用户名: 密码: 验证码:
锑在铸造铝硅合金中的行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变质处理是提高铝—硅合金机械性能的重要手段之一。目前生产上所要用的变质剂主要是钠盐和锶。Sb作为一种长效变质剂在理论和实践上还不够成熟,在生产中还没有被广泛应用。因此有必要对Sb在铝硅合金中的作用做更深入的研究。本文采用差热分析,扫描电子显微镜及电子探针分析等方法研究了Sb元素对铸造铝硅合金的变质和细化问题,并利用图像分析方法,对各种缺陷和变质效果进行定量分析,提高了产品检测的速度和准确度。
     实验结果表明:(1)在较快的冷却速度下,0.2%的Sb含量对ZL114合金产生了良好的变质效果。变质良好时,合金的的凝固温度,共晶温度降低,α(Al)相析出潜热减小,共晶Si相结晶潜热增大。(2)对于砂型铸造,Sb元素对ZL114合金也起到了一定的变质作用。(3)在不含镁元素的情况下,变质组织随着Sb含量的增加逐渐细化,当含量超过2%后,组织又开始变粗大。(4)在含0.5%Mg的情况下,0.2%Sb在快冷条件下的变质效果最好,而含0.6%Sb的合金变质效果变差。当Sb含量达到2%的时候,合金组织又变得很细小(5)在冷却速度较慢的情况下,随着Sb含量的增加,针孔度增加,而在冷却速度较快的情况下,合金针孔度对锑含量不敏感。(6)Sb在合金中以AlSb和Mg_3Sb_2的形式存在。高熔点AlSb的存在促使α(Al)相析出,AlSb在结晶前沿的聚集,造成共晶过冷度增加,
Modification is one of the most important methods to improve the mechanical properties of Al-Si alloys. At present, sodium salt and strontium are commonly used modifier in practice. Antimony, as a permanent modifier is not extensive used because of its inexperience. So the effects of antimony on Al-Si alloys need to be further studied. In this paper, antimony effects of modification and grain refinement on Al —Si cast alloys have been studied by using thermal analysis of differential scanning calorimeter, scanning electron microcopy and electron probing analysis. Image automatic analyzer has also been applied to quantitatively analyze the pinhole degree and modification effect, which advances the speed and accuracy of product test.
    The results showed that: (1) 0. 2% Antimony exerted good modification impact on ZL114 alloy at rapid cooling rate. When best modification obtained, the freezing point and eutectic temperature droped down, while the crystal latent heat of α (Al) and Si phases decreased and increased respectively. (2) Antimony could also modify ZL114 alloy in sand mold. (3) When magnesium didn' t exist in the Al-Si alloys, the modification structure became finely at first with the increasing of antimony content, while the structure would grow bigger gradually after antimony yielded about 2%. (4) When 0.5% magnesium existed in the Al-Si alloys, the modification effects by 0. 2% antimony were perfect at quick cooling rate, and the modification effects by 0. 6% antimony were weakened. Modification structure wouldn' t become finely any more until 2% antimony was gained. (5) Pinhole degree was more serious with the increasing of antimony content at the slow cooling rate, while at the rapid cooling rate, pinhole degree was not influenced by antimony content; (6) Antimony existed in alloys as the
引文
[1] L.F.蒙多尔福:铝合金的组织和性能.冶金工业出版社:1988
    [2] Ejiofor JU. Reddy RG. JOM 1997,49(11):31-37
    [3] 柳秉毅.改善铝硅铸造合金组织与性能研究的若干进展.南京工程学院学报(自然科学版),2004,1:1—7
    [4] 苏勇.Sb变质与时效处理对ZL101合金机械性能的影响.机械工程师,1997,(3):5,11
    [5] 张林,边秀房,马家骥.铝硅合金液相结构转变.铸造,1995,(10):7—12
    [6] 胡赓祥,蔡殉.材料科学基础.上海:上海交通大学出版社,2000
    [7] 胡汉起.金属凝固原理.北京:机械工业出版社,2000
    [8] 陈崇梧.铝硅合金的新型变质法——激冷法.全国铝合金精炼、变质处理学术讨论会论文集.张家港:中国机械工程学会铸造分会特种铸造及有色合金专业委员会,1993.10
    [9] 王丰,贾振艳.钛对活塞合金组织性能的影响.全国铝合金精炼、变质处理学术讨论会论文集.张家港:中国机械工程学会铸造分会特种铸造及有色合金专业委员会,1993.29—30
    [10] 坚增运,杨根仓,周尧和.Al-18%Si合金的温度处理.中国有色金属学报,1995,133—135,144
    [11] Hanna M D, Lu S Z, Hellawell A. Modification in the Aluminium Silicon. Metallurgical Transaction A, 1984, 15A, (3): 459-469
    [12] Wang Q Gand Davidson C J. Solidification and precipitation of Al—Si—Mg casting alloys. Journal of Materials Science, 2001, 36:739—750
    [13] Crosley P B. The Modification of Aluminium-Silicon Alloys. Modern Casting, 1966, (3): 89-100
    [14] 姚书芳,毛卫民,赵爱民等.铸造铝硅合金细化变质处理的研究进展.铸造,2000,49(9):512-515
    [15] 张启运,朝贵,韩万福.稀土对铝硅共晶合金变质作用的研究.金属学报,1981,17(2):133—136
    [16] 徐贵松.稀土变质剂在铝及其合金中的应用.江西有色金属,1996,10(3):28—32
    [17] 魏伯康.稀土在Al-Si合金中的变质作用.特种铸造及有色合金,1993,(3):6—9,26
    [18] 高泽生.铝晶粒细化机理研究的进展.轻合金加工技术,1997,(5):1—3
    [19] 彭晋民,钱翰城.铸态铸造铝硅合金的现状和发展.铸造技术 2000,(6)
    [20] 柳秉毅,孙瑜.热处理对铝硅铸造合金组织与性能的影响.汽车技术,3004,4:34—36
    [21] M. Garat, G. Laslaz, S. Jacob, P. Meyer, R. Adam. State of the Art Use of Sb, Na and Sr Modified Al-Si Casting Alloying. AFS Transaction, 1992, 142: 821—934.
    [22] Hurley T J, Alkinson R G. Effects of modification practice on Aluminum A356 Alloys. AFS Transzctions, 1985,(39): 291-296
    [23] Charbonnier J. Antimony Refines the Eutectic Silicon Which Changes From Acicular to Lamellar and its Presence in the Melt is Permanent. AFS International Cast Metal Joumal, 1978, (3): 17-26
    [24] 三机部六二一所,铸造铝硅合金永久变质的研究.1978年1月
    [25] 唐多光,毛协民,张金龙等.一种过共晶铝硅合金的绿色长效变质剂.铸造,2002,51(10):652—653
    [26] 高科,戴恩泰.二元过共晶Al-Si合金的组织与性能研究.轻金属,1998,(3):43—46
    [27] 姚书吉,毛卫民,赵爱民等.过共晶硅铝—硅合金细化变质剂的研究.特种铸造及有色合金,2000,(5):1—3
    [28] 赵恒生,陈润辉.过共晶铝—硅合金化变质的进展.轻金属,1992,(2):60—64
    [29] 赵玉涛.过共晶Al-23%Si合金中硅相生长的研究.铸造技术,1996,6,43—46
    [30] 张蓉,黄太文,刘林.过共晶Al-Si合金熔体中初生硅生长特性.中国有色金属学报,2004,14(2):262—266
    [31] 郑来苏.铸造合金及其熔炼.西安:西北工业大学出版社,1994
    [32] 刘秉毅.钠、锶变质铝硅合金机理的研究[J].铸造,1991,(2):18—21
    [33] 刘启阳,李庆春,朱培钺.共晶合金第二相粒状化学动力学.金属科学与工程,1987,(1):65—77
    [34] 刘玉先,肖莉美,刘相法.Al-Si合金中共晶硅生长形态的研究.特种铸造及有色合金,1995,(6):1—4
    [35] 张承甫,龚建森,黄杏蓉等.液态金属的净化与变质.上海:上海科学技术出版社,1989
    [36] 刘勇兵,杜维玺,李道韫等.稀土在铝—硅合金中的分布和变质过程初探.稀土,1985,(3):34—38
    [37] 朱志超.GZLSi7MgTi高强度铸造铝合金及复合长效变质.铸造,1991,(3):28—33
    [38] 宋基敬,中江秀雄.Al-Si共晶合金共晶Si微细机构.铸造工学,1996,68(2):148 —155
    [39] Shamsuzzoha M, Hogan L M, Berry J T. Effects of modifying agents on crystallography and growth of silicon phase in Al-Si casting alloys. 1993, 154: 999—1005
    [40] 黄良余.铝硅合金变质机理的新发展的新观点(下).特种铸造及有色合金,1995,(5):19—22
    [41] 赵恒先,陈润辉.过共晶铝硅合金细化变质的进展.轻金属,1992,(2):60—64
    [42] Closset B, Fan D. Strontium modification of aluminium investment casting alloys. AFS Transactions, 1990, 90: 505—509
    [43] 夏青,杨留拴,刘亚民等.Na、Sb对亚共晶Al-Si合金变质效果的影响.河南科技大学学报(自然科学版)2003,24(3):7—9
    [44] 王玉琮.Sr和Sb对Al-Si合金凝固过程的影响.金属学报,1987,(3):498-502
    [45] 黄良余.Al-Si合金加Sr和Sb变质的研究.金属学报,1986:(4):A310—A316
    [46] 亓效刚,陈俊华,江旭彪.锑变质共晶硅的异质形核,特种铸造及有色合金.2000,(1):13—15
    [47] 王家炘,黄积荣,林建生.金属地凝固及其控制.机械工艺出版射,1986
    [48] 陈俊华,亓效刚,王伟民等.镁对锑变质激化作用的研究.铸造,1983(3):4—7
    [49] 杨全,张真.金属凝固与铸造过程数值模拟.浙江大学出版社,1998
    [50] Kurfman V B. Light alloy grain size control and super cooling measurements[J]. AFS Transactions, 1961, 69: 234-238.
    [51] Backerud S L. Canadian Patent, 1974(951519)
    [52] Argyropoulos S, Closset B. AFS Trans. 1983, 90: 351-358
    [53] Closset B M. International Molten Aluminum Processing Conference, California USA, 1986(2): 17-18
    [54] Apelian D, Sigworth G K, Whaler K R. AFS Trans. 1984, 92: 297-307
    [55] Charbonnier J. AFS Trans. 1984, 92: 907-922
    [56] Lewis C, International Molten Aluminum Processing Conference, California USA, 1986(2): 17-18
    [57] 郝启堂,陈洪升,许庆彦等.铝硅合金热分析的国内外发展现状.特种铸造及有色合金,1994,(6):37—39
    [58] 周尚祥,华勤,闫永生.热分析系统及其在铝硅合金变质效果上的应用研究.上海大学学报(自然科学版),20069(3):225—228
    [59] 闫永生,华勤.热分析在铸造检测与控制技术上的应用[J].热加工工艺,2002,146(1):41-45.
    [60] 王强,李言祥.热分析在Al-Si合金熔体细化及变质效果测评方面的应用.材料科学与工艺,2001,(9)2:215-218
    [61] TALAAT E B, HASSE F. Solidification mechanism of unmodified and strontium modified Al-Si alloy. Materials Transactions, 2000, 41: 507-513.
    [62] 陈忠伟,王晓颖,张瑞杰等.冷却速率对A357合金凝固组织的影响.铸造,2004,53,3:183-186
    [63] 何志,张瑞杰,介万奇.冷却速率对Al-Si-Mg三元合金凝固过程的影响.铸造,2005,54,2:187-189
    [64] Fei W D, Kang S B. Effects of cooling rate on solidification process in Al—Mg—Si alloy. Journal of Materials Science Letters, 1995, 14: 1795—1797
    [65] Dutta B, Rettenmayr M. Effect of cooling rate on the solidification behavior of Al—Fe—Si alloys. Materials Science and Engineering A, 2000, 283: 218—224
    [66] Wang Q G, Davidson C J. Solidification and precipitation of Al—Si—Mg casting alloys. Journal of Materials Science, 2001, 36: 739—750
    [67] 林柏年,魏尊杰.金属热态成形传输原理.哈尔滨:哈尔滨工业大学出版社,2000
    [68] 陈平昌,朱六妹,李赞.材料成形原理.北京:机械工业出版社,2001
    [69] 刘全坤.材料成形基本原理.北京:机械工业出版社,2004
    [70] Kori S A, Murty B S, Chakraborty M. Development of an Efficient Grain Refiner for Al—7Si alloy and its Modification with Strontium. Materials Science and Engineering A, 2000, 283: 94-104
    [71] Dimayuga F C. Modification of Aluminium-Silicon Alloys Using Sr, Na and Sb. Proceeding of the 2nd AFS International Conference on Molten Alumnium Procssing, 1989.
    [72] 曹丽云,刘兴江,杨晓平等.冷却速度对共晶铝硅合金凝固组织形态的影响.辽宁工学院学报,2001,21(4):
    [73] 秦国友.定量金相.四川:四川科学技术出版社 1987
    [74] 王琦.铸造针孔和钠变质对铸铝合金组织和性能的影响.理化检验—物理分册,2004,40(9):443—444
    [75] Q. Chen, C. Ravindran. Effects of Hydrogen Content and Solidification Time on Porosity Formation in LFCs of A356 Alloy—A Semi-Empirical Model. American foundry society Transaction, 2000, 108: 297—311
    [76] 孙新明,莫锦秋,俞启荣.图像处理技术在铝合金锭气缩孔检测中的应用.铸造技术,2003, 24(3):197—198
    [77] 时胜利,刘金利,时惠英.铝合金针孔度的预测.铸造技术 1996,(1):28—31
    [78] 孙小华,骆宇时,秦东升.相体积分数的计算机图像识别测定法研究.理化检验—物理分册,2003,38(12):545—547
    [79] G. Boudreault, A. M. Samuel, F. H. Samuel. Microstructure Observations of Porosity in A319 Alloy: Effect of Mold Type/Cooling Rate. American foundry society Transaction, 1999: 207-215
    [80] J. E. Gruzleski: American foundry society Transaction. 1992, 100: 673-683
    [81] 蔡惠民,梁济.冷却过程中共晶组织的形成和演变.热加工工艺,1994,(5):21—23.
    [82] M. D. Dighe, X. G. Jiang, A. Tewari, A. S. B. Rahardjo. Quantitative Microstructural Analysis of Microporosity in Cast A356 Aluminum Alloy. AFS Transactions, 1998: 181-189
    [83] 耿浩然.Na、Sr、Sb、P对铝硅合金致密性的作用.特种铸造及有色合金,1996,3:1-4
    [84] 苏勇.Sb变质与时效处理对ZL101合金机械性能的影响.机械工程师,1997,(3):5,11
    [85] 张良明.枝晶α在Al-Si铸造合金中的作用.特种铸造及有色合金,2002,(2):45-47.
    [86] H. jiang. Recent Advances in Automated Evaluation and On -Line Prediction of Al-Si Eutectic Modification Leavel. AFS Transactions, 2000, 23: 505-510.
    [87] Barlow J O. Computer-aided curve analysis revisited. AFS Transactions, 1997, 107: 349-354
    [88] ChenIG. Computer-aided differentral thermal analysis of spheroided and compacted graphitecas tirons. AFS Transactions, 1984, 92: 947-951.
    [89] ANANTHANARAYANANL, SAMUEL F H, GRUZLESKO J E. Thermal analysisi studies on the effect of cooling rate on the microstructure of 319 aluminum alloy. AFS Transaction, 1992, 100: 383—391.
    [90] 张明奇.热分析技术在金属材料研究中的应用.材料开发与应用,1994.9(6):36—40
    [91] 张均艳.DSC测量中基线的准确确定.特种铸造及有色合金,2005,25(4):276-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700