用户名: 密码: 验证码:
浅埋暗挖法修建水下小净距软岩隧道的力学行为和关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
穿越城市江河的水下隧道若采用“浅埋+小净距”的形式,既易于满足坡度设置的要求,又便于连接两岸的既有道路和节约用地,有着广阔的应用前景,但目前我国用浅埋暗挖法修建的水下小净距交通隧道还很少。本文以长沙市浏阳河公路隧道为工程背景,通过现场测试、室内试验、解析计算和数值模拟,研究浅埋暗挖法修建水下小净距软岩隧道的力学行为和关键技术。主要工作和成果如下:
     (1)在施工现场详细记录了工作面的推进情况、掌子面的围岩状况和隧道的渗水情况,获取了丰富的第一手资料以利于阐述问题和验证研究结果。
     (2)开展了深入细致的现场测试与分析:自制了土压力盒安装器,给出了详细的测试元件埋设方法和保护措施;分析了河道水位、地表沉降、初衬的拱顶沉降和水平收敛、初衬背后的水压力、围岩与初衬间的接触压力、锚杆轴力、型钢拱架应力、二衬混凝土应力等测试指标的变化特点;分析了开挖下台阶、全环封闭初衬、挖掉仰拱初衬上的临时填土、灌注仰拱二衬混凝土、灌注拱墙二衬混凝土、移走二衬台车等施工环节对衬护力学性态的影响;分析了地下水渗流路径在施工过程中的变化情况;总结了水下双洞并行施工相互影响力学行为的特点。根据现场测试结果,认为可以采用“折减系数法”计算施作二衬以前的初衬背后水压力,提出了折减系数的确定方法。
     (3)针对浏阳河隧道采用台阶法施工,在下台阶开挖后未必能及时施作初期支护的情况,推导出了“上半断面存在支护力、下半断面无支护力”、河水水位上升情况下的水下浅埋隧道围岩附加应力的计算表达式。
     (4)通过建立考虑渗流的数值模型,计算分析了水下浅埋暗挖小净距并行双洞的河床沉降、初衬拱顶沉降、初衬主应力和水压力等,分析了河水水位变化对双洞初衬拱顶沉降的影响。对比分析了数值模拟结果和现场测试结果。
     (5)研究了水下浅埋暗挖强风化砾岩隧道超前加固技术及相关理论问题:介绍了联合超前支护技术方案,讨论了止浆岩柱和孔口管存在的问题;对比分析了TSP超前地质探测结果和施作联合超前支护后开挖揭露的实际围岩状况;分析了注浆浆液在强风化砾岩中的作用机制,分析了联合超前支护作用下围岩横向承载拱的形成机制;通过室内试验,对比分析了三种浆液和强风化砾岩的力学性质、施作联合超前支护前后的岩样波速;给出了联合超前支护作用下的上台阶爆破技术方案;通过现场测试和数值模拟,分析了拱部锚杆在应用联合超前支护后的功效;考虑渗流的影响,对比分析了无任何超前支护措施、只有全断面超前预注浆、联合超前支护三种情况下初衬的受力变形,并结合现场测试结果,分析了联合超前支护对初衬受力性状的影响;研究了应用联合超前支护后拱墙二衬的合理施作时机。
     (6)研究了水下浅埋暗挖小净距隧道贯通技术及相关理论问题:针对浏阳河隧道相向施工、双线四洞将在河底两两贯通的情况,建立考虑渗流影响的三维数值模型,计算分析贯通处两侧初衬的拱顶沉降、先到达贯通处的初衬的应力、先到达贯通处的洞室的掌子面纵向位移、贯通处岩柱的应力、贯通区域的河床沉降和中夹岩的竖向应力等,揭示了围岩和初衬在贯通过程中的力学特征,给出相应的贯通技术措施,现场观察和现场实测均表明贯通效果较好,证明了计算结果的参考价值。
     (7)研究了水下浅埋暗挖隧道二衬防水技术及相关理论问题:通过在施工期间和运营期间的长期现场调查,分析了仰拱防水板的作用机制和“全包全封闭”二衬防水技术的应用效果;计算了防水型二衬在隧道长期运营后所受的水压力和土压力;通过计算对比,揭示了施工期间不处理隧底虚渣对长期运营后防水型二衬受力性状的恶化效应,并提出了相应的工程措施。
The shallow embedded underwater traffic tunnels with small spacing have wide application prospect in crossing the river in the city, because they can accord with the setting slope easily, link the existing roads on the banks conveniently and save land significantly, but they are seldom built by the shallow mining method in our country. Taking the Liuyanghe highway tunnel in Changsha as project background, the construction mechanical behaviors and key technologies of the underwater soft rock tunnels with small spacing by the shallow mining method were researched by field test, indoor test, analytical calculation and numerical simulation. Following are research process and main achievements:
     (1)At the construction site, the real-time positions of the working faces, the surrounding rock condition of the driving faces and the situation of water leakage were recorded in detail as the firsthand informations, which was helpful to describe the problems and verify the research results.
     (2)The instrument for fixing the earth pressure cell was designed. The installing methods and the protection measures of the testing elements were given in detail. The changing characteristics of the testing indexes were analysed, including water level, ground surface settlement, crown settlement, convergence, water pressure behind initial lining, contact pressure between surrounding rock and initial lining, axial force of anchor, stress of section steel frame and secondary lining. The construction links effects on the lining mechanics character were studied, including excavating the lower bench, closing the initial lining layer, digging out the temporary fill on the initial lining, moving the lining trolley, constructing the invert secondary lining and the arch wall secondary lining. The change of the ground water seepage path during the period of construction was analysed. The mechanics characteristics of the constructing interaction of the underwater twin caves were studied. According to the result of the field test, before constructing the secondary lining, the water pressure behind the initial lining could be calculated by the discount coefficient method, and the determination method of the discount coefficient was put forward.
     (3)The bench cut method was used in the Liuyanghe tunnel, when the primary support constructing was delayed after excavating the lower bench, the supporting force existed only on the upper semi-section, and unluckily, the river water level was increased at the same time. According to this situation, the calculation expression of the surrounding rock additional stress of the shallow underwater tunnel was obtained by the formula derivation.
     (4)By using the seepage numerical model of the underwater twin caves with small spacing by the shallow mining method, riverbed settlement, water pressure, crown settlement and principal stress of initial lining were calculated and analysed, the effect of the change of the water level on crown settlement of initial lining was studied also. The comparative analysis was carried out between the numerical simulation results and the field test results.
     (5)The combined advanced support technology scheme was given and applied in the strong weathering conglomerate underwater tunnel by the shallow mining method. The problems about the preventing-grout wall and the borehole orifice-pipe were discussed. The surrounding rock conditions obtained by TSP advanced geological exploration and observing after constructing the combined advanced support and excavating were compared to each other. The action mechanism of the slurry into the strong weathering conglomerate was analysed, and the forming mechanism of the surrounding rock lateral load-bearing arch under the action of the combined advanced support was studied. By the indoor test, the comparative analysis on the mechanical property was carried out among the three kinds of the slurries and the strong weathering conglomerate, and the rock sample velocity under the action of the combined advanced support was studied. The technical scheme of the blasting excavation of the upper bench was determined considering the action of the combined advanced support. By the field test and the numerical simulation, the efficacy of the arch anchor bolt under the action of the combined advanced support was studied and the related design scheme was optimized. Considering the effect of seepage, the comparative analysis on the mechanics character of the initial lining was carried out among no applying the advanced support, applying the full-sectional grouting only and the combined advanced support, the effect of the combined advanced support on the mechanics character of the initial lining was studied also by the field test. The proper construction time of the arch wall secondary lining was determined considering the action of the combined advanced support.
     (6)The Liuyanghe tunnel included two lines and four caves, they would transfix respectively under the river. According to the condition, the three-dimensional numerical model considering seepage was established. By analysing crown settlement and principal stress of initial lining, longitudinal displacement and principal stress of surrounding rock, riverbed settlement and vertical stress of interlaid rock in the transfixion zone, the mechanics characters of the surrounding rock and the initial lining during transfixion were revealed, and the corresponding transfixion scheme and measures were put forward and applied in practice. The field survey and test showed that the transfixion effect was good, which proved that the numerical simulation results had reference value.
     (7)By the longtime field investigation during the period of construction and operation, the action mechanism of the invert waterproof board and the application effect of the whole enwraped and closed waterproof technology were analysed. The water pressure and the earth pressure of the waterproof secondary lining after the longtime operation were calculated. The integral invert secondary lining was applied in the soft rock underwater tunnel by the shallow mining method, sometimes the bottom residue was not treated during the period of construction, which would bring a harmful effect on the mechanical performance of the waterproof secondary lining after the longtime operation, the harmful effect was revealed by the comparative calculation, and the corresponding measures were put forward.
引文
[1]张顶立,孙锋,李鹏飞.海底隧道复合注浆机制研究及工程应用[J].岩石力学与工程学报,2012,31(3):445-451.
    [2]ARILD PALMSTROM. The challenge of subsea tunneling[J]. Tunnelling and Underground Space Technology,1994,9(2):145-150.
    [3]HONG SHIANG LIU, KEH JIAN SHOU, PING CHENG HOU, et al. Design and construction of river crossing tunnel beneath Tachia River, Taiwan[J]. Tunnelling and Underground Space Technology,2010,25(5):638-650.
    [4]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513-1521.
    [5]王梦恕.水下交通隧道发展现状与技术难题--兼论“台湾海峡海底铁路隧道建设方案”[J].岩石力学与工程学报,2008,27(11):2161-2172.
    [6]EXADAKTYLOS G E, STAVROPOULOU M C,A closed-form elastic solution for stresses and displacements around tunnels[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(7):905-916.
    [7]EXADAKTYLOS G E, LIOLIOSA P A, STAVROPOULOUB M C.A semi-analytical elastic stress-displacement solution for notched circular openings in rocks[J]. International Journal of Solids and Structures,2003,40(5): 1165-1187.
    [8]STRACK O E, VERRUIJT A. A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(12):1235-1252.
    [9]RAGAPAKSE R K N D, GROSS D. Transient response of an orthotropic elastic medium with a cavity [J]. Wave Motion,1995(21):231-252.
    [10]PARK K H. Elastic solution for tunneling-induced ground movements in clays [J]. International Journal of Geomechanics,2004,4(4):310-318.
    [11]ASHRAF S. Stability of unlined twin tunnels in undrained clay[J]. Tunnelling and Underground Space Technology,2010,25(3):290-296.
    [12]JEFFERY G B. Plane stress and plane strain in bipolar co-ordinates. Transactions of the Royal Society[M], London, England,1920:50-55.
    [13]MINDLIN RAYMOND D. Stress distribution around a tunnel[M]. ASCE, 1940:80-86.
    [14]SEGASETA C. Analysis of undrained soil deformation due toground loss[J]. Geotechnique,1987,37(4):301-326.
    [15]VERRUIJT A, BOOKER J R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Geotechnique,1996,46(4):753-756.
    [16]BOBET ANTONIO. Analytical solution for shallow tunnels in saturated ground [J]. Journal of Engineering Mechanics,2001,127(12):1211-1220.
    [17]童磊.软土浅埋隧道变形、渗流及固结性状研究[D].杭州:浙江大学,2010.
    [18]UKADGAONKER V G. Stress analysis for an orthotropic plate with an irregular shaped hole for different in-plane loading conditions-Part 1[J]. Composite Structures,2005(70):255-274.
    [19]DIMITRIOS KOLYMBAS, PETER WAGNER. Groundwater ingress to tunnels-The exact analytical solution[J]. Tunnelling and Underground Space Technology, 2007,22(26):23-27.
    [20]皇甫明,谭忠盛,王梦恕,等.暗挖海底隧道渗流量的解析解及其应用[J].中国工程科学,2009,11(7):66-70.
    [21]童磊,谢康和,卢萌盟,等.半无限含水层中带衬砌隧洞渗流解析研究[J].岩土力学,2011,32(1):304-308.
    [22]杜朝伟,王梦恕,谭忠盛.水下隧道渗流场解析解及其应用[J].岩石力学与工程学报,2011,30(增2):3567-3573.
    [23]吴金刚,谭忠盛,皇甫明.高水压隧道渗流场分布的复变函数解析解[J].铁道工程学报,2010(9):31-34.
    [24]路可见.平面弹性复变方法[M].武汉:武汉大学出版社,1986:1-5.
    [25]陈子荫.围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994:35-40.
    [26]吕爱钟,张路青.地下隧洞力学分析的复变函数方法[M].北京:科学出版社,2007:1-7.
    [27JUKADGAONKER V G, RAO D K N. Stress distribution around triangular holes in anisotropic plates[J]. Composite Structures,1999(45):171-183.
    [28]EXADAKTYLOS G E, STAVROPOULOU M C.A closed-form elastic solution for stresses and displacements around tunnels[J]. International Journal of Rock Mechanics&Mining Sciences,2002(39):905-916.
    [29]蔡晓鸿,蔡勇斌,蔡勇平,等.二向不等围压和内压作用下椭圆形洞室的计算[J].地下空间与工程学报,2008,4(3):453-459.
    [30]王明斌,李术才,蔚立元,等.热力响应下衬砌隧道附加应力场的敏感性分析[J].山东大学学报(工学版),2009,39(4):130-139.
    [31]张志增,李仲奎,许梦国.横观各向同性岩体中任意形状巷道的位移解析解 [J].矿业研究与开发,2010,30(3):24-29.
    [32]王振武、牛铮铮、冯秀苓.地下矩形洞室应力分布的复变函数解[J].北华航天工业学院学报,2010,20(4):1-6.
    [33]佘远国,沈成武.隧洞工程弹性参数反演的可辨识性及量测优化布置探讨[J].岩土力学,2010,31(11):3604-3612.
    [34]李东升,严超华.二向不等围压和线性内压下椭圆形水工洞室的应力计算[J].路基工程,2011(2):118-122.
    [35]皇甫鹏鹏,伍法权,郭松峰,等.基于边界点搜索的洞室外域映射函数求解法[J].岩土力学,2011,32(5):1418-1424.
    [36]VERRUIJT A. A complex variable solution for a deforming circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1997,21(2):77-89.
    [37]VERRUIJT A. Deformations of an elastic half plane with a circular cavity [J]. International Journal of Solids Structures,1998,35(21):2795-2804.
    [38]陆文超,仲政,王旭.浅埋隧道围岩应力场的解析解[J].力学季刊,2003,24(1):50-54.
    [39]王桂林.岩石洞室地基稳定性研究[D].重庆:重庆大学,2004.
    [40]王立忠,吕学金.复变函数分析盾构隧道施工引起的地基变形[J].岩土工程学报,2007,29(3):319-327.
    [41]江学良.岩石地下洞室与边坡的相互影响研究[D].长沙:中南大学,2008.
    [42]贾瑞华.隧道施工对不同基础类型桥梁的影响评价及工程应用[D].长沙:中南大学,2009.
    [43]童磊,谢康和,卢萌盟,等.盾构任意衬砌变形边界条件下复变函数弹性解[J].浙江大学学报(工学版),2010,44(9):1825-1830.
    [44]王志良,申林方,姚激,等.浅埋隧道围岩应力场的计算复变函数求解法[J].岩土力学,2010,31(增刊1):86-90.
    [45]蔚立元.水下隧道围岩稳定性研究及其覆盖层厚度确定[D].济南:山东大学,2010.
    [46]赵龙宾.圆形偏压隧道应力场的弹性解析[D].长沙:湖南大学,2010.
    [47]LEE IN MO, SEOK WOO NAM. Effect of tunnel advance rate on seepage forces acting on the underwater tunnel face[J]. Tunnelling and Underground Space Technology,2004,19(3):273-281.
    [48]LEE IN MO, LEE JAE SUNG, NAM SEOK WOO. Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting[J]. Tunnelling and Underground Space Technology,2004,14(4):551-565.
    [49]YOUNG JIN SHIN, KI ILSONG, LEE IN MO, et al. Interaction between tunnel supports and ground convergence-Consideration of seepage forces[J]. International Journal of Rock Mechanics & Mining Sciences,2011, 48(3):394-405.
    [50]YOUNG JIN SHIN, BYOUNG MIN KIM, JONG HO SHIN, et al. The ground reaction curve of underwater tunnels considering seepage forces[J]. Tunnelling and Underground Space Technology,2010,25(4):315-324.
    [51]何川、谢红强.多场耦合分析在隧道工程中的应用[M].成都:西南交通大学出版社,2007:66-73.
    [52]李术才,李廷春,陈卫忠,等.厦门海底隧道最小顶板厚度三维弹塑性断裂损伤研究[J].岩石力学与工程学报,2004,23(18):3138-3143.
    [53]齐明山,陈明波,冯翠霞.厦门海底隧道围岩-支护系统相互作用时效数值分析[J],建筑科学,2006,22(5):29-33.
    [54]NAM T S, JOO E J, CHOI G C, et al. Hydraulic lining-ground interaction of subsea tunnels [J]. Chinese Journal of Rock Mechanics and Engineering,2007, 26(S2):3674-3681.
    [55]王在泉,王建新,郑颖人,等.局部破碎带渗水条件下海底隧道稳定性的有限元极限分析[J].岩石力学与工程学报,2007,26(增2):3751-3755.
    [56]黄明琦.软弱地层大断面(厦门)海底隧道施工稳定性控制研究[D].泰安:山东科技大学,2008.
    [57]张明聚,张斌,黄明琦,等.厦门翔安隧道穿越风化深槽施工效应及技术措施[J].北京工业大学学报,2008,34(2):155-158.
    [58]陈卫忠,于洪丹,郭小红,等.厦门海底隧道海域风化槽段围岩稳定性研究[J].岩石力学与工程学报,2008,27(5):873-884.
    [59]旷文涛,漆泰岳,李斌,等.新意法在浅埋大断面隧道施工中的应用研究[J].公路隧道,2009(2):5-9.
    [60]于洪丹,陈卫忠,郭小红,等.潮汐对跨海峡隧道衬砌稳定性影响研究[J].岩石力学与工程学报,2009,28(增1):2905-2914.
    [61]蔚立元,李术才,徐帮树.舟山灌门水道海底隧道钻爆法施工稳定性分析[J].岩土力学,2009,30(11):3453-3459.
    [62]靳晓光,李晓红,张燕琼.越江隧道施工过程的渗流-应力耦合分析[J].水文地质工程地质,2010,37(1):62-67.
    [63]王明年,李海军,周国军.海底隧道钢拱架锈蚀对支护体系安全性的影响[J]. 西南交通大学学报,2010,45(1):39-44.
    [64]李鹏飞,张顶立,李兵,等.海底隧道施工过程中围岩稳定性的流固耦合分析[J].中国铁道科学,2010,31(3):35-41.
    [65]孙锋.海底隧道风化槽复合注浆堵水关键技术研究[D].北京:北京交通大学,2010.
    [66]李冬生.矿山法水底隧道渗流力学特征及分区防排水研究[D].成都:西南交通大学,2010.
    [67]张聚文.水下浅埋暗挖隧道的覆盖层安全厚度研究及开挖工序模拟[D].长沙:中南大学,2010.
    [68]张志强,师晓权,何川.基于流固耦合的水底隧道仰拱受力分析与优化[J].铁道学报,2011,33(1):108-113.
    [69]张志强,李化云,何川.基于流固耦合的水底隧道全断面注浆力学分析[J].铁道学报,2011,33(2):86-90.
    [70]郭小红.厦门翔安海底隧道风化槽衬砌结构稳定性研究[D].北京:北京交通大学,2011.
    [71]孙闯,林增华,王晨.高水压越江隧道联接通道渗流应力耦合分析[J].长江科学院院报,2011,28(11):57-61.
    [72]HAUKUR INGASON, YING ZHEN LI. Model scale tunnel fire tests with longitudinal ventilation[J]. Fire Safety Journal,2010(45):371-384.
    [73]仇培云,岳丰田,杨国祥,等.上海市大连路越江隧道联络通道冻结施工模拟试验研究[J].岩土工程界,2004,8(3):32-33.
    [74]周乐凡,梅志荣,陈礼伟.考虑水荷载作用的铁路隧道衬砌结构设计[J].中国铁道科学,2005,26(6):98-101.
    [75]丁浩,蒋树屏,陈林杰.公路隧道外水压力的相似模型试验研究[J].公路交通科技,2008,25(10):99-104.
    [76]梁巍.海底隧道衬砌结构设计[J].岩石力学与工程学报,2007,26(增2):3835-3840.
    [77]陈炜韬,王明年,张磊,等.预加固措施对隧道开挖稳定性的影响研究[J].岩石力学与工程学报,2009,28(8):1640-1645.
    [78]李鹏飞.海底隧道围岩稳定性分析与控制研究[D].北京:北京交通大学,2011.
    [79]杜朝伟.海底隧道衬砌水压力及结构受力特征研究[D].北京:北京交通大学,2011.
    [80]旷文涛,漆泰岳,周捷,等.新意法在浏阳河隧道施工中的应用[J].公路隧 道,2010(1):18-21.
    [81]李树忱,冯现大,李术才,等.新型固流耦合相似材料的研制及其应用[J].岩石力学与工程学报,2010,29(2):281-288.
    [82]蔚立元,李术才,徐帮树,等.水下隧道流固耦合模型试验与数值分析[J].岩石力学与工程学报,2011,30(7):1467-1474.
    [83]张杰,林海飞.流固耦合相似材料模拟实验及技术[J].辽宁工程技术大学学报(自然科学版),2011,30(3):1-3.
    [84]韩涛,杨维好,杨志江,等.多孔介质固液耦合相似材料的研制[J].岩土力学,2011,32(5):1411-1417.
    [85]莫阳春.隧道底部隐伏空腔充水对二次衬砌内力影响研究[J].水文地质工程地质,2011,38(5):31-37.
    [86]王星华,章敏,王随新.考虑渗流及软化的海底隧道围岩弹塑性分析[J].岩土力学,2009,30(11):3267-3272.
    [87]NILSEN B. Cases of instability caused by weakness zones in Norwegian tunnels[J]. Bulletin of Engineering Geology and the Environment, 2011,70(1):7-13.
    [88]JEBELLI J, MEGUED M A, SEDGHENEJAD M K. Excavation failure during micro-tunneling in fine sands:A case study [J]. Tunnelling and Underground Space Technology,2010,25(6):811-818.
    [89]ALAN N. Tunnel safety, risk assessment and decision-making[J]. Tunnelling and Underground Space Technology,2010,25(1):91-94.
    [90]WRIGHT P. Assessment of London underground tube tunnels investigation, monitoring and analysis [J]. Smart Structures and Systems,2010,6(3):239-262.
    [91]BARBOSA BARBOSA, ZAFRIR H, MALIK U, et al. Multiyear to daily radon variability from continuous monitoring at the Amram tunnel, southern Israel [J]. Geophysical Journal International,2010,182(2):829-842.
    [92]MAK K L, HUNG W T. Developing air pollutant profiles using routine monitoring data in road tunnels [J]. Transport and Environment,2008,13(6): 404-411.
    [93]张顶立.海底隧道不良地质体及结构界面的变形控制技术[J].岩石力学与工程学报,2007,26(11):2161-2169.
    [94]张建斌.厦门翔安海底隧道陆域段CRD法位移监测分析[J].岩石力学与工程学报,2007,26(增2):3653-3658.
    [95]梁巍,黄明利.大跨度隧道CRD法穿越含水软弱层沉降变形控制[J].岩石力 学与工程学报,2007,26(增2):3738-3742.
    [96]王明年,路军富,刘大刚,等.大断面海底隧道CRD法绝对位移控制基准建立及应用研究[J].岩土力学,2010,31(10):3354-3360.
    [97]王明年,路军富,张建国,等.大断面海底隧道施工安全判定基准及应用[J].岩土工程学报,2010,32(6):867-873.
    [98]路军富,王明年.大断面海底隧道二次衬砌结构安全性评价[J].现代隧道技术,2008(增):125-128.
    [99]郭春,俞尚宇,王明年.CRD法开挖对海底隧道结构内力及安全系数影响[J].水文地质工程地质,2009,36(1):75-79.
    [100]杜朝伟,王梦恕,谭忠盛.厦门海底隧道堵水限排安全监测及分析[J].中国工程科学,2011,13(3):86-91.
    [101]安永林.结合邻近结构物变形控制的隧道施工风险评估研究[D].长沙:中南大学,2009.
    [102]傅鹤林,黄陵武,欧阳刚杰.浏阳河隧道爆破振动测试[J].采矿技术,2009,9(6):90-91.
    [103]刘新宇,侯学渊.平行圆形隧道的应力分析[J].同济大学学报,1985(3):15-27.
    [104]张路青,杨志法,吕爱钟.两平行的任意形状洞室围岩位移场解析法研究及其在位移反分析中的应用[J].岩石力学与工程学报,2000,19(5):584-589.
    [105]ZHANG L Q, YUE Z Q, LEE C F, et al. Stress solution of multiple elliptic hole problem in plane elasticity[J]. Journal of Engineering Mechanics,2003, 129(12):1394-1407.
    [106]吴张中,徐光黎,吴立,等.超大断面隧道侧向扩挖施工围岩力学特征研究[J].岩土工程学报,2009,31(2):172-177.
    [107]彭念.原位扩建隧道围岩力学响应机理研究[D].重庆:重庆大学,2010.
    [108]郭子红.地下立交近接隧道稳定性的理论分析与模拟研究[D].重庆:重庆大学,2010.
    [109]晏莉.并行隧道施工相互影响分析及应用研究[D].长沙:中南大学,2008.
    [110]晏莉,阳军生,刘宝琛.浅埋双孔平行隧道开挖围岩应力和位移分析[J].岩土工程学报,201],33(3):413-419.
    [111]张顶锋,杜守继.盾构隧道并行施工对既有隧道影响的理论分析[J].力学季刊,2010,31(4):582-589.
    [112]陈鹏,杨小礼,黄阜.浅埋三孔隧道围岩位移场解析解研究[J].铁道科学与工程学报,2011,8(1):87-90.
    [113]SOLIMAN E, DUDDECK H, AHRENS H. Two and three dimensional analysis of closely space double-tube tunnels[J]. Tunneling and Underground Space Technology,1993,8(1):13-18.
    [114]胡元芳.小线间距城市双线隧道围岩稳定性分析[J].岩石力学与工程学报,2002,21(9):1335-1338.
    [115]仇文革.地下工程近接施工力学原理与对策的研究[D].成都:西南交通大学,2003.
    [116]HEFNY A M, CHUA H C, ZHAO J. Parametric studies on the interaction between existing and new bored tunnels [J]. Tunnelling and Underground Space Technology,2004,19(4):471-472.
    [117]NG C W W, LEE K M, TANG D K W. Three-dimensional numerical investigations of new Austrian tunnelling method (NATM) twin tunnel interactions [J]. Canadian Geotechnical Journal,2004,41(3):523-539.
    [118]刘伟.小净距公路隧道净距优化研究[D].上海:同济大学,2004.
    [119]晏启祥,何川,姚勇.软岩隧道施工特性及其动态力学行为研究[J].岩石力学与工程学报,2006,25(3):572-577.
    [120]吴波,高波,索晓明,等.城市地铁小间距隧道施工性态的力学模拟与分析[J].中国公路学报,2005,18(3):84-89.
    [121]靳晓光,刘伟,郑学贵,等.小净距偏压公路隧道开挖顺序优化[J].公路交通科技,2005,22(8):61-64.
    [122]李云鹏,王芝银,韩常领,等.不同围岩类别小间距隧道施工过程模拟研究[J].岩土力学,2006,27(1):12-16.
    [123]张永兴,胡居义,何青云,等.基于强度折减法小净距隧道合理净距的研究[J].水文地质工程地质,2006(3):64-67.
    [124]胡建明,张永兴.小净距公路隧道施工相互作用的有限元分析[J].重庆建筑大学学报,2006,28(6):68-71.
    [125]杜菊红,黄宏伟.偏压小间距公路隧道施工的三维数值模拟[J].岩土力学,2007,28(增刊):531-535.
    [126]杜菊红,黄宏伟.偏压、错台小间距隧道施工位移场动态模拟分析[J].岩土力学,2009,30(4):1102-1108.
    [127]姚勇,何川,谢卓雄.双线小净距隧道中岩墙力学特征及加固措施研究[J].岩土力学,2007,28(9):1883-1888.
    [128]姚勇,何川.并设小净距隧道爆破振动响应分析及控爆措施研究[J].岩土力学,2009,30(9):2815-2822.
    [129]杨小礼,眭志荣.浅埋小净距偏压隧道施工工序的数值分析[J].中南大学学报(自然科学版),2007,38(4):764-770.
    [130]MURAT KARAKUS, AYDRN OZSAN, HAKAN BASARIR. Finite element analysis for the twin metro tunnel constructed in Ankara Clay, Turkey[J]. Bulletin of Engineering Geology and the Environment,2007,66(1):71-79.
    [131]CHEHADE F HAGE, SHAHROUR I. Numerical analysis of the interaction between twin-tunnels:Influence of the relative position and construction procedure[J]. Tunnelling and Underground Space Technology,2008,23(2): 210-214.
    [132]杨建平,陈卫忠,郭小红.小净距公路隧道支护时机对围岩稳定性影响研究[J].岩土力学,2008,29(2):483-490.
    [133]汤劲松,刘松玉,童立元.高速公路大跨隧道最小安全净距研究[J].土木工程学报,2008,41(12):79-84.
    [134]彭从文,朱向荣,王金昌.基于三维有限元模型的小净距隧道施工力学分析[J].公路交通科技,2008,25(12):138-145.
    [135]李之达,张琼武,黄强,等.小净距公路隧道仰拱设置的研究[J].湘潭大学自然科学学报,2009,31(2):51-56.
    [136]晏莉,阳军生,张学民,等.水平互层岩体并行隧道中间岩柱稳定分析[J].岩石力学与工程学报,2009,第28卷(增1):2898-2904.
    [137]徐林生.小净距公路隧道施工力学效应研究[J].重庆交通大学学报(自然科学版),2009,28(4):685-688.
    [138]龚建伍,夏才初,朱合华,等.鹤上大断面小净距隧道施工方案优化分析[J].岩土力学,2009,30(1):236-240.
    [139]龚建伍,雷学文.大断面小净距隧道围岩稳定性数值分析[J].岩土力学,2010,31(增2):412-417.
    [140]陶振东.黄土地区非对称小间距及偏连拱隧道施工力学理论研究[D].成都:西南交通大学,2010.
    [141]王辉,陈卫忠,陈培帅,等.浅埋大跨小净距隧道断面形态及合理间距的优化研究[J].岩土力学,2011,32(增2):641-646.
    [142]王更峰,熊晓晖,张永兴,等.大跨小净距隧道合理开挖方法与支护参数对比研究[J].公路交通科技,2011,28(3):101-107.
    [143]王更峰,张永兴,熊晓晖,等.偏压错台大跨隧道最小安全净距及围岩稳定性分析[J].工业建筑,2011,41(2):39-44.
    [144]孔祥兴,夏才初,仇玉良,等.平行小净距盾构与CRD法黄土地铁隧道施工 力学研究[J].岩土力学,2011,32(2):516-524.
    [145]唐明明,王芝银,李云鹏.穿越公路偏压小净距隧道施工方法探讨[J].岩土力学,2011,32(4):1163-1168.
    [146]王明年,李志业,关宝树.3孔小间距浅埋暗挖隧道地表沉降控制技术研究[J].岩土力学,2002,23(6):821-824.
    [147]刘伟.小净距公路隧道净距优化研究[D].上海:同济大学,2004.
    [148]LEE C J,WU B R, CHEN H T, et al. Tunnel stability and arching effects during tunneling in soft clayey soil[J]. Tunnelling and Underground Space Technology,2006,21(2):119-132.
    [149]黄伦海,刘伟,蒋树屏.小净距公路隧道模型试验研究[J].公路隧道,2007(4):21-25.
    [150]姚勇,何川,田志宇.紫坪埔隧道小净距段施工方案模型试验研究[J].现代隧道技术,2007,44(5):1-6.
    [151]张辉,张子新,黄宏伟,等.偏压错台小净距隧道力学性态相似模型试验[J].同济大学学报(自然科学版),2009,37(2):169-175.
    [152]姜汶泉,杨其新,杨龙伟,等.小净距隧道合理净距的模型试验研究[J].公路交通科技(应用技术版),2009(8):181-184.
    [153]刘新荣,郭子红,王吉明,等.交错新建隧道施工力学特性模型试验[J].重庆大学学报,2010,33(12):54-59.
    [154]蔚立元,李术才,郭小红,等.分岔隧道过渡段稳定性研究[J].中国公路学报,2011,24(1):89-95.
    [155]LO K W, CHONG L K, LEUNG L F, et al. Field instrumentation of a multiple tunnels interaction Problem[J]. Tunnels and Tunneling,1998(18):4-16.
    [156]BROX D, HAGEDORN H. Extreme deformation and damage during the construction of large tunnels[J]. Tunneling and Underground Space Technology, 1999,14(1):23-28.
    [157]刘艳青,钟世航,卢汝绥,等.小净距并行隧道力学状态的试验研究[J].岩石力学与工程学报,2000,19(5):590-594.
    [158]TAKESHI ASANOA, MOTOTSUGU ISHIHARAB, YASUAKI KIYOTAB, et al. An observational excavation control method for adjacent mountain Tunnels[J]. Tunnelling and Underground Space Technology,2003(18):291-301.
    [159]李利平,李术才,张庆松,等.小间距隧道施工性态监测与稳定性分析[J].岩土力学,2006,27(增刊):333-338.
    [160]王者超,李术才,陈卫忠.分岔隧道变形监测与施工对策研究[J].岩土力学, 2007,28(4):785-789.
    [161]夏才初,龚建伍,唐颖,等。大断面小净距公路隧道现场监测分析研究[J].岩石力学与工程学报,2007,26(1):44-50.
    [162]杜菊红.小间距隧道动态施工力学研究[D].上海:同济大学,2008.
    [163]徐林生.莲花隧道进口小净距段新奥法施工跟踪监测研究[J].公路,2009(11):241-244.
    [164]余新贵.监控量测技术在小净距隧道出口段中的应用[J].公路,2010(8):235-239,
    [165]杨会军,刘虹阳.浅埋暗挖小净距隧道应力集中现象分析[J].铁道工程学报,2010(1):42-46.
    [166]姚勇,何川,张玲玲.紫坪埔隧道小净距段现场监测试验研究[J].岩石力学与工程学报,2010,第29卷(增1):3295-3300.
    [167]张国华,陈礼彪,钱师雄,等.大断面小净距大帽山隧道现场监控量测及分析[J].岩土力学,2010,31(2):489-496.
    [168]蒋坤,夏才初.双向八车道小净距公路隧道监控量测分析[J].岩石力学与工程学报,2010,29(增2):3755-3761.
    [169]韩同春,郑俊清,朱建才,等.半硬半软岩层小净距隧道洞口段监测分析[J].岩土力学,2010,31(增2):303-307.
    [170]程芳卉.双洞八车道小净距公路隧道间距影响模型试验及现场试验研究[D].成都:西南交通大学,2011.
    [171]张民庆,张文强,孙国庆.注浆效果检查评定技术与应用实例[J].岩石力学与工程学报,2006,25(增2):3909-3918.
    [172]陈铁林,滕红军,张顶立.厦门翔安海底隧道富水砂层注浆试验[J].岩石力学与工程学报,2007,26(增2):3711-3717.
    [173]李治国,孙振川,王小军,等.厦门翔安海底服务隧道F1风化槽注浆堵水技术[J].岩石力学与工程学报,2007,26(S2):3841-3848.
    [174]孙锋.海底隧道风化槽复合注浆堵水关键技术研究[D].北京:北京交通大学,2010.
    [175]王乾,曲立清,郭洪雨,等.青岛胶州湾海底隧道围岩注浆加固技术[J].岩石力学与工程学报,2011,30(4):790-802.
    [176]薛翊国,李术才,苏茂鑫,等.青岛胶州湾海底隧道涌水断层注浆效果综合检验方法研究[J].岩石力学与工程学报,2011,30(7):1382-1388.
    [177]涂鹏,王星华.海底隧道注浆材料强度劣化规律及使用寿命研究[J].水文地质工程地质,2011,38(1):65-68.
    [178]王余富,薛勇,沈艳峰,等.圆砾卵石层的浅埋水底地表注浆试验与分析[J].地下空间与工程学报,2011,7(5):847-852.
    [179]伍振志,傅志锋,王静,等.浅埋松软地层开挖中管棚注浆法的加固机理及效果分析[J].岩石力学与工程学报,2005,24(6):1025-1029.
    [180]周顺华.软弱地层浅埋暗挖施工中管棚法的棚架原理[J].岩石力学与工程学报,2005,24(14):2565-2570.
    [181]董新平,周顺华,胡新朋.软弱地层管棚法施工中管棚作用空间分析[J].岩土工程学报,2006,28(7):841-846.
    [182]苟德明,阳军生,张戈.浅埋暗挖隧道管棚变形监测及受力机制分析[J].岩石力学与工程学报,2007,26(6):1258-1264.
    [183]IBRAHIM OCAK. Control of surface settlements with umbrella arch method in second stage excavations of Istanbul Metro [J]. Tunnelling and Underground Space Technology,2008,23(6):674-681.
    [184]郑俊杰,章荣军,杨庆年.浅埋隧道变基床系数下管棚的力学机制分析[J].岩土工程学报,2009,31(8):1165-1171.
    [185]贾金青,王海涛,涂兵雄,等.管棚力学行为的解析分析与现场测试[J].岩土力学,2010,31(6):1858-1864.
    [186]郭磊.浅埋暗挖水下隧道管棚作用机理及开挖的扰动效应研究[D].长沙:中南大学,2010.
    [187]孔恒.城市地铁隧道浅埋暗挖法地层预加固机理及其应用研究[D].北京:北方交通大学,2003.
    [188]晏启祥,何川,姚勇,等.小净距隧道施工小导管注浆效果的数值模拟分析[J].岩土力学,2004,25(增刊):239-242.
    [189]曾祥国,赵师平,姚安林,等.小净距公路隧道小导管注浆工艺对围岩稳定性影响的有限元分析[J].四川大学学报(工程科学版),2008,40(4):1-6.
    [190]张朋,李晓红,卢义玉,等.小导管注浆技术在浅埋富水岩溶隧道中的应用[J].地下空间与工程学报,2008,4(3):517-522.
    [191]吕康成,崔凌秋.隧道防排水工程指南[M].北京:人民交通出版社,2004:1-7.
    [192]金建伟.厦门翔安海底隧道结构防排水技术研究[D].北京:北京交通大学,2008.
    [193]谭志文.青岛胶州湾海底隧道防排水设计[J].隧道建设,2008,28(1):29-33.
    [194]张成平,张顶立,王梦恕,等.厦门海底隧道防排水系统研究与工程应用[J].中国公路学报,2008,21(3):69-75.
    [195]王秀英,谭忠盛,王梦恕.钻爆法施工的海底隧道结构防排水技术研究[J].中国工程科学,2009,11(7):71-75.
    [196]郭小红,陈卫忠,曹俊杰,等.跨海峡隧道风化槽围岩衬砌防排水技术研究[J].岩石力学与工程学报,2010,29(7):1481-1488.
    [197]谭忠盛,曾超,李健,等.海底隧道支护结构受力特征的模型试验研究[J].土木工程学报,2011,44(11):99-105.
    [198]袁博,周书明.青岛胶州湾海底隧道可维护性排水系统研究[J].地下空间与工程学报,2011,7(2):335-339.
    [199]王梦恕.隧道工程浅埋暗挖法施工要点[J].隧道建设,2006,26(5):1-4.
    [200]JTG D70-2004,公路隧道设计规范[S].北京:人民交通出版社,2004.
    [201]靳晓光,李晓红,张燕琼.越江隧道施工过程的渗流-应力耦合分析[J].水文地质工程地质,2010,37(1):62-67.
    [202]吉小明,王宇会.隧道开挖问题的水力耦合计算分析[J].地下空间与工程学报,2005,1(6):848-852.
    [203]林松清,佘诗刚,黄玲.我国岩土力学与工程类相关期刊的发展现状与展望[J].中国科技期刊研究,2011,22(4):492-497.
    [204]长沙市环境科学研究所.长沙湘江北路浏阳河隧道工程建设项目环境影响[R].长沙:长沙市环境科学研究所,2008.
    [205]冷伍明,魏丽敏.无粘结预应力筏板基础地基反力测试研究[J].岩土工程学报,2000,22(4):456-460.
    [206]冷伍明,律文田,谢维鎏,等.基桩现场静动载试验技术研究[J].岩土工程学报,2004,26(5):619-622.
    [207]李鹏飞,张顶立,赵勇,等.大断面黄土隧道二次衬砌受力特性研究[J].岩石力学与工程学报,2010,29(8):1690-1696.
    [208]林萍,叶冠林,陈楠,等.冻结法施工旁通道的冻土压力现场监测方法[J].岩土力学,2011,32(8):2555-2560.
    [209]杨奇.高速铁路桥梁桩基础变形性状试验与工后沉降研究[D].长沙:中南大学,2011.
    [210]祝云华.骡坪隧道施工监控量测及其成果分析[J].工程勘察,2011,39(7):7-11.
    [211]周丁恒,曹力桥,马永峰,等.四车道特大断面大跨度隧道施工中支护体系力学性态研究[J].岩石力学与工程学报,2010,29(1):140-148.
    [212]谭忠盛,喻渝,王明年,等.大断面黄土隧道中型钢与格栅适应性的对比试验[J].岩土工程学报,2009,31(4):628-633.
    [213]刘明贵,张国华,刘绍波,等.大帽山小净距隧道群中夹岩累计损伤效应研究[J].岩石力学与工程学报,2009,28(7):1363-1369.
    [214]翟进营,杨会军,王莉莉.新意法隧道设计施工概述[J].隧道建设,2008,28(1):46-55.
    [215]OB ATA TOSHIO, SUGAWARA SHUJI. Maintenance and management of the undersea section of the Seikan Tunnel[J]. Japanese Railway Engineering, 1999(142):16-20.
    [216]INNAURATO N. Laboratory tests to study the influence of rock stress confinement on the performances of TBM discs in tunnels[J]. International Journal of Minerals, Metallurgy and Materials,2011,18(3):253-259.
    [217]彭立敏,覃长炳,施成华,等.铁路隧道基底病害整治现场试验研究[J].中国铁道科学,2005,26(2):39-43.
    [218]蔡来炳.软弱围岩浅埋偏压连拱隧道力学效应研究[D].上海:同济大学,2008.
    [219]刘新荣,孙辉,陈晓江,等.黄土连拱隧道二次衬砌的结构分析与监测研究[J].岩土工程学报,2005,27(6):695-697.
    [220]王华牢,李宁.复杂条件下隧道衬砌结构安全性评价[J]。中国公路学报,2010,23(3):70-75.
    [221]刘泉声,时凯,康永水,等.深井煤矿中央水泵房二次衬砌监测分析[J].岩石力学与工程学报,2011,30(8):1596-1603.
    [222]朱合华,刘学增.仰拱施工工序对隧道变形及结构内力的影响分析[C].第六次全国岩石力学与工程学术大会论文集.北京:科学出版社,2000:675-678.
    [223]吴祥松.高速公路连拱隧道施工时空效应及动态三维反馈分析[D].上海:同济大学,2007.
    [224]李德武,高峰,韩文峰.列车振动下隧道基底合理结构型式的研究[J].岩石力学与工程学报,2004,23(13):2292-2297.
    [225]陈贵红.仰拱型式对隧道结构的影响[J].公路,2004(11):145-148.
    [226]张有天.岩石隧道衬砌外水压力问题的讨论[J].现代隧道技术,2003,40(3):1-4.
    [227]王建宇,胡元芳.对岩石隧道衬砌结构防水问题的讨论[J].现代隧道技术,2001,38(1):20-25.
    [228]王建宇.再谈隧道衬砌水压力[J].现代隧道技术,2003,40(3):5-9.
    [229]高新强,仇文革,高扬.山岭隧道高水压下衬砌结构平面数值分析[J].岩土力学,2005,26(3):365-369.
    [230]晏启祥,马婷婷,陈菲.泄水式管片衬砌泄流量对衬砌外荷载的影响研究[J].岩土力学,2011,32(4):1108-1112.
    [231]张志强,何本国,何川.水底隧道饱水地层衬砌作用荷载研究[J].岩土力学,2010,31(8):2465-2470.
    [232]王建秀,杨立中,何静.深埋隧道衬砌水荷载计算的基本理论[J].岩石力学与工程学报,2002,21(9):1339-1343.
    [233]王秀英,谭忠盛,王梦恕,等.山岭隧道堵水限排围岩力学特性分析[J].岩土力学,2008,29(1):75-80.
    [234]高新强.高水压山岭随道衬砌水压力分布规律研究[D].成都:西南交通大学,2005.
    [235]郑波.隧道衬砌水压力荷载的实用化计算研究[D].北京:中国铁道科学研究院,20J0.
    [236]房倩,张顶立,黄明琦.基于连续介质模型的海底隧道渗流问题分析[J].岩石力学与工程学报,2007,26(增2):3776-3784.
    [237]邹成杰.水利水电岩溶工程地质[M].北京:水利电力出版社,1994:1-5.
    [238]蒋忠信.深埋岩溶隧道水压力的预测与防治[J].铁道工程学报,2005(6):37-40.
    [239]董国贤.水下公路隧道[M].北京:人民交通出版社,1984:1-7.
    [240]周乐凡.考虑外水荷载作用的铁路隧道衬砌结构设计研究[D].北京:铁道科学研究院,2003.
    [241]郭小红,陈卫忠,曹俊杰,等.跨海峡隧道风化槽围岩衬砌防排水技术研究[J].岩石力学与工程学报,2010,29(7):1481-1488.
    [242]SL279-2002,水工隧洞设计规范[S].北京:中国水利水电出版社,2002.
    [243]张有天.岩石隧道衬砌外水压力问题的讨论[J].现代隧道技术,2003,40(3):1-4.
    [244]闰春岭,丁德馨,毕忠伟,等.深埋隧道围岩稳定性的粘弹性力学分析[J].贵州工业大学学报(自然科学版),2005,34(3):125-129.
    [245]徐芝纶.弹性力学(第三版上册)[M].北京:高等教育出版社,1987:3-10.
    [246]张燕琼.软硬岩交互地层水下隧道最小岩石覆盖层厚度研究[D].重庆:重庆大学,2007.
    [247]黎春林,缪林昌.盾构施工渗流场有限元模拟及其对临近土层的影响分析 [J].东南大学学报(自然科学版),2010,40(5):1066-1072.
    [248]靳晓光,李晓红,张燕琼.越江隧道施工过程的渗流-应力耦合分析[J].水文地质工程地质,2010,37(1):62-67.
    [249]赖志乐.渗流场与应力场耦合在关角隧道中的应用[D].兰州:兰州交通大学,2009.
    [250]张燕琼.软硬岩交互地层水下隧道最小岩石覆盖层厚度研究[D].重庆:重庆大学,2007.
    [251]魏纲,郭志威,魏新江,等.软土隧道盾构出洞灾害的渗流应力耦合分析[J].岩土力学,2010,31(增1):383-387.
    [252]张铎,张莹.地下水不同控制排放方案对隧道结构与环境的影响分析[J].铁道标准设计,2012(2):95-98.
    [253]王道良,刘新荣,陈山泉,等.连拱隧道围岩渗透系数对渗流场影响的数值模拟研究[J].西华大学学报(自然科学版),2011,30(5):106-109.
    [254]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2004:299-300.
    [255]靳晓光,李晓红,张燕琼.越江隧道施工过程的渗流-应力耦合分析[J].水文地质工程地质,2010,37(1):62-67.
    [256]吉小明,王宇会.隧道开挖问题的水力耦合计算分析[J].地下空间与工程学报,2005,1(6):848-852.
    [257]冯现大,李树忱,徐帮树.海底隧道涌水量影响因素的数值模拟研究[J].山东大学学报(工学版),2009,39(4):21-24.
    [258]GANEROD GURI VENVIK, BRAATHEN ALVAR, WILLEMOES WISSING BJORN. Predictive permeability model of extensional faults in crystalline and metamorphic rocks; verification by pre-grouting in two sub-sea tunnels, Norway[J]. Journal of Structural Geology,2008,30(8):993-1004.
    [259]LAbADI AL, KHALID R. Safety assessment in tunnel grouting using fuzzy rotational and angular models[J]. Journal of Performance of Constructed Facilities,2009,23(6):423-431.
    [260]LIGNOLA G P, FLORA A, MANFREDI G. Simple method for the design of jet grouted umbrellas in tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(12):1778-1790.
    [261]HARTWIG, MARCOS EDUARDO. Grouting of TBM rock tunnel for the Pinalito hydroelectric plant, Dominican Republic[J]. Soils and Rocks,2009, 32(3):143-148.
    [262]CHRISTIAN B, GUNNAR G, ASA F, et al. Drip sealing of tunnels in hard rock: a new concept for the design and evaluation of permeation grouting[J]. Tunnelling and Underground Space Technology,2010,25(2):114-121.
    [263]阳习丰.浏阳河隧道过河段设计关键技术[J].铁道标准设计,2008(4):87-90.
    [264]彭长胜.湘江大道浏阳河隧道设计方案浅析[J].铁道标准设计,2009(12):111-113.
    [265]杨勇,李治国.高压注浆止浆墙结构形式、厚度及施工技术探讨[J].现代隧道技术,2004(增刊):18-23.
    [266]姜玉松.井巷工作面注浆孔口管的长度确定与埋设[J].矿业研究与开发,2006,26(3):40-42.
    [267]张民庆,张顶立.孔口管施作技术设计、研究与应用[J].现代隧道技术,2003,40(5):39-43.
    [268]苏文辉,王志杰,马小锋.浏阳河隧道超前地质预报技术[J].中外建筑,2009(11):115-117.
    [269]刘云祯,梅汝吾.TGP隧道地质超前预报新技术[M].北京:北京出版社,2009:59-62.
    [270]房倩,张顶立,王毅远,等.圆形洞室围岩破坏模式模型试验研究[J].岩石力学与工程学报,2011,30(3):564-571.
    [271]BERNAUD DENISE, MAGHOUS SAMIR, DE BUHAN PATRICK, et al. A numerical approach for design of bolt-supported tunnels regarded as homogenized structures[J]. Tunnelling and Underground Space Technology, 2009,24(5):533-546.
    [272]GOEL R K, SWARUP ANILL, SHEOREY P R. Bolt length requirement in underground openings[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(5):802-811.
    [273]OSGOUI REZA R, ORESTE PIERPAOLO. Convergence-control approach for rock tunnels reinforced by grouted bolts, using the homogenization concept[J]. Geotechnical and Geological Engineering,2007,25(4):431-440.
    [274]陈建勋,乔雄,王梦恕.黄土隧道锚杆受力与作用机制[J].岩石力学与工程学报,2011,30(8):1690-1697.
    [275]陈力华,林志,李星平.公路隧道中系统锚杆的功效研究[J].岩土力学,2011,32(6):1843-1848
    [276]JTG F60-2009,公路隧道施工技术规范[S].北京:人民交通出版社,2009.
    [277]程尚,李凡,陈建平,等.新奥法二次衬砌施工中几个问题的探讨[J].安全与环境工程,2002,9(1):9-11.
    [278]卿三惠,黄润秋.乌鞘岭特长隧道软弱围岩大变形特性研究[J].现代隧道技术,2005,42(2):7-14.
    [279]赵旭峰,王春苗,孔祥利.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报,2007,26(2):404-409.
    [280]刘志春,李文江,朱永全,等.软岩大变形隧道二次衬砌施作时机探讨[J].岩石力学与工程学报,2008,27(3):580-588.
    [281]陈军,杜守继,李迎九,等.软弱围岩隧道二次支护施作时机的数值模拟[J].地下空间与工程学报,2009,5(增):1340-1344.
    [282]王迎超,尚岳全,孙红月,等.复合式衬砌在围岩蠕变过程中的受力规律研究[J].水文地质工程地质,2010,37(2):49-54.
    [283]刘方雄,安永林,张运良.隧道双向施工中未贯通和未支护长度的初步优化[J].采矿技术,2008,8(3):52-54.
    [284]施成华,彭立敏,黄娟.隧道施工工序对地层变形的影响研究[J].岩土工程学报,2008,30(9):1303-1308.
    [285]张艳文.浅析大断面黄土隧道正洞贯通工法[J].低温建筑技术,2009(9):101-102.
    [286]王成,杨胜强,王政.咤城煤矿92101上材料道贯通方案及安全技术措施[J].煤炭技术,2008,27(1):56-57.
    [287]肖明清.防水型复合式衬砌隧道的设计要点[J].铁道工程学报,2008(8):54-57.
    [288]王明年,李海军,周国军.海底隧道钢拱架锈蚀对支护体系安全性的影响[J].西南交通大学学报,2010,45(1):39-44.
    [289]李鹏飞,张顶立,王梦恕,等.海底隧道衬砌结构受力特点及断面形状优化[J].中国铁道科学,2009,30(3):51-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700