J T. Quantum Measurement and Geometry[J]. Physical Review D, 1990. 41(2): p. 431 - 441.
    [16] Perez R B, Protopopescu V,Munoz-Cobo J L. Control of Quantum Systems[J]. Mathematical Models & Methods in Applied Sciences, 1999. 9(2): p. 305 - 324.
    [17] Kohler B, Krause J L, Raksi F, et al. Quantum Control of Chemical Processes[J]. Abstracts of Papers of the American Chemical Society, 1994. 207(2): p. 68 - 75.
    [18] Butkovskii A G,Samoilenko Y I. Control of Quantum Systems[J]. Automation and Remote Control, 1979. 40(5): p. 629 - 645.
    [19] Clark J W, Lucarelli D G,Tarn T J. Control of Quantum Systems[J]. International Journal of Modern Physics B, 2003. 17(28): p. 5397 - 5411.
    [20] Clark J W, Ong C K, Tarn T J, et al. Quantum Nondemolition Filters[J]. Mathematical Systems Theory, 1985. 18(1): p. 33 - 55.
    [21] Ong C K, Huang G M, Tarn T J, et al. Invertibility of Quantum-Mechanical Control-Systems[J]. Mathematical Systems Theory, 1984. 17(4): p. 335 - 350.
    [22] Huang G M, Tarn T J,Clark J W. On the Controllability of Quantum Mechanical Systems[J]. Journal of Mathematical Physics, 1983. 24(11): p. 2608 - 2618.
    [23] Tarn T J, Hazewinkel M,Ong C K. Quantum Mechanical System Symmetry[J]. Proceedings of the 23rd IEEE Conference on Decision and Control, 1984: p. 1587 - 1592.
    [24] Warren W S, Rabitz H,Dahleh M. Coherent Control of Quantum Dynamics[J]. Science, 1993. 259(5101): p. 1581 - 1589.
    [25] Peirce A P, Dahleh M A,Rabitz H. Optimal Control of Quantum Molecular Systems[J]. International Conference on Control, 1988. 88(3): p. 351 - 356.
    [26] Judson R S,Rabitz H. Teaching Lasers to Control Molecules[J]. Physical Review Letters, 1992. 68(10): p. 1500 - 1503.
    [27] Dahleh M, Peirce A P,Rabitz H. Optimal Control of Uncertain Quantum Systems[J]. Physical Review A, 1990. 42(3): p. 1065 - 1079.
    [28] Shen L Y, Shi S H,Rabitz H. Optimal-Control of Coherent Wave-Functions - a Linearized Quantum Dynamical View[J]. Journal of Physical Chemistry, 1993. 97(47): p. 12114 - 12121.
    [29] Young S K,Rabitz H. Closed Loop Learning Control with Reduced Space Quantum Dynamics[J]. Journal of Chemical Physics, 2002. 117(3): p. 1024 - 1030.
    [30] Zhu W S,Rabitz H. Closed Loop Learning Control to Suppress the Effects of Quantum Decoherence[J]. Journal of Chemical Physics, 2003. 118(15): p. 6751 - 6770.
    [31] Wiseman H M,Milburn G J. Quantum Theory of Optical Feedback Via Homodyne Detection[J]. Physical Review Letters, 1993. 70(5): p. 548 - 551
    [32] Doherty A C,Jacobs K. Feedback Control of Quantum Systems Using Continuous State Estimation[J]. Physical Review A, 1999. 60(4): p. 2700 - 2711.
    [33] Lloyd S. Coherent Quantum Feedback[J]. Physical Review A, 2000. 62(2): p. 022108/1 - 022108/12.
    [34] Ahn C, Doherty A C,Landahl A J. Continuous Quantum Error Correction Via Quantum Feedback Control[J]. Physical Review A, 2002. 65(4): p. 042301/1 - 042301/10.
    [35] Ahn C, Wiseman H M,Milburn G J. Quantum Error Correction for Continuously Detected Errors[J]. Physical Review A, 2003. 67(5): p. 052310/1 - 052310/11.
    [36] Zhang J, Li C W, Wu R B, et al. Maximal Suppression of Decoherence in Markovian Quantum Systems[J]. Journal of Physics a-Mathematical and General, 2005. 38(29): p. 6587 - 6601.
    [37] Kawabata S. Information-Theoretical Approach to Control of Quantum-Mechanical Systems[J]. Physical Review A, 2003. 68(6): p. 064302/1 - 064302/4.
    [38]陈宗海,董道毅,张陈斌.基于量子信息的量子控制[C].第25届中国控制会议, 2006.哈尔滨:北京航空航天大学出版社.
    [39] Giovannetti V, Tombesi P,Vitali D. Non-Markovian Quantum Feedback from Homodyne Measurements: The Effect of a Nonzero Feedback Delay Time[J]. Physical Review A, 1999. 60(2): p. 1549 - 1561.
    [40] Paris M G A,Rehacek J. Quantum State Estimation [M]. Lecture Notes in Phys. Vol. 649. 2004, Berlin: Springer-Verlag.
    [41] Rabi I I, Zacharias J R, Millman S, et al. A New Method of Measuring Nuclear Magnetic Moment[J]. Physical Review, 1938. 53(4): p. 318 - 318.
    [42]陈宗海,董道毅.量子控制论[J].量子电子学报, 2004. 21(5): p. 546 - 554.
    [43] Bruss D, Ekert A,Macchiavello C. Optimal Universal Quantum Cloning and State Estimation[J]. Physical Review Letters, 1998. 81(12): p. 2598 - 2601.
    [44] Rabitz H. Algorithms for Closed Loop of Quantum Dynamics[C]. Proceedings of the 39th IEEE Conference on Decision and Control, 2000. Sydney: p.937 - 942.
    [45] Greiner W. Quantum Mechanics: An Introduction (Third Edition)[M]. 1994, Springer.
    [46] Schiano J L, Webb A G,Magin R L. Feedback-Control of Multiple-Quantum Coherence in a System of 2 Spin-1/2 Nuclei Interacting through Scalar Coupling[J]. Abstracts of Papers of the American Chemical Society, 1992. 204: p. 35 - 42.
    [47] Wiseman H M. Feedback in Open Quantum-Systems[J]. Modern Physics Letters B, 1995. 9(11-12): p. 629 - 654.
    [48] Grabowski M. Quantum Measurement and Dynamics[J]. Annalen Der Physik, 1990. 47(5): p. 391 - 400.
    [49] Kimble H J, Carnal O, Hu Z, et al. Quantum Measurement in Quantum Optics[M], Fundamental Problems in Quantum Theory. 1995, New York Acad Sciences: New York. p. 87 - 90.
    [50] Rabitz H,Zhu W S. Optimal Control of Molecular Motion: Design, Implementation, and Inversion[J]. Accounts of Chemical Research, 2000. 33(8): p. 572 - 578.
    [51] Rabitz H. Optimal Hamiltonian Identification: The Synthesis of Quantum Optimal Control and Inversion[J]. Abstracts of Papers of the American Chemical Society, 2001. 222: p. 95 - 103.
    [52] D'Alessandro D,Dahleh M. Optimal Control of Two-Level Quantum Systems[J]. Ieee Transactions on Automatic Control, 2001. 46(6): p. 866 - 876.
    [53] D'Alessandro D. The Optimal Control Problem on So (4) and Its Applications to Quantum Control[J]. Ieee Transactions on Automatic Control, 2002. 47(1): p. 87 - 92.
    [54] Scully M O,Zhu S Y. Quantum Optics - Quantum Control of the Inevitable[J]. Science, 1998. 281(5385): p. 1973 - 1974.
    [55] Meshulach D,Silberberg Y. Coherent Quantum Control of Two-Photon Transitions by a Femtosecond Laser Pulse[J]. Nature, 1998. 396(6708): p. 239 - 242.
    [56] Cirac J I. Quantum Physics - Entangled Atomic Samples[J]. Nature, 2001. 413(6854): p. 375 - 379.
    [57]陈宗海,董道毅,张陈斌.量子控制导论[M]. 2005,合肥:中国科学技术大学出版社.
    [58]董道毅,陈宗海.量子控制系统的建模与仿真研究[C]. Proceedings of WCICA IEEE, 2004. Hangzhou: p.276 - 282.
    [59] Tarn T J, Huang G,Clark J W. Modelling of Quantum Mechanical Control Systems[J]. Mathematical Modelling, 1980. 1(1): p. 109 - 121.
    [60] Lin E B. Modelling of Quantum Control and Inverse Problem[C]. Proceedings of The First IEEE Regional Conference, 1993.p.513 - 516.
    [61] Lin E B. Quantum Control Theory[J]. Contemporary Mathematics, 1989. 97(3): p. 269 - 278.
    [62] Ramakrishna V, Salapaka M V, Dahleh M, et al. Controllability of Molecular Systems[J]. Physical Review A, 1995. 51(2): p. 960 - 966.
    [63] Yanagisawa M,Kimura H. Transfer Function Approach to Quantum Control Systems[C]. Proceedings of the 40th IEEE Conference on Decision and Control, 2001. Orlando,Florida USA: p.1595 - 1599
    [64] Yanagisawa M,Kimura H. Transfer Function Approach to Quantum Control - Part I: Dynamics of Quantum Feedback Systems[J]. IEEE Transactions on Automatic Control, 2003. 48(12): p. 2107 - 2132.
    [65] Albertini F,D`Alessandro D. Notions of Controllability for Quantum Mechanical Systems[C]. Proceedings of the 40th IEEE Conference on Decision and Control, 2001. Orlando,Florida USA: p.1589 - 1594.
    [66] D`Alessandro D. Constructive Controllability of One and Two Spin 1/2 Particles[C]. Proceedings of American Control Conference, 2001. Arlington: p.1715 - 1720.
    [67] D`Alessandro D. On the Controllability of Systems on Compact Lie Groups and Quantum Mechanical Systems[C]. Proceedings of the 39th IEEE Conference on Decision and Control, 2000. Sydney, Australia: p.3982 - 3987.
    [68] Schirmer S G,Solomon A I. Non-Reachable Target States for Pure-State Controllable and Non-Controllable Quantum Systems[C]. Proceedings of the 40th IEEE Conference on Decision and Control, 2001. Orlando,Florida USA: p.2605 - 2606.
    [69] Rabitz H, de Vivie-Riedle R, Motzkus M, et al. Whither the Future of Controlling Quantum Phenomena[J]. Science, 2000. 288(5467): p. 824 - 828.
    [70] Dong D Y, Zhang C B,Chen Z H. Quantum Feedback Control Using Quantum Cloning and State Recognition[C]. Proceedings of the 16th IFAC World Congress, 2005. Prague: p.1965 - 1971.
    [71] Dong D Y, Zhang C B, Chen Z H, et al. Information-Technology Approach to Quantum Feedback Control[J]. Int. J. Mod. Phys. B, 2006. 20(11): p. 1304 - 1309.
    [72] Zhang M, Dai H Y, Zhu X C, et al. Control of the Quantum Open System Via Quantum Generalized Measurement[J]. Phys. Rev. A, 2006. 73(3): p. 032101/1 - 032101/12.
    [73] Sugawara M. Measurement-Assisted Quantum Dynamics Control of 5-Level System Using Intense Cw-Laser Fields[J]. Chemical Physics Letters, 2006. 428(4-6): p. 457 - 460.
    [74] Pechen A, Il'in N, Shuang F, et al. Quantum Control by Von Neumann Measurements[J]. Phys. Rev. A, 2006. 74(5): p. 052102/1 - 052102/8.
    [75] Zhang C B, Dong D Y,Chen Z H. Control of Non-Controllable Quantum Systems: A Quantum Control Algorithm Based on Grover Iteration[J]. Journal of Optics B-Quantum and Semiclassical Optics, 2005. 7(10): p. 313 - 317.
    [76] Peirce A P, Dahleh M A,Rabitz H. Optimal Control of Quantum-Mechanical Systems: Existence, Numerical Approximation, and Applications[J]. Physical Review A, 1988. 37(12): p. 4950 - 4964.
    [77] Branderhorst M P A, Walmsley I A,Kosut R L. Quantum Process Tomography of Decoherence in Diatomic Molecules[J]. European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, 2007: p. 986 - 992.
    [78] Wu R B, Li C W,Wang Y Z. Explicitly Solvable Extremals of Time Optimal Control for 2-Level Quantum Systems[J]. Physics Letters A, 2002. 295(1): p. 20 - 24.
    [79] Yanagisawa M. Noncommutative Optimal Control and Quantum Networks [J]. Phys. Rev. A, 2006. 73(2): p. 022342/1 - 022342/10.
    [80]吴庆林,陈宗海,董道毅.量子最优控制研究综述[C].系统仿真技术及其用, 2004.合肥:中国科学技术大学出版社. p.723 - 728.
    [81]陈宗海,朱明清,张陈斌, et al.两能级封闭量子系统任意量子态的最优制备[J].控制与决策, 2007. 22(8): p. 912 - 917.
    [82]陈宗海,朱明清,张陈斌, et al.以磁场为控制场的量子比特系统量子态的最优制备[J].吉林大学学报(工学版), 2007. 37(3): p. 660 - 666.
    [83]陈宗海,朱明清,张陈斌, et al.基于恒定磁场的电子自旋量子比特系统任意量子态的最优制备[J].控制理论与应用, 2008. 25(3): p. 497 - 505.
    [84] Doherty A, Doyle J, Mabuchi H, et al. Robust Control in the Quantum Domain[J]. Proceedings of the 39th IEEE Conference on Decision and Control, 2000: p. 949 - 954.
    [85] Geremia J M,Rabitz H. Optimal Identification of Hamiltonian Information by Closed-Loop Laser Control of Quantum Systems [J]. Phys. Rev. Lett, 2002. 89(26): p. 263902/1 - 263902/13.
    [86]陈宗海,董道毅.量子控制实验研究进展[J].量子电子学报, 2004. 21(1): p. 1 - 6.
    [87] Chu S. Cold Atoms and Quantum Control[J]. Nature, 2002. 416(6877): p. 206 - 210.
    [88] Schleich W P. Quantum Control: Sculpting a Wavepacket[J]. Nature, 1999. 397(6716): p. 207 - 208.
    [89] Bardeen C J, Wilson K R,Yakovlev V V. Quantum Control of Molecular Motion and Multiphoton Processes in I2 by Use of Ultrashort Chirped Pulses[C]. Quantum Electronics and Laser Science Conference, 1997.p.164 - 165.
    [90] Tamborenea P I,Metiu H. Quantum Control of Electrons in Semiconductor Nanostructures Using Spatially Uniform Electric Fields[J]. Proceedings of the 40th IEEE Conference on Decision and Control, 2001: p. 281 - 286.
    [91] Herek J L, Wohlleben W, Cogdell R J, et al. Quantum Control of Energy Flow in Light Harvesting[J]. Nature, 2002. 417(6888): p. 533 - 535.
    [92] Paz J P. Quantum Engineering: Protecting the Quantum World[J]. Nature, 2001. 412(6850): p. 869 - 870.
    [93] Borsa F, D`Alessandro D,Miller L. Quantum Control of Molecular Magnets Using Magmetic Force Microscopy[C]. Proceedings of the 40th IEEE Conference on Decision and Control, 2001. Orlando,Florida USA p.279 - 280.
    [94] Meschede D, Frese D,Kuhr S. Deterministic Source and Transportation for Single Atoms[C]. Quantum Electronics and Laser Science Conference, 2001.p.254 - 259.
    [95] Pu H, Raghavan S,Bigelow N P. Quantum Control in Spinor Bose Condensates[C]. Quantum Electronics and Laser Science Conference, 2000.p.215 - 216.
    [96] Barnes W. Quantum Physics: Survival of the Entangled[J]. Nature, 2002. 418(6895): p. 281 - 282.
    [97]张靖. 2006.开放量子系统退相干抑制及纠缠控制研究[D]: [博士].北京:清华大学. p. 1 - 10
    [98] Tannor D J,Rice S A. Coherent Pulse Sequence Control of Product Formation in Chemical Reactions[J]. Adv. Chem. Phys, 1987. 70(2): p. 441 - 523.
    [99] Brumer P,Shapiro M. Coherence Chemistry: Controlling Chemical Reactions[J]. Acc. Chem.Res., 1989. 22(3): p. 407 - 413.
    [100] Rabitz H,Shi S H. Selective Excitation in Harmonic Molecular Systems by Optimally Designed fields[J]. Chemical Physics Letters, 1989. 139(7): p. 185 - 199.
    [101] Rice S A. New Ideas for Guiding the Evolution of a Quantum System[J]. Science, 1992. 258(5081): p. 412 - 413.
    [102] D'Ariano G M. Quantum Tomography: General Theory and New Experiments[J]. Fortschritte der Physik, 2000. 48(5-7): p. 579 - 588.
    [103] D'Ariano G M, Paris M G A,Sacchi M F. Quantum Tomography[J]. Advances in Imaging and Electron Physics, 2003. 128: p. 205 - 308.
    [104] Artiles L M, Gill R D,Guta M I. An Invitation to Quantum Tomography[J]. Journal Of The Royal Statistical Society Series B-Statistical Methodology, 2005. 67: p. 109 - 134.
    [105] Chuang I L,Nielsen M A. Prescription for Experimental Determination of the Dynamics of a Quantum Black Box[J]. Journal of Modern Optics, 1997. 44(11): p. 2455 - 2467.
    [106] Fano U. Description of States in Quantum Mechanics by Density Matrix and Operator Techniques[J]. Reviews of Modern Physics, 1957. 29(1): p. 74 - 93.
    [107] Cahill K E,Glauber R J. Ordered Expansions in Boson Amplitude Operators[J]. Physical Review, 1969. 177(5): p. 1857 - 1881.
    [108] Vogel W,Welsch D G. K-Photon Jaynes-Cummings Model with Coherent Atomic Preparation: Squeezing and Coherence[J]. Physical Review A, 1989. 40(12): p. 7113 - 7120.
    [109] Smithey D T, Beck M, Raymer M G, et al. Measurement of the Wigner Distribution and the Density Matrix of a Light Mode Using Optical Homodyne Tomography: Application to Squeezed States and the Vacuum[J]. Physical Review Letters, 1993. 70(9): p. 1244 - 1247.
    [110] Klebanov L B,Rachev S T. Computer Tomography and Quantum Mechanics[J]. Advances in Applied Probability, 1997. 29(3): p. 595 - 606.
    [111] Klebanov L B,Rachev S T. The Method of Moments in Tomography and Quantum Mechanics[J]. Distributions with Given Marginals and Moment Problems, 1997: p. 35 - 52.
    [112] Manko O,Manko V I. Quantum States in Probability Representation and Tomography[J]. Journal Of Russian Laser Research, 1997. 18(5): p. 407 - 444.
    [113] D'Ariano G M. Latest Developments in Quantum Tomography[J]. Quantum Communication, Computing, and Measurement, 2000: p. 137 - 146.
    [114] D'Ariano G M, Rubin M, Sacchi M F, et al. Quantum Tomography of the Ghz State[J]. Fortschritte der Physik, 2000. 48(5-7): p. 599 - 603.
    [115] Leonhardt U. Quantum State Tomography and Discrete Wigner Function[J]. Physical Review Letters, 1995. 74(21): p. 4101 - 4105.
    [116] Leonhardt U. Discrete Wigner Function and Quantum State Tomography[J]. Physical Review A, 1996. 53(5): p. 2998 - 3013.
    [117] Leonhardt U. Quantum State Tomography and Discrete Wigner Function [J]. Physical Review Letters, 1996. 76(22): p. 4293 - 4293.
    [118] D'Ariano G M, De Laurentis M, Paris M G A, et al. Quantum Tomography as a Tool for the Characterization of Optical Devices[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2002. 4(3): p. 127 - 132.
    [119] Arkhipov A S,Lozovik Y E. Quantum Tomography as a New Approach to Simulating Quantum Processes[J]. Journal Of Experimental And Theoretical Physics, 2004. 98(2): p. 231 - 239.
    [120] Poyatos J F, Cirac J I,Zoller P. Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate[J]. Physical Review Letters, 1997. 78(2): p. 390 - 393.
    [121] Nielsen M A, Knill E,Laflamme R. Complete Quantum Teleportation Using Nuclear Magnetic Resonance[J]. Nature, 1998. 396(6706): p. 52 - 55.
    [122] Childs A M, Chuang I L,Leung D W. Realization of Quantum Process Tomography in Nmr[J]. Physical Review A, 2001. 64(1): p. 012314/1 - 012314/7.
    [123] De Martini F, Mazzei A, Ricci M, et al. Exploiting Quantum Parallelism of Entanglement for a Complete Experimental Quantum Characterization of a Single-Qubit Device[J]. Physical Review A, 2003. 67(6): p. 062307/1 - 062307/5.
    [124]喀兴林.高等量子力学[M]. 1999,高等教育出版社:北京.
    [125] Alber G, Beth T, Horodecki M, et al. Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments[M]. 2001, Berlin Heidelberg: Springer-Verlag.
    [126] Molmer K. Quantum Entanglement and Classical Behaviour[J]. Journal of Modern Optics, 1997. 44(10): p. 1937 - 1956.
    [127] Penrose R. Quantum Computation, Entanglement and State Reduction[J]. Philosophical Transactions of the Royal Society of London Series A, 1998. 356(1743): p. 1927 - 1938.
    [128] Krenn G,Zeilinger A. Entangled Entanglement[J]. Physical Review A, 1996. 54(3): p. 1793 - 1797.
    [129] Milburn G J,Meaney C. Quantum Entanglement in Circuit Qed[J]. Solid-State Quantum Computing, Proceedings, 2008. 1074: p. 1 - 3.
    [130] Yamamoto N, Nurdin H I, James M R, et al. Feedback Control of Entanglement in a Linear Quantum Network: A Case Study[J]. 2008 47th IEEE Conference on Decision and Control, 2008: p. 4528 - 4533.
    [131] Yu C S, Yi X X,Song H S. Evolution of Entanglement for Quantum Mixed States[J]. Physical Review A, 2008. 78: p. 062330/1 - 062330/6.
    [132] Kolli A, Lovett B W, Benjamin S C, et al. Measurement-Based Approach to Entanglement Generation in Coupled Quantum Dots[J]. Physical Review B, 2009: p. 035315/1 - 035315/10.
    [133] Semba K, Johansson J, Kakuyanagi K, et al. Quantum State Control, Entanglement, and Readout of the Josephson Persistent-Current Qubit[J]. Quantum Information Processing, 2009. 8(2-3): p. 199 - 215.
    [134] Wootters W K,Zurek W H. A Single Quantum Cannot Be Cloned [J]. Nature, 1982. 299(5886): p. 802 - 803.
    [135] Heisenberg W. Uber Den Anschaulichen Inhalt Der Quantentheoretischen Kinematik Und Mechanik[J]. Zeitschrift für Physik 1927. 43: p. 172 - 198.
    [136] D'Ariano G M,Yuen H P. Impossibility of Measuring the Wave Function of a Single Quantum System[J]. Physical Review Letters, 1996. 76(16): p. 2832 - 2835.
    [137] Preskill J. Quantum Information and Computation[M], Lecture Notes for Physics. 1998, California Institute of Technology.
    [138] Lee C T. Theorem on Nonclassical States[J]. Physical Review A, 1995. 52(4): p. 3374 - 3376.
    [139] Hradil Z, Rehacek J, Fiurasek J, et al. Qubit Quantum State Tomography[M], Quantum State Estimation (Lecture Notes in Phys. Vol.649). 2004, Springer-Verlag. p. 113 - 145.
    [140] Longdell J J,Sellars M J. Experimental Demonstration of Quantum-State Tomography and Qubit-Qubit Interactions for Rare-Earth-Metal-Ion-Based Solid-State Qubits[J]. Physical Review A 2004. 69(3): p. 32307/1 - 32307/5.
    [141] Chiesa S, Mella M,Morosi G. Quantum Monte Carlo Estimators for the Positron-Electron Annihilation Rate in Bound and Low-Energy Scattering States[J]. Physical Review A, 2004. 69(2): p. 22701/1 - 22701/8.
    [142] Nambu Y,Nakamura K. Experimental Investigation of a Nonideal Two-Qubit Quantum-StateFilter by Quantum Process Tomography[J]. Physical Review Letters, 2005. 94(1): p. 010404/1 - 010404/4.
    [143] Nambu Y, Usami K, Tsuda Y, et al. Generation of Polarization-Entangled Photon Pairs in a Cascade of Two Type-I Crystals Pumped by Femtosecond Pulses[J]. Physical Review A, 2002. 66(3): p. 033816/1 - 033816/10.
    [144] James D F V, Kwiat P G, Munro W J, et al. Measurement of Qubits[J]. Physical Review A, 2001. 64(5): p. 052312/1 - 052312/15.
    [145] D'riano G M, Macchiavello C,Paris M G A. Detection of the Density Matrix through Optical Homodyne Tomography without Filtered Back Projection[J]. Physical Review A, 1994. 50(5): p. 4298 - 4302.
    [146] Schiller S, Breitenbach G, Pereira S F, et al. Quantum Statistics of the Squeezed Vacuum by Measurement of the Density Matrix in the Number State Representation[J]. Physical Review Letters, 1996. 77(14): p. 2933 - 2936.
    [147] Wallentowitz S,Vogel W. Reconstruction of the Quantum Mechanical State of a Trapped Ion[J]. Physical Review Letters, 1995. 75(16): p. 2932 - 2935.
    [148] Dunn T J, Walmsley I A,Mukamel S. Experimental Determination of the Quantum-Mechanical State of a Molecular Vibrational Mode Using Fluorescence Tomography[J]. Physical Review Letters, 1995. 74(6): p. 884 - 887
    [149] Kurtsiefer C, Pfau T,Mlynek J. Measurement of the Wigner Function of an Ensemble of Helium Atoms[J]. Nature, 1997. 386(6621): p. 150 - 153.
    [150] Leibfried D, Meekhof D M, King B E, et al. Experimental Determination of the Motional Quantum State of a Trapped Atom[J]. Physical Review Letters, 1996. 77(21): p. 4281 - 4285
    [151] Birnbaum G, Borysow A,Orton G S. Collision-Induced Absorption of H-2-H-2 and H-2-He in the Rotational and Fundamental Bands for Planetary Applications[J]. Icarus, 1996. 123(1): p. 4 - 22.
    [152] D'Ariano G M,Paris M G A. Adaptive Quantum Homodyne Tomography[J]. Physical Review A, 1999. 60(1): p. 518 - 528.
    [153] Lvovsky A I. Iterative Maximum-Likelihood Reconstruction in Quantum Homodyne Tomography[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2004. 6(6): p. 556 - 559.
    [154] Yuen H P,Chan V W S. Noise in Homodyne and Heterodyne-Detection[J]. Optics Letters, 1983. 8(3): p. 177 - 179.
    [155] Abbas G L, Chan V W S,Yee T K. Local-Oscillator Excess-Noise Suppression for Homodyne and Heterodyne Detection[J]. Optics Letters, 1983. 8(8): p. 419 - 421.
    [156] Beck M, Smithey D T,Raymer M G. Experimental Determination of Quantum-Phase Distributions Using Optical Homodyne Tomography[J]. Physical Review A, 1993. 48(2): p. 890 - 893.
    [157] D'riano G M, Leonhardt U,Paul H. Homodyne Detection of the Density Matrix of the Radiation Field[J]. Physical Review A, 1995. 52(3): p. R1801 - R1804.
    [158] Long G L, Yan H Y, Li Y S, et al. Experimental Nmr Realization of a Generalized Quantum Search Algorithm[J]. Phys. Lett. A 2000. 286: p. 121 - 126.
    [159] Ji X,Wildenthal B H. Effective Interaction for N=50 Isotones[J]. Physical Review C, 1988. 37(3): p. 1256 - 1266.
    [160] Long G L, Yan H Y,Sun Y. Analysis of Density Matrix Reconstruction in Nmr QuantumComputing[J]. Journal of Optics B-Quantum and Semiclassical Optics, 2001. 3(6): p. 376 - 381.
    [161] Turchette Q A, Hood C J, Lange W, et al. Measurement of Conditional Phase-Shifts for Quantum Logic[J]. Physical Review Letters, 1995. 75(25): p. 4710 - 4713.
    [162] Blatt R, Poyatos J F, Cirac J I, et al. Quantum Motion of a Trapped Ion: Schrodinger Cats, Ion Interferometry and Quantum Tomography[J]. Proceedings of the Fifth Symposium on Frequency Standards and Metrology, 1996: p. 20 - 24.
    [163] D'Ariano G M,Lo Presti P. Quantum Tomography for Measuring Experimentally the Matrix Elements of an Arbitrary Quantum Operation[J]. Physical Review Letters, 2001. 86(19): p. 4195 - 4198.
    [164] Dür W,Cirac J I. Nonlocal Operations: Purification, Storage, Compression, Tomography, and Probabilistic Implementation[J]. Physical Review A, 2001. 64(1): p. 012317/1 - 012317/14.
    [165] Altepeter J B, Branning D, Jeffrey E, et al. Ancilla-Assisted Quantum Process Tomography[J]. Physical Review Letters, 2003. 90(19): p. 193601/1 - 193601/4.
    [166]董道毅,陈宗海.电子自旋的时间量子控制[J].控制与决策, 2006. 21(1): p. 38 - 41.
    [167] Ruskov R,Korotkov A N. Quantum Feedback Control of a Solid-State Qubit[J]. Physical Review B, 2002. 66(4): p. 041401/1 - 041401/4.
    [168] Assion A, Baumert T, Bergt M, et al. Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses[J]. Science, 1998. 282: p. 919 - 922.
    [169] Levis R J,Rabitz H. Closing the Loop on Bond Selective Chemistry Using Tailored Strong Field Laser Pulses[J]. J. Phys. Chem. A, 2002. 106(27): p. 6427 - 6444.
    [170] Wilson E K. Quantum Control[J]. Chemical & Engineering News, 2001. 79(22): p. 38 - 39.
    [171] Biteen J S, Geremia J M,Rabitz H. Closed-Loop Quantum Control Utilizing Time Domain Maps[J]. Chemical Physics Letters, 2003. 290: p. 35 - 45.
    [172] Dong D Y,Chen Z H. Quantum Feedback Control Based on Entanglement Swapping[C]. 2005 International Conference on Control and Automation, 2005. Budapest, Hungary: p.730 - 735.
    [173] Yamamoto Y, Imoto N,Machida S. Amplitude Squeezing in a Semiconductor Laser Using Quantum Nondemolition Measurement and Negative Feedback[J]. Physical Review A, 1986. 33(5): p. 3243 - 3261.
    [174] Doherty A C, Jacobs K,Jungman G. Information, Disturbance, and Hamiltonian Quantum Feedback Control[J]. Physical Review A, 2001. 63(6): p. 062306/1 - 062306/13.
    [175] Korotkov A N. Selective Quantum Evolution of a Qubit State Due to Continuous Measurement[J]. Physical Review B, 2001. 63(11): p. 115403/1 - 115403/15.
    [176] Wiseman H M, Mancini S,Wang J. Bayesian Feedback Versus Markovian Feedback in a Two-Level Atom[J]. Physical Review A, 2002. 66(1): p. 013807/1 - 013807/9.
    [177] Wang J, Wiseman H M,Milburn G J. Non-Markovian Homodyne-Mediated Feedback on a Two-Level Atom: A Quantum Trajectory Treatment[J]. Chemical Physics Letters, 2001. 268: p. 221 - 235.
    [178] Weinacht T C,Bucksbaum P H. Adaptive Control of Quantum Phase in Rydberg Wave Packets[C]. Quantum Electronics Conference, 1998, p.1342 - 1345
    [179] Thomsen L K,Wiseman H M. Atom-Laser Coherence and Its Control Via Feedback[J].Physical Review A, 2002. 65(6): p. 063607/1 - 063607/14.
    [180] Nasr M B, Goode D P, Nguyen N, et al. Quantum Optical Coherence Tomography of a Biological Sample[J]. Optics Communications, 2009. 282(6): p. 1154 - 1159.
    [181] Mogilevtsev D, Rehacek J,Hradil Z. Relative Tomography of an Unknown Quantum State[J]. Physical Review A, 2009. 79(2): p. R020101/1 - R020101/4.
    [182] Lundeen J S, Feito A, Coldenstrodt-Ronge H, et al. Tomography of Quantum Detectors[J]. Nature Physics, 2009. 5(1): p. 27 - 30.
    [183] Kaznady M S,James D F V. Numerical Strategies for Quantum Tomography: Alternatives to Full Optimization[J]. Physical Review A, 2009. 79(2): p. 022109/1 - 022109 /9.
    [184] D'Ariano G M, Magnani D F,Perinotti P. Adaptive Bayesian and Frequentist Data Processing for Quantum Tomography[J]. Physics Letters A, 2009. 373(12-13): p. 1111 - 1115.
    [185] Bisio A, Chiribella G, D'Ariano G M, et al. Optimal Quantum Tomography of States, Measurements, and Transformations[J]. Physical Review Letters, 2009. 102(1): p. 010404/1 - 010404/1.
    [186] Ziman M. Incomplete Quantum Process Tomography and Principle of Maximal Entropy[J]. Physical Review A, 2008. 78(3): p. 032118/1 - 032118/8.
    [187] Walther A, Rippe L, Julsgaard B, et al. Solid State Qubit Quantum State Tomography[J]. Advanced Optical Concepts in Quantum Computing, Memory, and Communication, 2008. 6903: p. D9030 - D9030.
    [188] Rippe L, Julsgaard B, Walther A, et al. Experimental Quantum-State Tomography of a Solid-State Qubit[J]. Physical Review A, 2008. 77(2): p. 022307/1 - 022307/5.
    [189] Mehmani B, Allahverdyan A E,Nieuwenhuizen T M. Quantum-State Tomography Using a Single Apparatus[J]. Physical Review A, 2008. 77(3): p. 032122/1 - 032122/9.
    [190] Yuasa K, Okano K, Nakazato H, et al. State Tomography of Layered Qubits Via Spin Blockade Measurements on the Edge Qubit in a Spin Field-Effect Transistor Structure Embedded with Quantum Dots[J]. Physics of Semiconductors, 2007. 893: p. 1109 - 1110.
    [191] Kuah A M, Modi K, Rodriguez-Rosario C A, et al. How State Preparation Can Affect a Quantum Experiment: Quantum Process Tomography for Open Systems[J]. Physical Review A, 2007. 76(4): p. 042113/1 - 042113/12.
    [192] Haroche S, Brune M,Raimond J M. Measuring the Photon Number Parity in a Cavity: From Light Quantum Jumps to the Tomography of Non-Classical Field States[J]. Journal of Modern Optics, 2007. 54(13-15): p. 2101 - 2114.
    [193] D'Ariano G M, Maccone L,Sacchi M F. Homodyne Tomography and the Reconstruction of Quantum States of Light[J]. Quantum Information with Continous Variables of Atoms and Light, 2007: p. 141 - 158.
    [194] Butucea C, Guta M,Artiles L. Minimax and Adaptive Estimation of the Wigner Function in Quantum Homodyne Tomography with Noisy Data[J]. Annals of Statistics, 2007. 35(2): p. 465 - 494.
    [195] Samuelsson P,Buttiker M. Quantum State Tomography with Quantum Shot Noise[J]. Physical Review B, 2006. 73(4): p. R041305/1 - R041305/4.
    [196] Aguilar O, Klimov A B,de Guise H. Tomography Vs Quantum Control for a Three-Level Atom[J]. Physics Letters A, 2006. 359(5): p. 373 - 380.
    [197] Myrskog S H, Fox J K, Mitchell M W, et al. Quantum Process Tomography on Vibrational States of Atoms in an Optical Lattice[J]. Physical Review A 2005. 72(1): p. 13615/1 - 11713615/5.
    [198] Dong DY, Chen CL, Chen ZH, Zhang CB,Control of five-qubit system based on quantum reinforcement learning , International Conference on Computational-Intelligence and Security, 2006, 1-2: p.164 - 167.
    [199] Chen Z H, Dong D Y,Zhang C B. Quantum Control Based on Quantum Information[C]. Chinese Control Conference, 2006. Harbin, China: p.47 - 53.
    [200] DONG Dao-yi, CHEN Zong-hai, ZHANG Chen-bin, CHEN Chun-lin,Feedback control of quantum system[J],Frontiers of Physics in China,2006,1(3): p.256 - 262.
    [201]吴庆林,陈宗海,基于量子过程层析的量子系统参数测定[C],系统仿真技术及其应用,2006,8: p.840 - 843.
    [202] Dong Daoyi, Chen Chunlin, Chen Zonghai, Zhang Chenbin, Estimation-Based Information Acquisition in Quantum Feedback Control[C], Proceedings of the International Conference on Complex Systems and Applications,2006. Watam Press:p.1204 - 1208.
    [203]董道毅,陈宗海,量子反馈控制研究进展[J],量子电子学报,2005,22(6): p.833 - 839.
    [204]陈宗海,董道毅,量子系统科学的重要分支:量子控制论[J],世界科技研究与发展,2005, 27(5): p.26 - 32.
    [205]陈宗海,张陈斌,量子控制系统的仿真研究[C],系统仿真技术及其应用,2005,7: p.1 - 7.
    [206]董道毅,陈宗海,量子控制论在化学中的应用[J],化学进展, 2005, 17(4): p.581 - 587
    [207] Dong Daoyi, Chen Zonghai,Perturbation Theory for Quantum Control with Weak Input[C].2005 International Conference on Control and Automation, Budapest, Hungary, 2005, p.736 - 740.
    [208] Dong Daoyi, Chen Zonghai,Establishing Formal State Space Models via Quantization for Quantum Control Systems[J].Journal of Systems Engineering and Electronics, 2005, 16(2): p.398 - 402.
    [209]董道毅,陈宗海,陈春林,量子控制系统模型的比较研究[C],系统仿真技术及其应用, 2004, 6: p.29 - 34.
    [210]董道毅,陈宗海,张陈斌,量子传感器[J],传感器技术,23(4),2004: p.1 - 4
    [211] Daoyi Dong, Zonghai Chen, Modeling of Quantum Control Systems Based on Quantization[C], Systems Science and Systems Engineering, ICSSSE’03, p.78 - 82.
    [212]陈宗海,董道毅,张陈斌,量子控制研究综述[C],系统仿真技术及其应用,2003. 5: p. 31 - 51.
    [213]陈宗海,张陈斌,董道毅,量子信息系统仿真[C],系统仿真技术及其应用, 2003. 5: p.376 - 381.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700