用户名: 密码: 验证码:
曲轴加工复合车床主轴与刀架的同步精度补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
曲轴是车用及船用发动机的重要部件,它负责将活塞产生上下往复运动变成发动机输出轴的旋转运动。在曲轴的机加工这一环节中,连杆轴颈的加工是一个难点,这是因为连杆颈的轴线相对于主轴颈的轴线是偏心的。
     目前国内曲轴生产线主要是由普通机床和专用机床组成,生产效率和自动化程度相对较低。国内曲轴加工的设备主要还是依赖于国外昂贵的进口设备,这就大大增加了曲轴加工的成本。针对这个问题,研究设计出了一种新型的曲轴加工机床。
     由于这种新型车床特殊的加工方式,因此对头架箱主轴旋转运动与刀架旋转运动的同步性要求很高。本文就是以头架箱主轴端至刀架系统输入端之间的传动链为对象,对传动链的同步精度以及补偿控制进行研究。本文的主要内容如下:
     1.根据主轴—刀架传动链的三维模型建立了传动链的对象模型。对转角误差的来源进行了分析。特别地,对于轮齿啮合综合误差,给出了一种概率统计的计算方法,并利用该方法对主轴—刀架传动链的转角误差进行了初步计算。
     2.研究主轴—刀架传动链动力学模型。以齿轮副扭转模型和齿轮—转子系统模型为基础,建立主轴—刀架传动链的刚度—阻尼模型。以轮齿啮合综合误差为理论依据,建立轮齿啮合综合误差分析模型。根据分析模型,运用理论力学的相关知识,建立微分方程组。运用拉普拉斯变换法对微分方程组进行求解,得出对应模型的转角传递函数,最后得到总传递函数。运用MATLAB软件对总传递函数进行响应分析,并比较不同负载下的转角传递函数的响应。
     3.研究电机输出端至刀架输入端的补偿传动链的动力学模型。通过建立分析模型和数学模型,得到了头架箱主轴与刀架的转角之差与电机输出转角的传递函数。
     4.建立机床主轴与刀架的同步精度补偿控制模型。运用MATLAB软件对该控制模型的静态特性和动态特性进行了相关分析。对补偿控制模型的控制精度进行核算。
Crankshaft is an important component of automotive and marine engines, which is responsible for turning the up-down motion of the piston into the rotation of the output shaft of the engine. In the part of the crankshaft machining, the processing of the Crankshaft connecting rod neck is a difficult, because the axis of the connecting rod neck has a eccentric relative to the spindle axis of the crankshaft.
     Currently, the crankshaft production line is mainly made up of common machine tools and special machine tools, with relatively low production efficiency and automation. In China, the crankshaft machining equipment mainly rely on being imported from foreign countries, which greatly increase the costs of the crankshaft machining. To address this issue, a new kind of the crankshaft machining tool has been designed.
     The processing method of this new type of lathe is special, which has a high demand for the rotary movement synchronization of the headstock mainshaft and tool holder. This article makes the transmission chain from the headstock mainshaft to tool holder input as an object and studies the synchronization accuracy and the compensation control of the transmission chain. The main contents of this article are as follows:
     1. According to three-dimensional model of headstock-tool holder transmission chain, the object model of the transmission chain is established. We have analyzed the sources of rotation error. In particular, for the composite error of the meshing teeth, we give a calculation method based on probability statistics, and with which the rotation error of the transmission chain has been calculated initially.
     2. Studying the dynamic model of the transmission chain of headstock-tool holder. The stiffness-damping model of the transmission chain has been established, based on the gear pair torsion model and gear-rotor system model. The analysis model of the composite error of the meshing teeth also has been built, which is based on the theory of the composite error of the meshing teeth. We have used the corresponding knowledge of theoretical mechanics to establish the simultaneous differential equation, according to the analysis model. Using the Laplace to solve the simultaneous differential equation, we get the corresponding rotation transfer functions, and finally obtain the total rotation transfer function. With the help of MATLAB, we can analyze the response of the total rotation transfer function. What's more, the response of rotation transfer function of the model with different load torques can be compared.
     3. Studying the dynamic model of the transmission chain between the output of the servo motor and the input of the tool holder. Though building the analysis model and mathematical model, we can obtain the total rotation transfer function between the output rotation of the servo motor and the rotation error of the headstock mainshaft and the tool holder.
     4. We have established the control model of the synchronization precision compensation for the mainshaft and tool holder of the machine. Using MATLAB software, we make a correlation analysis on the static characteristics and dynamic characteristics of the control model. The control precision of compensation control has been verified.
引文
[1]和子康.机床传动精度测量和提高.北京:中国计量出版社,1987.
    [2]陈文华,朱海峰,樊晓燕.齿轮系统传动误差的蒙特卡洛模拟分析.仪器仪表学报,2004,25(4):435-437,444.
    [3]吴昭同,丁启全,黄海龙.传动链精度计算方法的分析与验证.机械传动,1996,20(1):25-28,19.
    [4]李聚波,张洛平,杨晓蔚,李剑锋.数控齿轮分度机构传动链的误差分析.组合机床与自动化加工技术,2005(12):30-31.
    [5]李润方,王建军.齿轮系统动力学.北京:科学技术出版社,1997.
    [6]王建军.计入内齿圈弹性的直齿行星传动动力学研究,天津大学硕士论文,2006.
    [7]孙新学,李文武,荣茜,金有仲.提高机械传动精度的方法和措施.机床与液压,2004(3):169-170,166.
    [8]李大庆,邓效忠,张明柱,李峰.提高进给系统传动精度的新措施.周口师范学院学报,2005,22(5):54-56.
    [9]刘又午,章青,王国锋.数控机床误差补偿技术及应用发展动态及展望.制造技术与机床,1998(12):5-6,21.
    [10]成大先.机械设计手册(第三卷).北京:化学工业出版社,2002年1月.
    [11]薛定宇,陈阳泉.控制数学问题的MATLAB求解.北京:清华大学出版社,2007年11月.
    [12]张磊.曲轴连杆颈外圆同步跟随车削系统的运动精度分析,武汉理工大学硕士论文,2009.
    [13]R. Kasuba, J. W. Evans. An Extended Model for Determining Dynamic Loads in Spur Gearing. Journal of Mechanical Design.1981,103:398-409.
    [14]何丽娜.航迹仪传动链精度的分析计算方法.机械工程师,2008(11):40-42.
    [15]赵妙霞,郑玉巧,胡世军,王进花.机床传动链误差对齿轮加工精度的影响及控制.甘
    肃科技纵横,2005,34(6):45.
    [16]韩林山,谭群燕,沈云文.间隙及转矩对2K-V型传动装置传动精度的影响.机械科学与技术,2007(8):1080-1083,1089.
    [17]代泽梅,李广义.论齿轮副综合齿形误差对齿轮传动精度的影响.科技创新导报,2009(1):109
    [18]王保民,张国海,蒋学全.少齿数齿轮传动精度设计及运动误差计算.机械设计,2008,25(3):44-46.
    [19]孙新学,李文武,荣茜,金有仲.提高机械传动精度的方法和措施.机床与液压,2004(3):169-170,166.
    [20]李大庆,邓效忠,张明柱,李峰.提高进给系统传动精度的新措施.周口师范学院学报,2005,22(5):54-56.
    [21]郑清春,潘洪杰,薄同伟,朱培浩.行星齿轮减速器系统传动精度的分析与研究.机械工程与自动化,2009(1):94-96.
    [22]韩林山,沈允文,董海军.2K-V型传动装置动态传动精度理论研究.机械工程学报,2007,43(6):81-86.
    [23]关天民,张东生.FA针摆传动回转精度分析.机械设计与制造,2004(3):90-91.
    [24]罗长根.机床传动链的精度分析.有色矿山,1999:50-53,83.
    [25]朱玉.基于ADAMS的数控插齿机加工精度研究.机床与液压,2009,37(1):52-54.
    [26]钱伟鑫,钱晓烨.大、中型曲轴不同加工模式经济性分析.机车车辆工艺,2008(4):14-15.
    [27]付军.曲轴的加工.一重技术,2006(4):73,34.
    [28]李海国,张小菊,徐庆杰.曲轴加工工艺的发展演变及柔性生产线.重型机械科技,2007(3):1-3,15.
    [29]Chen J S, Yuan J X, Ni J, et al. Real-time Com-pensation for Time-variant Volumetric Errors ona Machining Center[J]. ASME J.Eng.Ind.1993,115:472-479.
    [30]李海国.曲轴先进制造技术及工艺应用研究.现代制造技术与装备,2007(4):5-8,26.
    [31]马星国,尤小梅,闻邦椿.基于虚拟样机技术的曲轴多体动力学仿真.振动与冲击,2008, 27(9):155-157,190.
    [32]蔡继祖,陈健,黎勉.基于运动控制器的私服电机同步控制插补算法改进.广东工业大学学报,2008,25(3):70-72,89.
    [33]郑灵,高文忠.误差传递函数在机械设计中的应用.机械设计与制造,2005(5):6-8.
    [34]W. J. Love, A. J. Scarr. Determination of the volumetric accuracy of multi-axes machine.M. T. D. R. Conf. Proc.1973,14:307-315
    [35]周晓明,裴华刚.基于伺服电机的海洋绞车控制系统设计.中国水运,2008,8(5):132-133,135.
    [36]刘又午,章青,王国锋.数控机床误差补偿技术及应用发展动态及展望.制造技术与机床,1998(12):5-6,21.
    [37]Ariura Yasutsune, Chiu Hua. Umezaki Yoji, Improvement of gear accuracy in gear Hobbing:(2nd RePort, Investigation of the cause soft tooth Profile errors by comparing tooth Profile errors with measured ones), JSME International Jounral 1987,30(259):168-174.
    [34]M.Botman. Epicyclic Gear Vibration. Journal of Engineering for Industry.1976,96:811-815.
    [38]F. Cunliffe, J. D. Smith, D. B. Welbourn. Dynamic Tooth Loads in Epicyclic Gears. Journal of Engineering for Industry.1974,94:578-584.
    [39]J. Lin, R. G. Parker. Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration. Journal of Vibration andAcoustics.1999,121:316-321
    [40]T. Chiang, R. H. Badgley. Reduction of Vibration and Noise Generated by Planetary Ring Gears in Helicopter Aircraft Transmission. Journal of Engineering for Industry.1973,93:1149-1158.
    [41]Bai Mingguang, Zhang Huaicun, Yao Wenxi, etc., Study on technological of the Dynamic mutual lapping of gears, Jixie Gongcheng Xuebao/Chinese Jounral of Mechanical Engineering,2000,36(1):106-109,112.
    [42]Anjanappa M, Anand D. K., Kirk J. A. Error Correction Methodologies and Control Strategies for Numerical Control Machines.Control Methods for Manufacturing Process,1988, (7):41-49
    [43]Seong Wook Hong, Young Jae Shin, Hu Sang Lee. An efficient method for identification of motion error sources from circular test results in NC machines. International journal of machine tools & manufacture.1997, 37(3):327-340
    [44]Kiridena V, Ferreira P M. Mapping the Effects of Posi tioning Errors on the Volumetric Accuracy of Five-axis CNC Machine Tools. Int. J. Machine Tools Manufacture, Vol.1993,33:417-437.
    [45]Alan Rudt. Precision Speed Reducers Smooth Servo Motion, PT design,1995, Mar, 43-45.
    [46]Sigg N. Tooth Profile Modification of High Speed Duty Gear. In:Proceedings of International Conference on Gearing, New York:McGraw-Hill Co.,1958,313-316.
    [47]Hillyard C. Dimensions and Tolerances in Shape Design. University of Cambridge, UK:ph. D. Dissertation,1987.
    [48]Weill R., Clement, A., Hocken, R., Farmer, L.E., Tolerancing for function. Annals of the CIRP.1988,37(2):603-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700