用户名: 密码: 验证码:
南北极大气成分本底特征的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球大气中的温室气体、反应性气体以及大气气溶胶不断攀升,已成为影响气候变化的重要因子。由于极地受污染影响极小,因此包括我国在内的一些国家在两极地区都加强了对温室气体等的本底浓度监测和研究。在第四次国际极地年期间,我国南极中山站建立大气本底监测站,并获得了连续资料。利用2008~2010年南极中山站黑碳(BC)、二氧化碳(CO_2)、甲烷(CH_4)、一氧化碳(CO)等在线观测数据和Flask采样分析数据及相关气象资料,对这些要素的本底浓度、季节变化特征及其来源等进行了研究。另外,对2010年7月1日至9月20日,中国第四次北极科考队走航观测的BC、气溶胶散射系数(SC)、臭氧(O_3)和紫外辐射(UVB)数据进行了分析。本文所得结果对提高极地温室气体的测量水平和研究极地温室气体本底特征及其气候效应具有重要参考作用。主要结果如下:
     中山站气象资料显示,冬季较长,夏季较短;地面气压以4月最大,10月最小;水汽压全年都较小,且变化不大;全年盛行偏东风(NE~ENE~E~ESE),平均风速大于7m·s~(-1);影响站区的气流主要来自南极大陆沿岸及北部大洋。
     在南到东偏南风的影响下,BC浓度偏高,其原因是受中山站的发电栋和垃圾焚烧炉排放的影响;当风速小于3m·s~(-1)时,BC浓度偏高且不稳定。中山站BC浓度年变化特征为:极夜期间(5~7月)最小,春、夏季较大;其中,5月BC为3.3ng·m~(-3),是全年的最低值,2月和10月BC分别为10.0ng·m~(-3)和8.7ng·m~(-3),达极夜期间的2~3倍。其季节变化的特点与其它南极站基本相似,但BC背景浓度值偏大,需加以证实。
     中山站CO_2受风向影响较小,东南风(SE)条件下的平均浓度略大;静风(风速≤0.5m·s~(-1))时对应的CO_2较大。CO_2季节变化的特点是夏末最小,秋、冬季呈缓慢上升,春季达到最大。其变化原因可能是受陆地生态系统的季节变化、南大洋海冰面积变化和大气环流的季节调整的影响。中山站近三年CO_2的变化范围和增长趋势与其它南极站点较为一致,变化范围均在381~388ppm之间,浓度逐年增加,2008~2010年的CO_2年平均增长率为0.44%,基本代表了南极大陆CO_2的增长趋势。
     CH_4受风向和风速的影响较小。Flask分析数据与在线资料基本相同,全年峰值出现在9月,平均浓度约为1768.2ppb,显示出CH_4明显的季节变化,即夏、秋季小,春季大。中山站2008~2010年CH_4平均浓度和增长率呈逐年增加,且略高于其它南极站的观测值,仍具有一定代表性。
     不同风向对应的CO浓度相差不大;当静风或风速大于21m·s~(-1)时,CO浓度偏大。中山站CO浓度有较明显的季节变化,谷值出现在1~3月,9~10月为全年浓度最高。Flask分析的CO资料与其它南极站相比,年际趋势不明显。需要说明的是中山站2008和2009年CO分析资料与东南极测站是可比的,但2010年显示偏低,其原因可能是实验室的检测问题,需要进一步检测。
     对中国第四次北极科学考察走航观测获取的BC、SC、O_3、UVB在线资料进行了分析。空间分布特征为:这些要素随纬度增加而递减,最大值都出现在我国东部海域,最低值在北冰洋。北冰洋的BC浓度约为10.5ng·m~(-3);白令海和北冰洋的SC平均值分别为4.3Mm-1和1.7Mm-1,SC在76°N以北变化较稳定;白令海的平均O_3含量比北冰洋(15.7ppb)高,但在75oN以北海区O_3有所升高,这一现象可能与海冰密集度和冰上光化学过程有关;UVB辐照度在中低纬地区有显著的日变化,在北冰洋航行期间处于极昼期,其变化幅度较小。
Global atmospheric concentrations of greenhouse gases, reactive gases and atmosphericaerosols are rising. They have become important factors affecting climate change. The polarregions are affected by minimal contamination, therefore, some countries including Chinastrengthen monitoring and research the background concentrations of greenhouse gas and soon in the polar regions. The atmospheric background monitoring station at the AntarcticZhongshan station was established during the fourth International Polar Year and somecontinuous data are observed. In this thesis, the background concentrations, seasonal cyclesand sources of black carbon (BC), carbon dioxide (CO_2), methane (CH_4) and carbonmonoxide (CO) are investigated by analysing the in-situ measurement, Flask sampling dataand meteorological data from2008to2010at the Zhongshan station. In addition, BC, aerosollight scattering coefficients (SC), tropospheric ozone (O_3) and ultraviolet-B radiation (UVB)are investigated on a cruise ship during the fourth Chinese National Arctic ResearchExpedition from July1to September20,2010. The results of this paper are importantreference to improve the measurement level of polar greenhouse gas, to research thebackground characteristics of polar greenhouse gas and its climate effect. There are somepreliminary conclusions:
     Meteorological data of Zhongshan station show that winter is longer than summer. Themaximum and minimum of surface pressure at the Zhongshan station appear in April andOctober, respectively. Vapor pressures are small and little change in the whole year. Easterlywind (NE~ENE~E~ESE) is prevalent in the station area throughout the year. The averagewind speed is over7m·s~(-1). The airflow affecting the station is most from the mainland coastand north sea.
     Under the influence of south to east-southeast air flow, BC concentrations are higher,because of the generation building and garbage incinerator emissions of the Zhongshanstation. When the wind speed is less than3m·s~(-1), the BC concentration is high and unstable.The seasonal variation characteristics are that the minimum of BC concentration occurredduring the polar night (May to July), and the maximum occurred in the spring and summer.The minimum is3.3ng·m~(-3)in May, and the maximum are10.0ng·m~(-3)and8.7ng·m~(-3)inFebruary and October, respectively, which are2~3times of the minimum. This seasonal variation is similar to other stations in the Antarctic, but BC background concentration largerthan other Antarctic stations. It needs to be confirmed.
     CO_2is less affected by wind direction at Zhongshan station. The average concentrationunder the southeast wind (SE direction) is slightly larger. CO_2is larger in calm wind (windspeed≤0.5m·s~(-1)). There are obvious seasonal variations. The minimum concentrations appearin late summer, rising slowly in autumn and winter. And the maximum appear in spring. Thecause of this seasonal variation may be impacted by the seasonal variation of terrestrialecosystems and the Southern Ocean sea ice area and the seasonal adjustment of theatmospheric circulation. The consistent range and growth trends are between Flask data ofCO_2at Zhongshan and other Antarctic stations in the last three years. The CO_2values arebetween381~388ppm and the concentrations increase year by year. CO_2average annualgrowth rate is0.44%from2008to2010. It’s on behalf of the Antarctic CO_2growth trend.
     CH_4is less affected by wind direction and speed. The Flask sample data and in-situobservations are nearly the same. The peak of the year occurred in September, the monthlyaverage concentration is about1768.2ppb. It shows that there are obvious seasonal variations.The minimum concentrations appear in summer and autumn, maximum appear in spring.The average concentrations and growth rates of Zhongshan increase year by year from2008~2010, which are slightly higher than the observations of the other Antarctic stations. Ingeneral, the CH_4at Zhongshan station is representative.
     The average CO concentrations under different wind directions are little difference.When calm wind or wind speed greater than21m·s~(-1), the CO concentration is large. COconcentrations show obvious seasonal variation. The bottom occurred in January to Marchand the peak occurred in September and October. Compared with other Antarctic stations, theinterannual trend of Flask data at Zhongshan station is not obvious. The CO Flask data in2008and2009that can be comparable between Zhongshan station and other east Antarcticstations. But the values are low in2010. The reason may be that a problem of laboratorytesting, and it needs futher detection.
     BC, SC, O_3, and UVB decrease with increasing latitude, which are observed on thecruise ship during the fourth Chinese National Arctic Research Expedition. The maximumappear in the eastern waters of China, with minimum record in the Arctic Ocean. The averageBC is about10.5ng·m~(-3)in the Arctic Ocean. The average SC is4.3Mm-1and1.7Mm-1in theBering Sea and Arctic Ocean, respectively. The change of SC is stable in the north of76°N.The average O_3concentration in the Bering Sea is higher than that in the Arctic Ocean(15.7ppb). However, O_3concentrations increase in the north of75oN area. It’s possible thatthis phenomenon is related to the sea ice density and photochemical processes. UVB has aclear diurnal cycle in the middle and low latitudes. Its amplitude is small with weak intensity in the Arctic Ocean due to the polar day effect during the cruise.
引文
Aaltonen V., Lihavainen H., Kerminen V-M., et al.. Measurements of optical properties of atmosphericaerosols in Northern Finland. Atmospheric Chemistry and Physics,2006,6(5):1155~1164.
    Andreae M. O., Merlet P.. Emission of trace gases and aerosols from biomass burning. Global Biogeoc-hemical Cycles,2001,15(4):955~966, doi:10.1029/2000GB001382.
    Aoki S., Nakazawa T., Murayama S., et al.. Measurements of atmospheric methane at Japanese Antarcticstation, Syowa. Tellus,1992,44B:273~281.
    Basile I., Grousset F. E., Revel M., et al.. Patagonian origin of glacial dust deposited in the east Antarctica(Vostok and Dome C) during glacial stages2,4and6. Earth and Planetary Science Letters,1997,146:573~589.
    Bodhaine B. A.. Aerosol absorption measurements at Barrow, Mauna Loa and the South Pole. Journal ofGeophysical Research,1995,100:8967~8975.
    Bottenheim J. W., Netcheva S., Morin S., et al.. Ozone in the boundary layer air over the Arctic Ocean:Measurements during the TARA transpolar drift2006-2008. Atmospheric Chemistry and Physics,2009,9(14):4545~4557.
    Bousquet P., Ciais P., Miller J. B., et al.. Contribution of anthropogenic and natural sources to atmosphericmethane variability. Nature,2006,443:439~443, doi:10.1038/nature05132.
    Cavalieri D. J., Parkinson C L, Vinnikov K. Y..30-Year satellite record reveals contrasting Arctic andAntarctic decadal sea ice variability. Geophysical Research Letters,2003,30(18), doi:10.1029/2003GL018031.
    Chappellaz J., Barnola J. M., Raynaud D., et al.. Ice-core record of atmospheric methane over the past160000years. Nature,1990,345(6271):127~131.
    Daniel J. S., Solomon S.. On the climate forcing of carbon monoxide. Journal of Geophysical Research,1998,103(D11):13249~13260.
    Delene D. J., Ogren J. A.. Variability of aerosol optical properties at four North American surfacemonitoring sites. Journal of the Atmospheric Sciences,2002,59:1135~1150.
    Denman K. L., Brasseur G., Chidthaisong A., et al.. Couplings between changes in the climate system andbiogeochemistry. In:Climate Change2007: The Physical Science Basis. Contribution of Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S., Qin D.,
    Manning M., et al.(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY,USA,2007.
    Dlugokencky E. J., Steele L. P., Lang P. M., et al.. The growth rate and distribution of atmosphericmethane. Journal of Geophysical Research,1994,99(D8):17021~17043.
    Dlugokencky E. J., Steele L. P., Lang P. M., et al.. Atmospheric methane at Mauna Loa and Barrowobservatories: Presentation and analysis of in situ measurements. Journal of Geophysical Research.1995,100(D11):23103~23113.
    Dlugokencky E. J., Dutton E. G., Novelli P. C., et al.. Changes in CH4and CO growth rates after theeruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux. GeophysicalResearch Letters,1996,23(20):2761~2764.
    Dlugokencky E. J., Masarie K. A., Lang P. M., et al.. Continuing decline in the growth rate of theatmospheric methane burden. Nature,1998,393:447~450.
    Edwards D. P., Emmons L. K., Gille J. C., et al.. Satellite observed pollution from Southern Hemispherebiomass burning. Journal of Geophysical Research,2006,111, D14312, doi:10.1029/2005JD006655.
    Eleftheriadis K., Vratolis S., Nyeki S.. Aerosol black carbon in the European Arctic: Measurements atZeppelin station, Ny-A°lesund, Svalbard from1998-2007. Geophysical Research Letters,2009,36,L02809, doi:10.1029/2008GL03574.
    Etheridge D. M., Steele L. P., Francey R. J., et al.. Atmospheric methane between1000A.D. and present:Evidence of anthropogenic emissions and climatic variability. Journal of Geophysical Research,1998,103(D13):15979~15993.
    Ferretti D. F., Miller J. B., White J. W. C., et al.. Unexpected changes to the global methane budget overthe past2000years. Science,2005,309(5741):1714~1717.
    Fraser P. J., Hyson P., Rasmussen R. A., et al. Methane, carbon monoxide and methylchloroform in thesouthern hemisphere. Journal of Atmospheric Chemistry,1986,4(1):3~42.
    Fung, I., John J., Lerner J., et al.. Three-dimensional model synthesis of the global methane cycle. Journalof Geophysical Research,1991,96(D7):13033~13065.
    Haan D., Martinerie P., Raynaud D.. Ice core data of atmospheric carbon monoxide over Antarctica andGreenland during the last200years. Geophysical Research Letters,1996,23(17):2235~2238, doi:10.1029/96GL02137.
    Haan D., Raynaud D.. Ice core record of CO variations during the last two millennia: Atmosphericimplications and chemical interactions within the Greenland ice. Tellus,1998,50B:253~262.
    Hansen A. D. A., Bodhaine B. A., Dutton E. G., et al.. Aerosol black carbon measurements at the SouthPole: Initial results,1986-1987. Geophysical Research Letters,1988,15(11):1193~1196.
    Hara K., Yamagata S., Yamanocuhi T., et al.. Mixing states of individual aerosol particles in spring Arctictroposphere during ASTAR2000campaign. Journal of Geophysical Research,2003,108(D7),4209,doi:10.1029/2002JD002513.
    Hara K., Osada K., Yabuki M., et al.. Measurement of black carbon at Syowa station, Antarctica: Seasonalvariation, transport processes and pathways. Atmospheric Chemistry and Physics Discussions,2008,8(3):9883~9929.
    Hegg D. A., Warren S. G., Grenfell T. C., et al.. Sources of light absorbing aerosol in Arctic snow and theirseasonal variation. Atmospheric Chemistry and Physics Discussions,2010,10:13755~13796.
    Helmig D., Oltmans S. J., Carlson D., et al.. A review of surface ozone in the polar regions. AtmosphericEnvironment,2007,41(24):5138~5161.
    Holloway T, Levy ll H., Kasibhatla P. Global distribution of carbon monoxide. Journal of GeophysicalResearch,2000,105(D10):12123~12147.
    Hopper J. F., Barrie L. A., Silis A., et al.. Ozone and meteorology during the1994Polar SunriseExperiment. Journal of Geophysical Research,1998,103(D1):1481~1492.
    Houghton J. T., Ding Y., Griggs D. J. eds. Climate Change2001: The Scientific Basis Contribution ofWorking Group I to the Third Assessment Report of Intergovernmental Panel of Climate Change(IPCC).Cambridge:Cambridge University Press,2001.
    Houghton, R.A.. Revised estimates of the annual net flux of carbon to the atmosphere from changes inland use and land management1850-2000. Tellus,2003,55B:378~390.
    Inderm¨uhle A., Monnin E., Stauffer B., et al.. Atmospheric CO2concentration from60to20kyr BP fromthe Taylor Dome ice core, Antarctica. Geophysical Research Letters,2000,27(5):735~738.
    IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panelon Climate Change. Cambridge: Cambridge University Press,2007,130~336.
    Jacobson M. Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols.Nature,2001,409:695~697.
    Ito A., Ito A., Akimoto H.. Seasonal and interannual variations in CO and BC emissions from openbiomass burning in Southern Africa during1998-2005. Global Biogeochemical Cycles,2007,21, GB2011,doi:10.1029/2006GB002848.
    Kaufman Y. J., Tanré D., Boucher O.. A satellite view of aerosols in the climate system. Nature,2002,419:215~223.
    Keeling C. D., Adams J. A. Jr, Ekdahl C. A. Jr., et al.. Atmospheric carbon dioxide variations at the SouthPole. Tellus,1976,28:552~564.
    Langenfelds R. L., Francey R. J., Pak B. C., et al.. Interannual growth rate variations of atmospheric CO2and its δ13C, H2, CH4, and CO between1992and1999linked to biomass burning. Global BiogeochemicalCycles,2002,16(3):1048, doi:10.1029/2001GB001466.
    Logan J. A., Prather M. J., Wofsy S.C., et al.. Tropospheric chemistry: A global perspective. Journal ofGeophysical Research,1981,86(C8):7210~7254.
    Lu L. H., Bian L. G., Cheng Y. J., et al.. Surface ozone observation during voyages to the Arctic andAntarctic regions. Chinese Science Bulletin,2001,46(23):1995~2000.
    McConnell J. R., Edwards R., Kok G. L., et al..20th-century industrial black carbon emissions alteredarctic climate forcing. Science,2007,317(5843):1381~1384, doi:10.1126/science.1144856.
    Morimoto S., Wada M., Sugawara S., et al.. In-situ measurement of the atmospheric CO concentration atSyowa station, Antarctica. Polar Meteorology and Glaciology,2002,16:95~105.
    Morimoto S., Nakazawa T., Aoki S., et al.. Concentration variations of atmospheric CO2observed atSyowa station, Antarctica from1984to2000. Tellus,2003,55B:170~177.
    Murayama S., Nakazawa T., Yamazaki K., et al.. Concentration variations of atmospheric CO2over Syowastation, Antarctica and their interpretation. Tellus,1995,47B:375~390.
    Novelli P. C., Masarie K. A., Lang P. M.. Distributions and recent changes of carbon monoxide in thelower troposphere. Journal of Geophysical Research,1998,103(D15):19015~19033.
    Novelli P. C., Masarie K. A., Lang P. M., et al.. Reanalysis of tropospheric CO trends: Effects of the1997-1998wildfires. Journal of Geophysical Research,2003,108(D15):4464.
    Khalil M. A. K., Rasmussen R. A.. Atmospheric methane: Trends over the last10000years. AtmosphericEnvironment,1987,21:2445~2452.
    Krinner G., Genthon C.. Tropospheric transport of continental tracers towards Antarctica under varyingclimatic conditions. Tellus,2003,55B:54~70.
    Oltmans S. J.. Surface ozone measurements in clean air. Journal of Geophysical Research,1981,86(C2):1174~1180.
    Pereira E. B., Evangelista H., Pereira K. C. D., et al.. Apportionment of black carbon in the SouthShetland Islands, Antarctic Peninsula. Journal of Geophysical Research,2006,111(D03303), doi:10.1029/2005JD006086.
    Prentice I. C., Farquhar G. D., Fasham M. J. R., et al. The carbon cycle and atmospheric carbon dioxide. In:Climate Change2001: The Scientific Basis: Contribution of WGI to the Third Assessment Report of theIPCC. Houghton J. T. et al.,(eds.), Cambridge University Press, New York, pp.183~237.
    Quinn P. K., Bates T. S., Baum E., et al.. Short-lived pollutants in the Arctic: Their climate impact andpossible mitigation strategies. Atmospheric Chemistry and Physics,2008,8(6):1723~1735.
    Rahn K. A., Borys R. D., Shaw G. E.. The Asian source of Arctic haze bands. Nature,1977,268:713~715.Ramanathan V., Carmichael G.. Global and regional climate changes due to black carbon. NatureGeoscience,2008,1(4):221~227.
    Repapis C. C., Mantis H. T., Paliatsos A. G., et al.. Case study of UV-B modification during episodes ofurban air pollution. Atmospheric Environment,1998,32(12):2203~2208.
    Rinke A., Dethloff K., Fortmann M. Regional climate effects of Arctic haze, Geophysical Research Letters,2004,31, L16202, doi:10.1029/2004GL020318.
    Robinson E., Bamesberger W. L., Menzia F. A., et al. Atmospheric trace gas measurements at Palmerstation, Antarctica:1982-83. Journal of Atmospheric Chemistry,1984,2(1):65~81.
    Seinfeld J. H., Pandis S. N.. Atmospheric chemistry and physics: From air pollution to climate change.John Wiley&Sons, Inc., New York,1998,1326pp.
    Steele L. P., Lang P. M. Martin R. C. Atmospheric methane in Antarctica. Antarctic Journal of the UnitedStates,1989,24:239~241.
    Steele L. P., Dlugokencky E. J., Lang P. M., et al.. Slowing down of the global accumulation ofatmospheric methane during the1980s. Nature,1992,358:313~331.
    Sun L. G., Zhu R. B., Xie Z. Q., et al.. Emissions of nitrous oxide and methane from Antarctic Tundra:Role of penguin dropping deposition. Atmospheric Environment,2002,36(31):4977~4982.
    Thompson A. M., Cicerone R. J.. Possible Perturbations to Atmospheric CO, CH4and OH. Journal ofGeophysical Research,1986,91(D10):10853~10864.
    Thompson A. M.. The oxidizing capacity of the Earth’s atmosphere: Probable past and future changes.Science,1992,256:1157~1165.
    Van der Werf G. R., Randerson J. T., Collatz G. J., et al.. Continental-scale partitioning of fire emissionsduring the1997to2001El Nino/La Nina period. Science,2004,303(5654):73~76.
    Wang Z., Chappellaz J., Park K., et al.. Large variations in Southern Hemisphere biomass burning duringthe last650years. Science,2010,330(6011):1663~1666.
    Wang Y. T., Bian L. G., Ma Y. F., et al.. Surface ozone monitoring and background characteristics atZhongshan station over Antarctica. Chinese Science Bulletin,2011,56(10):1011~1019.
    Warren S. G., Clarke A. D.. Soot in the atmosphere and snow surface of Antarctica. Journal of GeophysicalResearch,1990,95(D2):1811~1816.
    WDCGG. WMO World Data Center for Greenhouse Gases Data Summary. Tokyo, Japan,2011,35:1~104.William C. M., Derek E. D.. Estimates of aerosol species scattering characteristics as a function of relativehumidity. Atmospheric Environment,2001,35(16):2845~2860.
    WMO. Scientific assessment of ozone depletion:1998. WMO global ozone research and monitoringproject-Report No.44, World Meteorological Organization, Geneva,1999.
    WMO. Strategy for the Implementation of the Global Atmosphere Watch Programme (2001-2007), acontribution to the implementation of the WMO long-term plan. Geneva, Switzerland,2001,(142):1~21.
    WMO. Greenhouse Gas Bulletin: The state of greenhouse gases in the atmosphere using globalobservations through2006. WMO,2008.
    Wolff E. W., Cachier H.. Concentrations and seasonal cycle of black carbon in aerosol at a coastalAntarctic station. Journal of Geophysical Research,1998,103(D9):11033~11041.Yamanouchi T., Treffeisen R., Herber A., et al.. Arctic Study of Tropospheric Aerosol and Radiation(ASTAR)2000: Arctic haze case study. Tellus,2005,57B:141~152.
    Yang J., Honrath R. E., Peterson M. C., et al.. Impacts of snowpack emissions on deduced levels of OHand peroxy radicals at Summit, Greenland. Atmospheric Environment,2002,36:2523~2534.
    Zhu R. B., Liu Y. S., Xu H., et al.. Methane emissions from three sea animal colonies in the maritimeAntarctic. Atmospheric Environment,2008,42(6):1197~1205.
    Zieger P., Fierz-Schmidhauser R., Gysel M., et al.. Effects of relative humidity on aerosol light scatteringin the Arctic. Atmospheric Chemistry and Physics Discussions,2010,10:3659~3698.
    日本国立极地研究所.南极の科学-3气象.古今书院,1988,1~334.
    安俊琳,王跃思,李昕,等.北京地面紫外辐射与空气污染的关系研究.环境科学,2008,29(4):1053~1058.
    陈立奇.中国第一次北极科学考察报告.北京:海洋出版社,2000,1~191.
    陈立奇.北极海洋环境与海气相互作用研究.北京:海洋出版社,2003,1~339.
    程红兵,王木林,温玉璞,等.我国瓦里关山、兴隆温室气体CO2、CH4和N2O的背景浓度.应用气象学报,2003,14(4):402~409.
    J.C.King, J.Turner著,张占海等译.南极天气和气候.海洋出版社.2007,80~88.
    康建成,唐述林,刘雷保.南极海冰与气候.地球科学进展,2005,20(7):786~793.
    刘雅淑,朱仁斌,李香兰,等.东南极米洛半岛近地面大气CH4浓度及其δ13C的时空变化特征.极地研究,2008,20(4):310~319.
    陆龙骅,卞林根,逯昌贵,等.75oN~70oS UVB辐射经向变化特征的观测研究.自然科学进展,2001,11(8):835~839.
    陆龙骅,卞林根,逯昌贵,等.近20年中国南极科学考察的气象业务进展.气象,2005,31(5):3~8.
    陆龙骅,卞林根.极地大气科学考察与全球变化.自然杂志,2008,30(5):262~266.
    秦瑜,赵春生.大气化学基础.北京:气象出版社,2003,114~128.
    苏晨,张小玲,刘强,等.上甸子本底站气溶胶散射系数变化特征的初步分析.气候与环境研究,2009,14(5):537~545.
    孙立广,朱仁斌,谢周清,等.南极Fildes半岛CH4浓度监测.自然科学进展,2001,11(9):995~998.
    汤洁,卞林根,颜鹏,等.中国第三次北极科学考察走航路线上空黑碳气溶胶的观测研究.海洋学报,2011,33(2):60~68.
    许晨海,吴宝俊,樊根彦.南大洋海冰月际变化的一些特征.气象,1995,21(11):38~41.
    许黎,王亚强,陈振林,等.黑碳气溶胶研究进展I:排放、清除和浓度.地球科学进展,2006,21(4):352~360.
    王明星.大气化学(第二版).北京:气象出版社.1999.
    王琛瑞,黄国宏,梁战备,等.大气甲烷的源和汇与土壤氧化(吸收)甲烷研究进展.应用生态学报,2002,13(12):1707~1712.
    翟兆锋.2006年中山站极地气象特征.海洋预报,2008,25(1):41~46.
    詹建琼,陈立奇,张远辉,等.北极黑碳气溶胶研究现状和展望.极地研究,2010,22(1):56~68.
    章育仲,袁凤杰.全球大气监测网与我国监测站网.气象科技,2002,30(1):57~59.
    张占海.中国第二次北极科学考察报告.北京:海洋出版社,2004,1~229.
    张海生.中国第三次北极科学考察报告.北京:海洋出版社,2009,1~225.
    赵玉成,温玉璞,德力格尔,等.青海瓦里关大气CO2本底浓度的变化特征.中国环境科学,2006,26(1):1~5.
    赵福平.我国极地科学考察的作用和意义.科技传播,2010,72~73.
    周凌晞,周秀骥,张晓春,等.瓦里关温室气体本底研究的主要进展.气象学报,2007,65(3):458~468.
    朱仁斌,孙立广,谢周清,等.南极菲尔德斯半岛植被微区CO2浓度的监测.环境科学,2001,22(4):6~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700