用户名: 密码: 验证码:
摄像机标定方法及边缘检测和轮廓跟踪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机视觉作为当今最为活跃而又富有挑战意义的研究领域,其研究内容和应用领域相当广泛。本文以足球机器人视觉识别系统的开发为主要的工程应用背景,对边缘检测和轮廓跟踪算法、传统标定技术、自标定技术、隐式标定技术等相关技术进行深入研究。
     边缘检测和轮廓跟踪在计算机视觉中有着重要的地位,利用小波变换良好的时频域局部化特性和多尺度特性,针对计算机视觉中需要提取单像素的点线等边缘的需求,本文提出了一种基于小波变换的边缘检测和轮廓跟踪算法,通过真正的边缘点是模的局部极值点这一特点,应用模糊算法对模极大值点进一步筛选得到单像素级的边缘,并在边缘跟踪时,有效利用原图像的信息,通过在小邻域内寻找局部峰值对丢失弱边缘进行了补偿。大量实验表明应用本算法进行轮廓提取和跟踪,可以提取单像素的边缘和连续的轮廓曲线。
     计算机立体视觉中,首先必须解决的都是三维物点与二维像点的对应关系问题。因此,摄像机标定是计算机视觉实现的前提和基本问题。摄像机标定主要分为传统的标定算法和自标定算法。由于摄像机镜头存在着镜头畸变,对于要求精确定位的应用,需要进行畸变校正。传统的标定算法中各种优化算法存在着计算量大的不足,本文将单个自适应神经元应用到摄像机传统标定中,提出了一种考虑径向畸变和切向畸变的摄像机标定算法,它与其他优化算法相比具有简单实用、计算量小的优点。实验结果表明,该方法可以达到较高的精度。
     不需要标定参照物的自标定技术正成为目前摄像机标定研究的重点,其中基于主动视觉的自标定算法可以通过控制摄像机做已知的运动而使问题简化,正在成为当今研究的一个热点。已有的基于纯平移运动的自标定算法对摄像机运动约束过多,且没有标定外参数。本文提出了一种基于纯平移运动的线性摄像机自标定算法,通过控制摄像机作三次不共面的纯平移运动,可以线性标定摄像机的内外参数。在此基础上还提出了一种考虑二阶径向畸变的非线性自标定算法,通过控制摄像机作四次不共面的纯平移运动,可以标定摄像机的五个内参数和两个径向畸变系数。这两种算法的优点是对平移运动的约束不多,解精度较高且具有一定的鲁棒性。
     在需要很高的标定精度的情况下,基于精确数学模型的标定技术因为需要考虑各种非线性畸变因素,所以导出的畸变模型方程十分复杂。因此在三维测量应用中不依赖于确定的数学模型的技术——基于神经网络隐式视觉模型的标定技术将更有效。利用神经网络可以充分逼近任意的非线性关系且无须精确建模的特点,针对传统的立体视觉方法过程繁琐,对安装精度要求高的不足,本文提出了一种基于BP神经网络隐式视觉模型的立体视觉方法,该算法实施起来比较简便;针对已有的像差修正算法计算过程复杂的不足,提出了一种基于BP神经网络的修正成像误差的算法;针对具有共面特征的点的三维重构的应用,提出了一种基于径向基函数网络的二维平面测量算法。实验表明上述算法的精度较高,且鲁棒性较强。
     本文成功的开发了足球机器人视觉识别系统,首先应用基于LVQ神经网络的颜色识别算法进行指定颜色属性的物体的识别,接着提出小球和机器人小车的识别算法,然后
    
     大连理工大学博士学位论文
    应用i);l练收敛后的神经网络进行摄像机隐式标定。实验结果表明,该算法的识别速度和
    识别精度都达到系统的要求。
Computer vision is an active and challenging research field, its research area and applications area spread widely. Based on developing of vision recognition system of Micro-Robot World Cup Soccer Tournament, this dissertation is devoted to investigating some related techniques in computer vision, which include edge detection and contour tracking, conventional calibration techniques, self-calibration techniques, implicit calibration based on artificial neural networks.
    Edge detection and contour tracking are very important in computer vision. Because the single pixel edges are needed in computer vision, an algorithm of edge detection and contour tracking is proposed using the good local character and multi-scale character of wavelet transform in the dissertation. The fuzzy algorithm is applied to pick the model maximum points, so that the single pixel edge can be obtained. Edge image was tracked through using the image information sufficiently. Through finding local peak in a little line adjacent which is perpendicular to the edge direction, the missing edge can be compensated. The experimental results show that the single pixel edge can be obtained, and continuous contours can be extracted.
    In computer stereo vision, the primary problem to solve is the relations between the 3D points and the 2D image points. So the camera calibration is the premise and the basic problem. There are conventional calibration and self-calibration in camera calibration techniques. Since the cameras lens used in computer vision sustain a lot of nonlinear distortion, recent research efforts has been concentrated on the distortion correction techniques. The optimization algorithms in conventional calibration field have the shortcoming that the computing quantity is huge. In order to improve it, a single adaptive neuron algorithm was developed in conventional camera calibration in this dissertation, and a calibration algorithm considering radial and tangent distortion based on single adaptive neuron is proposed. Compared with the ordinary optimization algorithm of calibration, this algorithm gains simplicity, less computing quantity, and also keeping high accuracy .
    Camera self-calibration is becoming the important field of calibration research. Camera self-calibration based on active vision makes the problem simplified taking advantage of controlling camera to do known movement. The existed self-calibration algorithms based on translation motion have the limit in constraining the translation too strictly and can not get the external parameters. A linear camera self-calibration approach is proposed in this dissertation. The intrinsic and external parameters can be calibrated linearly by controlling the camera to undergo 3 translations or more which are not co-planar. Based on this algorithm a self-calibration approach taking account of camera two-degree radial distortion is proposed. The five intrinsic parameters and two-degree radial distortion coefficients can be calibrated by controlling the camera to undergo more than 4 translation motion which are not co-planar.
    in
    
    
    
    Compared with other methods of self-calibration, these algorithm gains simplicity, strong robustness and high accuracy.
    The equations derived are more complicated if more precise model is employed for high accuracy. The technique, which doesn't need to have an explicit model - calibration based on neural networks implicit vision model, is more effective. Since BP neural network can implement any nonlinear relationship from input to output and needn't to model, and the classical stereo vision approach based on explicit model are very complicated, an algorithm of stereo vision based on BP neural networks implicit vision model is proposed. This algorithm gains simplicity and convenience. The correction of camera distortion is a main part of camera calibration. An algorithm of camera distortion correction based on BP neural networks is proposed in this dissertation. In the special applications that the 3D points are coplanar, a 2D plane calibration algorithm b
引文
[1] 马颂德,张正友.计算机视觉—计算理论与实践.北京:科学出版社,1998.
    [2] 贾云德.机器视觉.北京:科学出版社,2000.
    [3] 吴立德.计算机视觉,上海:复旦大学出版社,1993.
    [4] 郑南宁.计算机视觉与模式识别.北京:国防工业出版社,1998.
    [5] 李介谷.在应用中成长着的计算机视觉.模式识别与人工智能,1992,5(4):266~271.
    [6] Emanuele Trucco, Alessandro Verri. Introductory techniques for 3-D computer vision. New Jersey: Prentice Hall, 1998.
    [7] O.C.Zienkiewicz, R.L.Taylor. Importance of fast vision in winning the First Micro-Robot World Cup Soccer Tournament. Robotics and Autonomous Systems, 1997, 21(10): 139~147.
    [8] Shim H S, ung M J, Kim H S,Choi I H, Kim J H. Development of Vision-based Soccer Robot System for Multi-agent Cooperative System. Proc MIROSOT'97.1997.29~36.
    [9] Marc D. Vision. San Francisco:Freeman, 1982.
    [10] 龙蒲荟,郑南宁.计算机视觉模型的研究与发展.信息与控制,1997,26(2):112~116.
    [11] Tart M J, Black M J.Dialogue, A Computational and Evolutionary Perspective on the Role of Representation in Vision. CVGIP: Image Understanding, 1994,60(1):65~73.
    [12] Aloimonos Y, Rosenfeld A. A Response to" Ignorance, Myopia, and Naive in Computer Vision Sys-tems"by R. C. Jain and T. O. B inford. CVGIP: Image Understanding, 1991, 53(1): 120~124.
    [13] Bajcsy R. Active Perception. Proc. of IEEE, 1988,76 (8): 996~1005.
    [14] Ballade D H,Brown C M. Principles of Animate Vision. CVGIP: Image Understanding, 1992, 56 (1): 3~21.
    [15] Thompson W B. Qalitative Constraints for Structure from Motion. CVGIP: Image understanding, 1992, 56(1):69~77.
    [16] 刘会杰,王学孝.计算机视觉的理论框架研究.计算机科学,1999,26(3):34~37.
    [17] Ozeki O,et al. Real time range measurement device for 3D object recognition. IEEE Trans. on PAMI, 1986,(8): 550~553.
    [18] Landman M M,et al. A flexible industrial system for automated 3D inspection. Proc. of SPIE, Bellingham:SPIE, 1987. Vol728:203~209.
    [19] Binger N, et al. The application of laser radar technology. Sensors, 1987,4(4): 42~44.
    [20] Ikeuchi K,Horn B K P. Numerical shape from shaping and occluding boundaries. Artificial Intelligence, 1971,17:141~184.
    [21] 唐四春,袁保宗.计算机视觉研究进展与展望,通信学报,1993,14(4):56~64.
    [22] Haralick R M. Digital step edges from zero crossing of second directional derivatives. IEEE Trans. on PAMI, 1984,6(1): 58~68.
    [23] Marr D, Hildreth E. Theory of Edge Detection. London: Proc Roy Soc, 1980.
    [24] Canny J. A Computational approach to edge detection. IEEE Trans on PAMI, 1986,8(6):679~698.
    [25] Mallat. S., Huang W.L. Singularity detection and processing with wavelet. IEEE Trans. on Information Theory, 1992,38(2): 617~643.
    
    
    [26] Mallat S,Zhong S.Characterization of signals from multiscale edge.IEEE Trans,on PAMI,1992, 14(7) :710-732.
    [27] Mallat.S.Zero-crossing of a wavelet transform.IEEE Trans,on Information Theory,1991,37(4) : 1019-1033.
    [28] Lu S,et al.Improving edge measurement on noisy image by hierarchical NN.Pattern Recognition Letters,1991:12-155.
    [29] O.D.Faugeras,G.Toscani.Camera calibration for 3D computer vision.Proc.Int.Workshop on Industrial Applications of Machine Vision and Machine Intelligence.New York:IEEE,1986. 15-20.
    [30] 邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述.自动化学报,2000,26(1) :43~55.
    [31] Ganapathy S.Decomposition of transformation matrices for robot vision.Proc.Int.Conference on Robotics and Automation.1984. 130-139.
    [32] Abdel-Aziz Y.I.,Karara H.M..Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry.In U.of Illinois Symposium on Close-Range Photogrammetry.Urbana:Univ.of Illinois at Urbana-Champaign,1971. 1-18.
    [33] W.Faig.Calibration of close-range photogrammetry systems:Mathematical formulation. Photogrammetric Eng.Remote Sensing,1975,41(12) :1479-1486.
    [34] Tsai R.Y.A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses.IEEE Journal of Automation,1987,3(4) :323-334.
    [35] Tsai R.Y.An efficient and accurate camera calibration technique for 3D machine vision.Proc. CVPR'86. New York:IEEE.1986. 364-374.
    [36] Martins H A,Birk JR,Kelley R B.Camera models based no data from two calibration planes. Computer Graphics and Imaging Processing,1981,17(2) :173-180.
    [37] Wei G,Ma S.Two-plane calibration:a unified model.Proc.CVPR'91. Piscataway:IEEE. 1991. 133-138.
    [38] Wei G,Ma S.Complete two-plane camera calibration and experimental comparisons.Proc.IEEE Int. Conf.On Computer Vision..Los Alamitos:IEEE.1993. 439-446.
    [39] Wei G,Ma S.Implicit and explicit camera calibration:theory and experiments.IEEE Trans. PAMI,1994,16(5) .469~480.
    [40] Faugeras O D,Maybank S.Motion from point matches:multiplicity of solutions.Int.J.Computer Vision,1990,4:225-246.
    [41] Maybank SJ,Faugeras O D.A theory of self-calibration of a moving camera.Int.J.Computer Vision,1992,8(2) :123-151.
    [42] Faugeras O D,Mourrain B.On the geometry and algebra of the point and line correspondences between n images.Proc.IEEE Int.Conf.On Computer Vision.Piscataway:IEEE.1995. 951-956.
    [43] Hartley RI.A Linear method for reconstruction from lines and points.Proc.IEEE Int.Conf.On Computer Vision.Piscataway:IEEE.1995. 882-887.
    [44] S.D.Ma.A self-calibration technique for active vision system.IEEE Trans.Robotics and Automation, 1996,12(1) :114-120.
    [45] R.I Hartley.Estimation of relative camera position for uncalibrated camera.Proc.of the ECCV'92. Italy:Santa Margherita Ligure.1992. 379-387.
    [46] Berns R S,Alman D H,Reniff L.Visual determination of supra threshold color difference tolerance
    
    using probit analysis. Color Research and Application, 1991,16(5):297~316.
    [47] Ohta Y Kanade T, Sakai T. Color information for region segmentation. Computer Graphics and Image Processing, 1980,13(3):222~241.
    [48] 陶霖密,徐光佑.机器视觉中的颜色问题及应用.科学通报,2001,46(3):178~190.
    [49] Sturm,P. Critical motion sequences for monocular self-calibration and uncalibrated Euclidean reconstruction. Proc. International Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Soc. Press, 1997.1100-1105.
    [50] M.Pollefeys, L.Van Gool. Stratified self-calibration with the modulus constraint. IEEE Tran. Pattem Anal. Mach. Intell, 1999,21 (8):707~724.
    [51] Castleman K R. Digital Image Processing. 北京:清华大学出版社,1998.
    [52] Palus H. Representations of color images in different color space. The color images processing Handbook. London: Chapman & Hall, 1998.67~92.
    [53] Sid-Ahmed M A,Borale M T. Dual camera calibration for 3_D machine vision metrology [J]. IEEE Transaction on instrumentation and measurement. 1990,39(3):512~516.
    [54] M.Pollefeys, R. Koch., L.Van Gool. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. Int. Journal Computer Vision. Dordrecht: Kluwer Academic publisher, 1998.90~95.
    [55] Fadi Dornaika. Self-calibration of a stereo rig using monocular epipolar geometry. Processings of the IEEE International Conference on Computer Vision. Vancouver:IEEE, 2001 .vol2:467~471.
    [56] 谢梅,马争,顾德仁.基于二维小波变换的图像边缘检测方法.应用科学学报,1998,16(3):6-11.
    [57] 陈东,周大威,王炎,崔有志.用多尺度小波变换进行边缘检测算法的研究.计算机工程与设计,1998,19(2):35~37.
    [58] 高立志,林志航.一种摄像机成像误差的模型化修正方法.机器人,1999,21(4):266~269.
    [59] A.L.Yuille, T.A. Poggio. Scaling Thereoms for Zero Crossing. IEEE Trans .Pattern Analysis and Machine Intelligence, 1986,8(1). 15~25.
    [60] 崔锦泰著,程正兴译.小波分析导论.西安:西安交通大学出版社,1996.
    [61] 秦前清.实用小波分析,西安:西安电子科技大学出版社,1994.
    [62] Daubechies I. The wavelet translbrm, time -frequency localization and signal analysis. IEEE Trans. on Information Theory, 1990,36 (5): 961~1005.
    [63] Daubechies I. Introduction to the special issue. IEEE Trans. on Information Theory, 1992,38(2): 529~532.
    [64] 郑慧如,方明.基于小波变换的甲襞微循环图像边缘检测.中国医疗器械杂志,1999,23(3):142~144.
    [65] 徐继友,朱祥.小波变换在图象边缘提取中的应用.光电工程,1998,25(4):28~33.
    [66] 谢梅,马争,顾德仁.一种改进的基于小波变换图象边缘检测算法.系统工程与电子技术,1998,20(10):67~70.
    [67] 陈向东,常文森,高政.基于局部边缘化的边缘检测小波研究.计算机应用研究,1998,15(3):8~10.
    [68] 汪培庄,李洪兴.模糊系统理论与模糊计算机.北京:科学出版社,1996.
    [69] Tuteur F B.Wavelet Transformation in Signal Detection. Proc. of ICASSP. New York:IEEE. 1988. 1435~1438.
    
    
    [70] Yongtae Do. Applications of neural networks for stereo-Camera Calibration. Proc. of International Joint Conference on Neural Networks. Washington:IEEE, 1999.2719-2722.
    [71] M.Pollefeys. 3D modeling from images. CGRAPH,2000,course 12,pp23
    [72] J.Weng, P. Cohen and M.Herniou. Calibration of Stereo Cameras Using a Non-Linear Distortion Model,Proc. International Conference on Pattern Recognition. Piscataway:IEEE, 1990.246~253.
    [73] Juyang Weng, Paul Cohen. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on PAMI, 1992, 14(10): 965~980.
    [74] Lourdes de Agapito, Richard I Hartley. Linear self-calibration of a rotating and zooming camera. CVPR'99. Los Alamitos: IEEE. 1999.15~21.
    [75] M.Pollefeys. 3D modeling from images. CGRAPH,2000,course 12, pp27.
    [76] http://www. cs.berkeley, edu/~daf/book3chaps.html
    [77] Longuet-Higgins H C. A computer algorithm for reconstructing a scene from two projections. Nature, 1981, 293(10):133~135.
    [78] O.Faugeras. What can be seen in three-dimensions with an uncalibrated stereo rig. Computer Vision-ECCV'92. Lecture Notes in Computer Science, Springer-Verlag, 1992. Vol.588:563-578.
    [79] Faugeras O, Quan L, Sturm P. Self-calibration of a ID projective camera and its application to the self-calibration of a 2D projective camera. IEEE Tran. On Pattern Analysis and Machine Intelligence. Los Alamitos: IEEE, 2000.1179~1185.
    [80] R.Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses. IEEE Journal of Automation, 1987, 3(4): 323~334.
    [81] Brown D.C. Decentering Distortion of Lenses. Photogrammetric Eng. Remote Sensing, 1966, 444~462.
    [82] Wong K.W. Mathematical foundation and digital analysis in close-range photogrammetry. Photogrammetric Engineering and Remote Sensing, 1975,41 (11): 1355~1373.
    [83] R.Hartley. Self-calibration from multiple views with a rotating camera. Lecture Notes in Computer Science. Springer-Verlag, 1994,.Vol.800-801:471~478.
    [84] 高立志,方勇,林志航,陈康宁.高精度立体视觉测量中一种通用的摄像机标定技术,机械科学与技术,1998,17(5):809~811.
    [85] I. Sobel. On calibrating computer controlled cameras for perceiving 3-D scenes. Artificial Intelligence, 1974, 5(2):185~188.
    [86] R.K.Lenz and R.Y. Tsai. Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology. IEEE Trans. on PAM1, 1998,10(5): 713~720.
    [87] Zhang. Z. A flexible new technique for camera calibration. Microsoft Corporation: Technical Report MSR-TR-98-71,1998.
    [88] 王宁,涂健,陈锦江.使用单个自适应神经元的智能控制.华中理工大学学报,1993,21(3):31-34.
    [89] 王宁,涂健,陈锦江.自适应神经元控制系统的理论分析.华中理工大学学报,1993,21(4):178-181.
    [90] http://www. vision.caltech.edu/bouguetj/calib_doc.
    [91] M.Pollefeys. 3D modeling from images. CGRAPH,2000,course 12, 51~60.
    
    
    [92] M.Pollefeys, L.Van Gool and A. Oosterlinck. The Modulus Constraint: A new Constraint for Self-Calibration. Proc. 13th International Conference on Pattern Recognition. IEEE Computer Soc Press, 1996. Vol1:349~353.
    [93] M.Pollefeys and L.Van Gool. A stratified approach to metric self-calibration. Proc. 1997 Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Soc.Press. 1997. 407~412.
    [94] B,Triggs. The Absolute Quadric. Proc. 1997 Conference on Computer Vision and Pattern Recognition, Los Alamitos: IEEE Computer Soc. Press, 1997. 609~614.
    [95] M.Pollefeys, L.Van Gool and M.Proesmans. Euclidean 3D Reconstruction from Image Sequences with Variable Focal Lengths. Computer Vision-ECCV'96. Lecture Notes in Computer Science, Spring-Verlag, 1996. Vol. 1064:31~42.
    [96] A.Heyden and K.Astrom. Euclidean Reconstruction from Image Sequences with Varying and Unknown Focal Length and Principal Point. Proc.IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Soc. Press, 1997. 438~443.
    [97] T. Moons, L.Van Gool, M.Proesmans, E.Pauwels. Affine reconstruction from perspective image pairs with a relative object-camera translation in between. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(1). 77~83.
    [98] R.Hartley. Self-calibration of stationary cameras. Int. Journal of Computer,1997,22(1):5~23.
    [99] M.Armstrong,A.Zisserman and R.Hartley. Euclidean Reconstruction from Image Triplets. Computer Vision-ECCV'96. Lecture Notes in Computer Science, Springer-Verlag, 1996. Vol. 1064:3~16.
    [100] 杨长江,江威,胡占义.一种基于主动视觉的摄像机内参数自标定方法.计算机学报,1998,21(5):428~435.
    [101] 李华,吴福朝,胡占义.一种新的线性摄像机自标定方法.计算机学报,2000,23(11):1121~1129.
    [102] 吴福朝,于洪川,袁波,韦穗.摄像机内参数自标定-理论与算法.自动化学报,1999,11(6):769~775.
    [103] Luong Q T, Deriche R,Faugeras O D. On determining the fundamental matrix: analysis of different methods and experimental results. INRIA Research Report. 1993. No. 1:894.
    [104] 张健新,段发阶,叶声华.“两步法”求取双目视觉传感器中摄象机位置关系.光电工程,25(5):37~41.
    [105] 张备伟,吴福朝.基于正十二边行平面模板的摄象机自标定.安徽大学学报,2000,24(4):34~41.
    [106] 雷成,吴福朝,胡占义.一种新的基于主动视觉系统的摄像机自标定方法.计算机学报,2000,23(11):1130~1136.
    [107] 于洪川,吴富朝,袁波,韦穗.基于主动视觉的摄像机自标定算法,机器人,1999,21(1):1~7.
    [108] J.Wen and G.Schweitzer. Hybrid calibration of CCD cameras using artificial neural nets. Int. Joint Conf. Neural Nerworks. Piscataway: IEEE, 1991. 337~342.
    [109] K.-I.Funahashi. On the approximate realization of continuous mapping by neural networks. Neural Networks, 1989, 2(3):183~192.
    [110] A.Cichocki, R. Unbehauen. Simplified neural networks for solving linear least square and total least squares problems in real time. IEEE Trans. Neural Networks, 1994,5(6): 910~923.
    
    
    [111] M.A.Sartori, P.J.Antsaklis. A simple method to derive bounds on the size and to train multiplayer neural networks. IEEE Trans,Neural Networks, 1991,2(4): 467~471.
    [112] Su C T, Chang C A, Tien F C. Neural networks for precise measurement in computer vision systems. Computers in industry,1995, 27(1): 225~236.
    [113] Daschbach, Abella, McNichols. Reverse Engineering: A Tool for Process Planning, Computers and Industrial Engineering. Tarrytown: pergamon, 1995.637~640.
    [114] 楼顺天,施阳.基于 MATLAB 的系统分析与设计-神经网络,西安:西安电子科技大学出版社,2000,
    [115] 左爱秋,阮晓东,骆涵秀,诸葛良.立体视觉测量系统的三维空间重构.机电工程,1999,6(3):6~7.
    [116] 罗飞路,姬涛,陈棣湘.一种摄像机成像误差的程序化修正方法.国防科技大学学报,19(1):77~82.
    [117] 陈剑虹 刘振凯,乔志林,丁玉成,卢秉恒.层去图象法反求测量系统的标定.机械科学与技术,1999,18(6):985~987.
    [118] Musavi.M.T. On the training of the radial basis function classifiers. Neural Networks. 1992, 5(4):595~603.
    [119] 赵振宇,模糊理论和神经网络的基础与应用.北京:清华大学出版社,1996.
    [120] http://www.research.microsofi.com/~zhang/Calib/
    [121] 荆仁杰,叶秀清,徐胜荣等.计算机图象处理.杭州:浙江大学出版社,1990.193~198.
    [122] Shah S, Aggarwa JK. A simple calibration procedure for fish-eye (high-distortion) lens camera. Proceedings of IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 1994,3422~3427.
    [123] 廖士中,高培焕,苏艺,王大鹏.一种光学镜头摄像机图象几何畸变的修正方法.中国图象图形学报,2000,5(7):593~596.
    [124] http://www.ee.oulu.fi/~jth/calibr.
    [125] Obta Y, Kanade T,Sakie T. Color Information for Region Segmentation. Computer Graphics and Image Processing, 1980,13(3):222~241.
    [126] N R Pal, J C Bezdek, E C K Tsao, Generalized Clustering Networks and Kohonen's Self-Organizing Scheme, IEEE Trans on Neural Networks,1993,4(4):549~557.
    [127] M.Pollefeys, L. Van Gool. Self-calibration from the absolute conic on the plane at infinity. Proc. computer analysis of images and patterns, Lecture notes in computer science. Vol. 1296,Springer-Verlag, 1997, 175~182.
    [128] Carlo Ferrari, Enrico Pagello, Jun Ota, Tamio Arai. Multirobot motion coordination in space and time. Robotics and Autonomous Systems, 1998,25(3-4):219~229.
    [129] Shim H.S, Kim H.S, Jung M.J, Choi I.H, Kim J H, Kim J O. Designing distributed control architecture for cooperative multi-agent system and its real-time application to soccer robot. Robotics and Autonomous Systems. 1997, 21(2): 149~165.
    [130] http://ace.unm.edu/wac98.
    [131] http://ace.unm.edu/wac98/waccup.
    [132] http://www.mirosot.org/.
    [133] http://www.fira.net/.
    
    
    [134] A.Heyden, K.Astrom. Euclidean Reconstruction from constant intrinsic parameters. Proc. 13th international conference on pattern recognition. IEEE Computer Soc. Press, 1996.339~343.
    [135] Peter Sturm. Self-calibration of a moving zoom-lens camera by precalibration. Image and vision computing, 1997, 15(8):583~589.
    [136] 李玲芝.遥感图像几何校正的有限元法.中国空间科学技术,1989,9(2):24~31.
    [137] 巩玉国.图像信息输入、管理及安全技术研究.大连理工大学硕士学位论文,2000,3.
    [138] 袁野,仲崇权,杨素英,欧宗瑛.基于学习向量量化网络的指定颜色物体的识别,计算机工程与应用,录用.
    [139] 袁野,仲崇权,欧宗瑛 基于BP网络的足球机器人视觉系统的标定.机器人,2001,23(7):752~755.
    [140] Robert M.Haralick, Linda G Shapiro. Computer and Robot Vision. Addison-Weslay Publishing Company, 1992.
    [141] 张艳珍,袁野,欧宗瑛.基于区域投影的微型机器人系统识别.机械科学与技术,2001,20(2):318~320.
    [142] 欧宗瑛,袁野,张艳珍.基于颜色信息足球机器人视觉跟踪算法,大连理工大学学报,2000,40(6):729~732.
    [143] SanZ J, Dinstein I. Projection-based geometrical features extraction for computer vision algorithms in pipeline architecture. IEEE Trans. on PAMI,1987,9(1):160~168.
    [144] Berzins V. Accuracy of Laplacian detectors. CVGIP, 1984,27(2): 195~210.
    [145] Davis L S. A Survey of Edge Detection Techniques. Computer Graphics Image Processing, 1975, 4(3):248~270.
    [146] Rosenfeld A, Kak A C. Digital Picture Processing. Academic Press, 1976.
    [147] 张凯丽,刘辉.边缘检测技术的发展研究.昆明理工大学学报,2000,25(5):36~39.
    [148] 尹平,王润生.多尺度边缘检测技术的分类及比较.计算机工程与科学,1998,20(1):16~19.
    [149] 苑玮琦,王建军,张宏勋.一种基于梯度极值的边缘检测算法.信息与控制,1997,26(2):117~120.
    [150] 邹宁,柳健,周曼丽.基于Zernike矩的边缘检测方法.华中理工大学学报,1999,27(5):1~8.
    [151] 李宏贵,罗正发,李国帧,李兴国.基于分形理论的红外图像边缘检测.红外技术,99,21(1):18~20.
    [152] 李翠华,郑南宁,张永平.基于样条修匀公式的图象边缘检测.电子学报,1999,27(1):1~9.
    [153] 沈清,胡得文,时春.神经网络应用技术.北京:国防科技大学出版社,1998.
    [154] Wei Guo-Qing, Klaus Arbert, Gerd Hirzinger. Active self-calibration of robotic eyes and hand-eye relationships with model identification. IEEE Transactions on Robotics and Automation, 1998, 14(1):158~166.
    [155] Luong Q T, Faugeras O D. The fundamental matrix: Theory, algorithms, and stability analysis. International Journal of Computer Vision, 1996,17(1):43~75.
    [156] Richard I Hartley. Self-calibration of stationary cameras. International Journal of Computer Vision, 1997, 22(1): 5~23.
    [157] Richard I Hartley. In defense of the 8-point algorithm. TPAMI, 1997, 19(6):580~593.
    [158] 杨长江,孙凤梅,胡占义.基于二次曲线的纯旋转摄像机自标定.自动化学报,2001,27(3):310~317.
    [159] Shai Avidan, Amnon Shashua. Threading fundamental matrices. IEEE Trans. On Pattern Analysis and Machine Intelligence. Los Alamitos:IEEE, 2001,23(1):73~77.
    
    
    [160] Bill Triggs. Autocalibration from planar scenes. Proceedings of the ECCV'98. 1998.89~105.
    [161] Peter Sturm, Bill Triggs. A factorization based algorithm for mult-image projective structure and motion. Lecture Notes in Computer Science. 1996. Vol1065: 709~720.
    [162] 高满屯,曲仕如,李西琴.计算机视觉研究中的投影理论和方法.西安:西北工业大学出版社,1998.
    [163] Robert M.Haralick. Using perspective transformation in scene analysis. Computer Graphics and Image Processing, 1980,13(3): 191~221.
    [164] Caprile B., Torre.V. Using vanishing points for camera calibration. Int. J. of Computer Vision, 1990, 4(2): 127~140.
    [165] Brillault B,O.Mahony. New method for vanishing points detection. CVGIP:Image Understanding, 1991,54(2):289~300.
    [166] Fadi Dornaika, Christophe Garcia. Pose estimation using point and line correspondences. Real-Time Imaging, 1999, 5(5): 215~230.
    [167] 李宏东,叶秀清,顾伟康.基于图象的真实感绘制与建模——IBMR.计算机应用研究,1999,(6):42~44.
    [168] A.Guzman. Computer recognition of 3D objects in visual scene. Tech. Rept. MAC-TR-59, MIT Press, 1968.
    [169] G.Falk. Interpretation of imperfect line data as a 3D scene. Artificial Intelligence, 1972,3(2):101~144.
    [170] D.A.Huffman. Impossible objects as nonsense sentences. Matching intelligence 6. New York: R.Meltzer and D.Mickie(EDs), 1972. 295~323.
    [171] R.Nevatia, T.O.Binford. Description and recognition of curved objects. Artificial Intelligence, 1976,30(2):77~98.
    [172] D.R.Smith, T. Kanade. Autonomous scene description with range imagery. Computer Vision, Graphics, and Image Processing, 1985, 31(3): 322~334.
    [173] S.Inokuchi, T. Niea, F.Matsuda, Y.Sakurai, A Three-dimentional edge-region operator for range pictures, In Pro. of the 6th Int. Joint Conf. On PR,1982,918~920.
    [174] B.K.P. Horn, K.Ikeuchi, The Mechanical manipulation of randomly oriented parts. Science American, 1984,251(2):100~111.
    [175] T.J.Laffy, R.M. Haralick, L.T. Watson. Topographic classification of digital image intensity surfaces, In IEEE proceedings of the workshop on computer vision. Los Angels,1982,171~177.
    [176] 蒋加伏,叶吉祥.计算机视觉系统研究中存在的问题及解决思路.长沙交通学院学报,1999,15(1):13~17.
    [177] Theo Gevers, Arnold W.m. Smeulders. Color-based object recognition. Pattern Recognition. 1999,32(3):453~464.
    [178] 姜大志,郁倩,王冰洋,姜梅,丁秋林.计算机视觉中的设备标定和三维图形重构综述.计算机工程与应用,2001,37(13):53~55.
    [179] 崔勇,袁冬,李殿璞.计算机视觉系统的定标策略.应用科技,2000,27(8):15~17.
    [180] Z.Zhang, R,Deriche, O.Faugeras, Q.T.Luong. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolor. Artificial Intelligence Journal, 1995,78(10):87~119.
    
    
    [181] Z.Zhang. Determining the epipolar geometry and its uncertainty: a review, the International Journal of computer vision, 1998,27(2):161~195.
    [182] Z.Zhang. Motion and structure from two perspective views:From essential parameters to Euclidean motion via fundamental matrix, Journal of the optical society of America A, 1997.
    [183] Q.T.Luong, O.Faugeras. Self-calibration of a moving camera from point correspondences and fundamental matrices. International Journal of computer vision,1997,22(3):261~289.
    [184] Z.Zhang, Q.T.Luong, O.Faugeras. Motion of an uncalibrated stereo rig: self-calibration and metric reconstruction. IEEE Trans RA, 1996,12(1):103~113.
    [185] Basu A. Active calibration: alternative strategy and analysis. Proc IEEE Conf on Computer Vision and Pattern Recognition. Piscataway:IEEE, 1993. 495~500.
    [186] Du F,Brady M. Self-calibration of the intrinsic parameters of camera for active vision system. In Proc IEEE Conf on Computer Vision and Pattern Recognition. Piscataway:IEEE, 1993.477~482.
    [187] 邹国辉,袁保宗.一种新的摄像机自定标的方法.机器人,1999,21(6):431~435.
    [188] 吴福朝,胡占义.摄像机自标定的线性理论与算法.计算机学报,2001,24(11):1221~1235.
    [189] 雷成,吴福朝,胡占义.Kruppa方程与摄像机自标定.自动化学报,2001,27(5):621~633.
    [190] B.Neumann. Motion Analysis of Image Sequence for Object Grouping and Recognition. NATO Series, 4: Marine Science. Piscataway: IEEE, 1980. vol 2:1262~1265.
    [191] H.H.Nagel. Representation of moving rigid objects based on visual observations. Computer, 1981,14(8):29~39.
    [192] S. Ullman. The interpretation of vision motion. Boston: MIT Press,1979.
    [193] T.S.Huang, R.Y.Tsai. Three dimentional motion estimation from image-space shift. Proc. of IEEE Int. Conf. on ASSP. Piscataway: IEEE, 1981. vol 2:1136~1139.
    [194] 高立志,方勇,林志航,立体视觉测量中摄像机标定的新技术.电子学报,1999,27(2):12~14.
    [195] 张艳珍,欧宗瑛.一种新的摄像机线性标定方法.中国图象图形学报,2001,6(8):727~731..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700