用户名: 密码: 验证码:
节水改造后盐渍化灌区农田水盐环境变化与预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国大型灌区普遍存在的问题:灌区可利用水量减少;有效灌溉面积比率低;土壤盐渍化严重(北方);工程老化失修,灌溉水利用效率较低。自1998年以来,国家启动了大型灌区续建配套与节水改造工程,然而在节水改造改措施善了灌区灌溉条件,提高了灌区农业综合生产能力的同时,灌区内农田水文循环规律也随之被改变,对于北方灌区,渠道衬砌、井区结合和田间节水技术的改进也将打破原有的农田水盐动态平衡,使区域农田水盐平衡和农田水环境发生相应变化,这些变化将对灌区水盐环境进而对灌区农业发展产生怎样的影响,成为人们关注的焦点。针对以上问题本文以北方大型灌区节水改造工程实施为背景,以地处北方干旱寒冷地区的内蒙古河套灌区为研究对象,分别从灌区地下水化学、土壤盐渍剖面类型及分布特征、地下水埋深和土壤水盐与地下水关系四个方面来论述节水改造给灌区带来的影响。
     (1)通过对内蒙古河套灌区上中下游地下水进行系统取样分析,综合运用描述性统计、相关性分析、离子比例系数和图解法(将H.H.托尔斯基汉方格图解法、Piper三角图示法和多矩形图解法(MRD)应用于内蒙古河套灌区),全面系统地研究节水改造前后内蒙古河套灌区地下水水化学的时空变异特征与演变规律。揭示了风化溶滤、蒸发浓缩和阳离子交换是控制内蒙古河套灌区地下水质演变的主要水文化学过程。得出了与节水改造前相比,节水改造后HC03在河套灌区地下水中绝对含量由在阴离子中最小变为最大,成为地下水的主要阴离子;节水改造后HC03浓度有所增加,CL"和Na+的浓度有所减少,灌区地下水向着淡化,对作物危害减小的方向转变;节水改造后HC03-在阴离子占主导地位的化学类型多于节水改造前的。
     运用7种国内外常用的灌溉水质评价方法评价了节水改造前后内蒙古河套灌区地下水水质,分析了地下水水质的变化趋势。指出地下水质有逐年淡化的趋势。
     建立了基于Bayes判别分析法的地下水化学类型分类模型,为河套灌区地下水水化学类型评判与分类提供了新的数量化和定量化途径。
     (2)以GIS技术为支撑,综合运用地质统计学,聚类分析、描述性统计和表聚系数,系统研究并总结了节水改造前后内蒙古河套灌区上中下游不同盐分剖面类型土壤电导率在水平方向和垂直方向的分布特征和规律,应用该规律对各类盐渍剖面的空间分布进行探讨,揭示节水改造前后不同盐分剖面类型土壤电导率分布特征差异和各类盐渍剖面的空间分布差异。得出了节水改造前后灌区上游、中游和下游土壤盐分剖面均可分为均布型和表聚型2类。根据不同土层的相似性,上游和中游区0~100cm的采样层可分为0~20cm和20-100cm两个层次,下游区可分为0~40cm和40~100cm两个层次。通过对比上中下游三个研究区节水改造前后的盐分剖面类型分布,得出节水改造措施的实施,使得研究区盐分剖面类型向均布型发展,且整体上土壤盐分有所降低。
     (3)运用随机理论,建立了基于加权马尔科夫链的地下水埋深预测模型,并将模糊集理论中的隶属度和级别特征值引入到模型的建立中来,实现了对灌区地下水埋深具体值的预测,增强了马尔科夫链模型的预测功能。应用遍历定理,预测内蒙古河套灌区上中下游在未来时段内地下水埋深所处区间值。得出了中游区的地下水埋深更多的时候处于[2.380,2.742)区间,下游区的地下水埋深更多的时候处于[2.218,2.506)区间,这两个区间的数值都低于内蒙古河套灌区的临界地下水埋深2.0m,在未来的时间河套灌区中下游的盐渍化有望进一步减轻。而上游区的地下水埋深更多的时候处于[1.227,1.727)区间,此区间的数值高于内蒙古河套灌区的临界地下水埋深2.0m,在未来的时间河套灌区上游是控制地下水埋深的重点区域。
     (4)以内蒙古河套灌区中游临河区为例,探讨节水改造后灌区土壤水盐与地下水的内在联系,分析地下水矿化度年内变化规律,揭示出不同埋深水平条件下地下水对土壤含水率的影响以及相同矿化度条件下地下水埋深与土壤含盐量的相关关系。得出了地下水作用对灌区0~100cm深度土壤体积含水率都有影响,并且对60-100cm深度土壤含水率的影响尤为突出;随着地下水埋深水平的变化(浅→中→深),0~100cm各层土壤体积含水率总体逐渐降低。随着水文年的不同(湿润年→干旱年→特别干旱年),在地下水埋深较大条件下的土壤体积含水率值越来越高。在地下水矿化度基本不变的情况下,根层土壤电导率与地下水埋深存在较好的指数关系。在0~20cm20-40cm和40~60cm三个土层中,土壤表层(0-20cm)盐分受地下水埋深的影响最大,土壤表层(0~20cm)土壤含盐量对地下水矿化度变化最敏感。
To the question of Chinese large irrigation area:available water is reduced; effective irrigation area ratio is low; engineering services is old; efficiency of irrigated water is low. Since1998, the country started water saving reform and irrigation district reconstruction project, however, when improving the condition of irrigation, improving the irrigation agricultural comprehensive production capacity, farmland rule of hydrologic cycle in irrigation area is changed. The improving of canal lining、field water-saving and conjunctive use of canal and well technique breaks intrinsic farmland water salt dynamic balance, what take farmland water salt balance and farmland water-environment to change. How will the changing impact irrigation agricultural development, which becomes the focuses of attention. For the above problems, against the background of water saving reform project implementation in the northern large-scale irrigation districts, cold-dry Hetao irrigation area of Inner Mongolia in north China is taken as research, the paper discuss the impact on the irrigation area of water saving reform from groundwater chemistry、soil salinity profile type and its distribution characteristics、groundwater depth and the relationship between soil water and salt and groundwater.
     1. The groundwater samples in Hetao irrigation area of Inner Mongolia are analyzed scientifically and systemically. then the descriptive statistics, the correlation matrices, the ratio coefficient of the main ions and the graphical method(H. HToJicTHXHHr diagram、the piper diagram and Multi-rectangular diagram are applied to Hetao irrigation area) are used to gain the better understanding of the spatial and the temporal variation of the hydrochemistry characteristics and the evolution laws of groundwater in Hetao irrigation area of Inner Mongolia. The followingmain hydro chemical processes are inferred to controll thewater quality of the groundwater system in Hetao irrigation area of Inner Mongolia at earlier stage and later stage of water saving reform:(1)the weather-dissolution,(2)the evaporative condensation,(3)the ion-exchange reactions, and (4)the mixing of the surface waterwith high salinity. The paper come to the conclusion that after water-saving rehabilitation, bicarbonate ion concentration increase, chloride ion concentration and sodium ion concentration decrease: After water saving reform implemented, the bicarbonate ion become the main cation of groundwater; After water saving reform implemented, the groundwater of the irrigation area is freshening, and its harm for crop weaken; Chemical types that the bicarbonate ion is in leading position are more.
     Seven kinds of irrigation methods used at home and abroad are applied to evaluate the groundwater quality in Hetao irrigation area of Inner Mongolia at earlier stage and later stage of water saving reform. The paper analyse trends in the groundwater quality and come to the the conclusion that groundwater quality is freshening.
     The paper establish chemical classification of groundwater model based on Bayes discriminant analysis method, provide the new quantification way for evaluation and classification of chemical classification of groundwate in Hetao irrigation area
     2. The study is supported by GIS technology. Geostatistic、the cluster analysis、the descriptive statistics and the accumulation coefficient are used synthetically. Characteristics and regularity of spatial, horizontal and vertical, distribution of soil EC in different salinity profile types on the middle and lower reaches of Hetao irrigation area of Inner Mongolia at earlier stage and later stage of water saving reform were studied and summarized scientifically, and these regularitieswere then used to explore spatial distribution of different salinity profile type. The paper reveals difference from distribution of soil EC in different salinity profile types and spatial distribution of different salinity profile type at earlier stage and later stage of water saving reform, meanwhile offers scientific support for fall irrigation. Soil salinity profile on the middle and lower reaches of Hetao irrigation area could be obviously classified into normal and even. According to the similarity of different soil layers, a soil profile of100cm in depth in upriver and middle reaches area could be divided into two layers,0~20cm,20~100cm:a soil profile of100cm in depth in lower reaches area be divided into two layers,0~40cm,40~100cm. Compared with the distribution of salinity profile types on the middle and lower reaches of Hetao irrigation area of Inner Mongolia at earlier stage and later stage of water saving reform, salinity profile types are toward the even, and the soil salinity reduce integrally, after water saving reform implemented.
     3. Using stochastic theory, the prediction of groundwater depth Model Based on Markov Chain with weights was established.The paper introduce memberships and leveled characteristic value of fuzzy set theory into establishment of model, that realized forecast of detailed groundwater depth value, increased function of the model Markov Chain with weights. Using ergodic theorem, the paper forecast the intervalvalue what groundwater depth locate on the middle and lower reaches of Hetao irrigation area of Inner Mongolia, and point out the key control area of groundwater depth in Hetao irrigation area of Inner Mongolia in the future. More Often, the groundwater depth in middle reaches area is between2.380and2.742, and the groundwater depth in lower reaches area is between 2.218and2.506. The value of interval is under critical buried depth of groundwater in Hetao irrigation area of Inner Mongolia (2.0m). In the future, the soil Salinization in middle and lower reaches area is alleviated possibly. But more often, the groundater depth in upriver area is between1.227and1.727, In the future, The lower reaches area of Hetao irrigation area of Inner Mongolia is key area that is controled.
     4. In LinHe area of Hetao irrigation area of Inner Mongolia Case, the paper discussed the relation between soil water and salt and groundwater after water saving reform implemented, analysed the changing regularity of mineralization in one year, reveals the impact on the soil water content of groundwater under the different depth level, and the relationship between groundwater depth and soil salt content under the conditions that is the mineralization is same. The paper come to the conclusion that groundater effects have an effect on soil volume moisture content of100cm in depth, and the influence on soil volume moisture content of60-100cm soil layer is more.with the change of groundater depth level, the soil volume moisture content of100cm in depth decreased gradually.with the hydrological year (humid year—drought year—Special drought year) under the condition that groundwater depth was deep, soil volume moisture content increased gradually. Under the condition that Groundwater salinity was unchanged basically, the relationship between soil conductivity of root layer and groundwater depth was exponential relationship. To0~20cm%20~40cm and40~60cm, groundater depth have the biggest effect on salt of topsoil (0~20cm). salt contentof surface soil (0~20cm) was the most sensitive to the change of Groundwater salinity.
引文
1. Stumm W, Morgan J J, Aquatic chemistry. New York, John Wi. leyand Sons,1981. INC59-7.
    2. A. P. Belousova. etc. Evolution of groundwater chemieal composition under human activity in an oilfield [J]. Environmental Geolog.1999,38(1):34-46.
    3. R. Favara. ete. Hydrochemieal evolution and environmental features of Salso River catehment, central Sieiiy (Italy) [J]. EnvironmentalGeology.2000,39(11):1205-1215.
    4. A. Vandenbohed, L Lebbe. Numerieal modeling and hydroc hemical characterization of fresh-wate lens in the Belgian coastal plain [J]. Hydrogeology Journal.2002, 10(5):S76-S86.
    5. 沈照理.水文地球化学基础[M].北京:地质出版社,1986
    6. 沈照理,朱宛华等.水文地球化学基础[M].北京:地质出版社,1993.
    7. 李定龙.徐州张集煤矿区地下水化学特征的初步研究[J].中国煤田地质,1995,7(3):49-54.
    8. 宝成,严树堂.阿拉善板滩井盆地地下水及水化学特征研究[J].干旱区资源与环境,1996,10(4): 26-32.
    9. 叶浩,王贵玲,叶思源等.宁夏南部月亮山西麓地下水化学特征研究[J].地球学报,2001,22(4): 330一334.
    10.陈小兵,周宏飞,张学仁等.新疆喀什噶尔冲积平原区地下水水化学特征[J].干旱区地理,2004,27(1): 75-79.
    11.丁宏伟,张举.河西走廊地下水水化学特征及其演化规律[J].干旱区研究,2005,22(1):24-28.
    12.章光新,邓伟,何岩,等.中国东北松嫩平原地下水水化学特征与演变规律[J].水科学进展,2006,17(1):20-28.
    13.陈永金,陈亚宁,李卫红等.塔里木河下游间歇性输水对土壤水化学的影响[J].地理学报,2007,62(9):970-980.
    14.罗照华,曾小芽,邓·少华:湖南宏厦桥花岗岩体风化壳地下水化学特征及其成因分析[J].地球与环境,2008,36(2):97-105.
    15.孙芳强,侯光才,窦妍等.鄂尔多斯盆地白垩系地下水循环特征的水化学证据一以查布水源地为例[J].吉林大学学报(地球科学版),2009,39(2):269-293.
    16.邵天杰,赵景波,董治宝.巴丹吉林沙漠湖泊及地下水化学特征[J].地理学报,2011,65(5):662-672.
    17.、安乐生,赵全升,叶思源等.黄河三角洲浅层地下水化学特征及形成作用[J].环境科学,2012,33(2):370-378.
    18.雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    19. Campbell J B. Spatial variation of sand content and pH within single contiguous del ineation of two soil mapping units [J]. Soil Sci. Soc. Am. J.,1978,42:460-464.
    20. BurgessT. M., R. Webster. Optimal interpolation and isarithmie mapping of soil properties:The semi Varigram and punctual Kriging [J].J Soil Sci,1980, 31 (2):315-331.
    21. Burrough P. A.Multiscale sources of spatial variability in soil:The application of fractal concepts to nested levels of soil variation [J].J Soil Sci,1983, 34 (3):577-597.
    22. Webster R. Quantitative spatial analysis of soil in the field [J].Advance in Soil Science,1985,3:1-70.
    23. Stein A, Sylla M. Spatial variability of soil salinity at dif-ferent scales in the mangrove rice agro-ecosystem in West Africa [J]. Agric-ecosyst-environ,1995, 54(1-2):1-15.
    24. Souza.L.C.de, Queiroz.J.E., et al. Spatial variability of soil salinity in an alluvial soil of the semi-arid region of Paraiba state[J]. Revista Brasileira de Engenharia Agricola e Ambiental,2000,4 (1):35-44.
    25. Douaik A, VanMeirvenne M, Toth T, Serre M. Space-timemapping of soil salinity using probabilistic bayesianmaxium entropy [J].Stoch EnvironRes RiskAssess,2004,18: 219-227.
    26. Panagopoulos T, Jesus J, Antunes M D C, Beltro J. Analysis of spatial interpolation for optimising management of a salinized field cultivated with lettuce[J]. European Journal of Agronomy,2006,24(1):1-10.
    27. Cemek B, Guler M, KiliC K, et al. Assessment of spatial variability in some soil properties as related to soil salinity and alkalinity in Bafra plain in northern Turkey [J]. Environ. Monit. Assess,2007,124:223-234.
    28.杨玉玲,文启凯,田长彦等.土壤空间变异研究现状及展望[J].干旱区研究,2001,18(2):50-55.
    29.史海滨,陈亚新,朝伦巴根等.表层土壤盐分空间变异性及合理采样数与信息估计[J].内蒙古农牧学院学报,1996,17(4):74-81.
    30.白由路李保国胡克林.黄淮海平原土壤盐分及其组成的空间变异特征研究[J].土壤肥料,1999,(3):22-26.
    31.杨玉玲,田长彦,盛建东等.淤土壤可溶性盐分空间变异性与棉花生长关系研究[J].干旱区地理,2002,25(4):329-335.
    32.许迪,丁昆仑,蔡林根.区域水土特性参数时空变异分布特征及相关分析[J].中国水利水电科学研究院学报,2003,1(1):45-51.
    33.徐英,陈亚新,史海滨等.土壤水盐空间变异尺度效应的研究[J].农业工程学报,2004,20(2):1-5.
    34.盛建东,杨玉玲,陈冰等.土壤总盐、pH及总碱度空间变异特征研究[J].土壤,2005,37(1):69-73.
    35.姚荣江,杨劲松,刘广明等.黄河三角洲地区典型地块土壤盐分空间变异特征研究[J].农业工程学报,2006,22(6):61-66.
    36.杨劲松,姚荣江.黄河三角洲地区土壤水盐空间变异特征研究[J].地理科学,2007,27(3):348-353.
    37.贾艳红,赵传燕,南忠仁等.黑河下游地下水波动带土壤盐分空间变异特征分析[J].干旱区地理,2008,31(3):379-388.
    38.李敏,李毅,曹伟等.不同尺度网格膜下滴灌土壤水盐的空间变异性分析[J].水利学报,2009,40(10):1210-1218.
    39.李彬,史海滨,张义强等.农田大尺度表层土壤电导率的序贯高斯模拟[J].中国农村水利水电,2010,(3):57-61.
    40.周在明,张光辉,王金哲等.环渤海低平原水土盐分与水位埋深的空间变异及协同克立格估值[J].地球学报,2011,32(4):493-499.
    41.管孝艳,王少丽,高占义等.盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系[J].生态学报,2012,32(4):1202-1210.
    42.管孝艳,王少丽,高占义等.基于多变量时间序列CAR模型的地下水埋深预测[J].农业工程学报,2011,27(7):64-69.
    43.陈亚新,屈忠义,史海滨等.大型灌区节水改造后地下水动态的有限元法预测一以黄河河套平原内一个试验区为例[J].中国农村水利水电,2005,(5):10-12.
    44.时光新.地下水位动态预测的模糊模式识别法[J].工程勘察,1999,(4):39-43.
    45.张焕昭,韩军利,宋协胜等.BP-ANN模型在井灌水稻区地下水埋深预测中的应用[J].水利科技与经济,2003,9(1):21-22.
    46.沈冰,刘敏,黄领梅.灰色自记忆模型及其在新疆和田地下水埋深预测中的应用[J].西北农林科技大学学报,2006,34(11):223-226.
    47. Gabriel K R, Neumann J. A Markov Chain model for daily rainfall occurrence at Tel Aviv [J]. Quarterly Journal Royal Meteorological Society London,1962,88:90-95.
    48. Gates P, H Tong. on Markov Chain modeling to some weather data [J] Optim Contr Appl Met,1976,15 (11):1145-1151.
    49. Shi Yongnina & LuWenfang. A develoPment in the stochastic model of air-sea interaction [J]. Aeta Oceanologica Sinica,1986(3):375-383.
    50.黄仁立.马尔可夫链在低温阴雨一长期趋势预报中的应用[J].广西气象,1991,(4):29-31.
    51.宋印胜.马尔可夫链模型在地下水水位预测中的应用[J].山东地质,1998,14(1):34-40.
    52.王义民,于兴杰,畅建霞等.基于BP神经网络马尔科夫模型的径流量预测[J].武汉大学学报(工学版),2008,41(5):14-17.
    53.钱家忠,朱学愚,吴剑锋.地下水资源评价中降水量的时间序列马尔可夫模型[J].地理科学,2001,21(4):350-353.
    54.于兴杰,畅建霞,黄强等.基于灰色马尔柯夫预测模型的径流量预测[J].沈阳农业大学学报,2008,39(1):69-72.
    55.周秀平,黄伟军,王文圣等.模糊马尔科夫链预测模型在桂江流域径流预测中的应用[J].沈阳农业大学学报,2006,(1):29-31.
    56.冯耀龙,韩文秀.权马尔可夫链在河流丰枯状况预测中的应用[J].系统工程理论与实践,1999,(10):89-93.
    57.孙才志,张戈,林学钰.加权马尔可夫模型在降水丰桔状况预测中的应用[J].系统工程理论与实践,2003,(4):173-178.
    58.夏乐天.梅雨强度的指数权马尔可夫链预测[J].水利学报,2005,36(8):988-993.
    59.彭世彰,魏征,窦超银等.加权马尔科夫模型在区域干旱指标预测中的应用[J].系统工程理论与实践,2009,29(9):173-178.
    60.夏乐天,朱元甡.马氏链预测方法的统计试验研究[J].工程数学学报,2010,27(2):313-320.
    61.夏乐天.马尔可夫链预测方法及其在水文序列中的应用研究[D].南京:河海大学博士学位论文,2005.
    62.雷志栋,杨诗秀,许志荣等.土壤特性空间变异性初步研究[J].水利学报,1985,9:10-21.
    63.左强,李保国,杨小路.蒸发条件下地下水对lm土体水分补给的数值模拟[J].中国农业大学学报,1999,4(1):37-42.
    64.匡成荣,沈波,洪宝鑫等.稻田土壤水分与浅层地下水埋深关系的研究[J].中国农村水利水电,2001,(5):22-23.
    65.曹红霞,康绍忠,何华.灌溉对土壤水分分布和潜水蒸发的影响[J].西北农林科技大学学报,2003,31(5):69-72.
    66.巴比江,郑大玮,卡热玛·哈木提等.地下水埋深对春玉米田土壤水分及产量的影响[J].水土保持学报,2004,18(3):57-65.
    67.巴比江,郑大玮,贾云茂等.地下水埋深对冬麦田土壤水分及产量的影响[J].节水灌溉,2004,(5):5-9.
    68.李志军,张富仓,康绍忠等.不同潜水埋深条件下的农田土壤水分动态试验研究[J].水利与建筑工程学报,2005,3(4):21-23.
    69.杨建锋,邓伟,章光新.浅埋深地下水作用下苏打盐渍土水分动态变化特征fJ].水文地质工程地质,2007,(,4):61-65.
    70.孔繁瑞,屈忠义,刘雅君等.不同地下水埋深对土壤水、盐及作物生长影响的试验研究[J].中国农村水利水电,2009,(5):44-48.
    71.朱清海,刘洪军.盘山县地下水与土壤盐渍化关系[J].辽宁农业科学,1984,(1):3-5.
    72.裴钟源,刘君阁.背河洼地土壤水盐动态研究[J].郑州工学院学报,1994,15(2):41-47.
    73. Ceuppens J, Wopereis MCS. Impact of non-drained irrigated rice cropping on soil salinization in the Senegal River Delta[J]. Geoderma,1999,92:125-140.
    74. Mahmood K, Morris J, CollopyJ, et al. Croundwater uptake and sustainability of farm plantations on saline sites in Punjab province, Pa-kistan[J].Agricultural Water Management,2001,48:1-20.
    75.高瑾,刘延锋,周金龙等.干旱区灌排条件下田间土壤盐分动态分析[J].中国农村水利水电,2004,(4):14-15.
    76.付秋萍,张江辉,王全九等.塔里木盆地土壤盐分变化特征分析[J].自然科学进展,2007,17(8):1091-1097.
    77.樊丽琴,杨建国,王长军.银北灌区地下水动态及其对土壤盐分的影响[J].甘肃农业科技,2008,(4):11-14.
    78.吕云海,海米提.依米提,刘国华等.于田绿洲土壤含盐量与大学生关系分析[J].新疆农业科学,2009,46(5):1039-1097.
    79.史海滨,李瑞平等.盐渍化土壤水热盐迁移与节水灌溉理论研究[M].北京:中国水利水电出版社,2011.
    80.阮本清,张仁铎,李会安.河套灌区水平衡机制及耗水量研究[M].北京:科学出版社,2008.
    81.桑以琳.土壤学与农作学[M].北京:中国农业出版社,2005.
    82.王伦平,陈亚新,曾国芳等.内蒙古河套灌区灌溉排水与盐碱化防治[M].北京:水利电力出版社,1993.
    83.史海滨等.作物水盐联合胁迫效应与水分高效利用研究[M].北京:中国水利水电出版社,2009.
    84.陈功新,张文,刘金辉等.中国西北中小型盆地天然地下水水化学特征一以公婆泉盆地为例[J].干旱区研究,2008,25(6):812-817.
    85.李卫红,陈永金,张保华等.塔里木河中游地下水化学变化及其影响因素[J].环境化学,2011,30(2):459-465.
    86.钱会,覃兰丽,姬亚东等.鄂尔多斯盆地摩林河水化学成分的形成机制[J].干旱区研究,2007,24(5):590-597.
    87.陈永金,陈亚宁.堤防修建对塔里木河中游湿地地下水化学特征及水盐运移的影响[J].聊城大学学报(自然科学版),2009,22(4):79-85.
    88.孙亚乔,钱会,张黎等.银川地区地下水化学特征[J].干旱地区农业研究,2006,24(3):185-189.
    89.陈永金,陈亚宁,李卫红等.塔里木河下游地下水化学特征对生态输水的响应[J].地理学报,2005,60(2: 309-308.
    90.窦妍,侯广才,钱会等.干旱-半干旱地区地下水水文地球化学演化规律研究[J].干旱区资源与环境,2010,24(3):88-92.
    91.周金龙.多矩形图解法及其在塔里木盆地中的应用[J].水文地质工程地质,2006,(2):4-6.
    92. Niaz Ahmad, Zekai Sen, Manzoor Ahmad. Ground Water Quality Assessment Using Multi-Rectangular Diagrams[J]. Ground Water,2003,41(6):828-832.
    93. Adams S, Titus R, Pietersen K, et al.Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, SouthAfrica[J]. Jour-nal of Hydrology,2001(24): 91-93.
    94. Ramsis B Salama, Claus J Otto, RobertW.Fitzpatrick. Contributions of groundwater conditions to soil andwater salinization [J]. Hydrogeology Journal,1999(7):46-64.
    95.万文.矿井突水水源分析的Bayes判别分析模型及其应用[J].矿业工程研究,2009,24(3):61-65.
    96.梁才.基于Bayes判别理论的钢筋混凝土施工质量综合评价方法[J].混凝土,2011,(5):50-52.
    97.梁仕华,文畅平.膨胀土判别与分类的Bayes判别分析法[J].力学与实践,2008,30(6):73-76.
    98.文畅平.岩体质量分级的Bayes判别分析方法[J].煤炭学报,2008,33(4):395-399.
    99.宫凤强,李夕兵,张伟.基于Bayes判别分析方法的地下工程岩爆发生及烈度分级预测[J].岩土力学,2010,31(S1):370-377.
    100.朱学愚,钱孝星.地下水文学[M].北京:中国环境科学出版社,2005.
    101.马春花,全达人.地下水的化学分类与农牧业用水的水质评价[J].宁夏农学院学报,1986,(1):88-105.
    102.马春花,全达人,王红雨.灌溉用水质量的化学评价[J].宁夏工学院学报,1996,8(1):29-38.
    103.马春花,全达人,王红雨.灌溉用水质量的化学评价概述[J].灌溉排水,1997,16(2):57-60.
    104.周金龙,吴彬,王毅萍.新疆塔里木盆地平原区中盐度地下水分布及其质量评价[J].中国农村水利水电,2009,(9):32-36.
    105.吴吉春,张景飞.水环境化学[M].北京:中国水利水电出版社,2009.
    106.汪林,甘泓,汪珊等.宁夏引黄灌区水盐循环演化与调控[M].北京:中国水利水电出版社,2003.
    107.虎胆.吐马尔白,杨路华,史海滨等.地下水利用[M].北京:中国水利水电出版社,2008.
    108.陈亚新,屈忠义,高占义.基于ANN技术的大型灌区节水改造后农田水环境预测[J].农业工程学报,2009,25(1):1-5.
    109.高鸿永,伍靖伟,段小亮等.地下水位对河套灌区生态环境的影响[J].干旱区资源与环境,2008,25(1):134-138.
    110.张展羽,詹红丽,郭相平.滨海平原农田土壤含盐量空间变异分析[J].河海大学学报(自然科学版),2002,22(4):61-65.
    111. Yang Qiu, Bojie Fu, Jun Wang. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catachment of the Loess Plateau, China[J]. Journal of Arid Environments,2001,49:723-750
    112. JOSe MP, FERNANDO V, JOSeL R. Spatial evaluation of soil sal ininty using the WET sensor in the irrigated area of Seuura ri ver lowland [J]. Journal of Plant Nutrition and Soil Science,2010, doi:10.1002/jpln.200900221.
    113. Navarro-Pedreno J, JordanM M, Melendez-Pastor I, et a.1 Esti-mation ofsoil salinity in semi-arid land using a geostatisticalmodel [J]. Land Degradations Rehabilitation, 2007,18:1-15.
    114.Sembiring H, Raun W R.Effect of wheat straw inversion on soil water conservation[J]. Soil Science,1995,2:81-89.
    115.汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    116.吴秀芹,张洪岩,李瑞改等.ArcGIS地理信息系统应用与实践(上下册)[M].北京:清华大学出版社,2007.
    117.张仁铎.空间变异理论及应用[M].北京:科学出版社,2005.
    118.王仁铎,胡光道.线性地质统计学[M].北京:地质出版社,1988.
    119.侯景儒,黄竞先.地质统计学的理论与方法[M].北京:地质出版社,1989.
    120.王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    121.盖钧镒.试验统计方法[M].北京:中国农业出版社,2000.
    122.张庆利等.SPSS宝典(第二版)[M].北京:电子工业出版社,2011.
    123.宋新山,邓伟,何岩等.土壤盐分空间分异研究方法及展望[J].土壤通报,2001,32(6):250-254.
    124.区美美,王建武.土壤空间变异研究进展[J].土壤,2003,(1):30-33.
    125.杨红梅,徐海量,樊自立等.塔里木河下游表层土壤盐分空间变异和格局分析[J].中国沙漠,2010,30(3):564-570.
    126.赵成义,王玉潮,李子良等.田块尺度下土壤水分和盐分的空间变异性[J].干旱区研究,2003,20(4):252-256.
    127.杨玉建,杨劲松.典型潮土区土壤耕层盐分含量的趋势效应研究[J].灌溉排水学报,2004,23(6):10-13.
    128.胡克林,李保国,陈德立等.农田土壤水分和盐分的空间变异性及其协同克立格估值[J].水科学进展,2001,12(4):460-466.
    129.姚荣江,杨劲松,赵秀芳等.沿海滩涂土壤盐分空间分布的三维随机模拟与不确定性评价[J].农业工程学报,2010,26(11):91-97.
    130.赵锐锋,陈亚宁,洪传勋等.塔里木河源流区绿洲土壤含盐量空间变异和格局分析一以岳普湖绿洲为例[J].地理研究,2008,27(1):135-144.
    131.张慧文,马剑英,张自文等.地统计学在土壤科学中的应用[J].兰州大学学报(自然科学版),2009,45(6):14-20.
    132.高婷婷,丁建丽,哈学萍等.基于流域尺度的土壤盐分空间变异特征一以渭干河-库车河流域三角洲绿洲为例[J].生态学报,2010,30(10):2695-2705.
    133. Katz, Richard W. Computing probabilities associated with Markov Chain model for precipitation [J]. Optim Contr Appl Met,1974,13:953-954.
    134. SEN Zekai. Critical Drought Analysis by second orderMarkov Chain[J]. Journal of Hydrology,1990,120 (1-4):183-202.
    135.飞思科科技产品研发中心.MATLAB7基础与提高[M].北京:电子工业出版社,2006.
    136.赵锁志,刘丽萍,王喜宽等.河套灌区地下水临界深度的确定及其意义探讨[J].岩矿测试,2008,27(2):108-112.
    137.马亮,魏光辉,申莲.加权马尔可夫链在新疆阿克苏河年径流量预测中的应用[J].节水灌溉,2008,(10):44-46.
    138.吕卫东.马尔科夫链在气象预测中的应用[J].数学教学研究,2009,28(10):64-65.
    139.金星,洪延姬,张明亮等.马尔科夫模型状态转移概率矩阵的快速计算方法[J].弹箭与制导学报,2005,25(2):244-249.
    140.郭枫,郭相平,袁静等.地下水埋深对作物的影响研究现状[J].中国农村水利水电,2008,(1):63-65.
    141.孙仕军,丁跃元,马树文等.地下水埋深较大条件下井灌区土壤水分动态变化特征[J].农业工程学报,2003,19(2):70-74.
    142.沈荣开,张瑜芳,杨金忠.对内蒙古河套引黄灌区续建配套节水改造规划中几个问题的认识[J].中国农村水利水电,2001,(4):3-4.
    143. Peck AJ, Hatton T. Salinity and the discharge of salts from catch-ments in Australia. Journal of Hydrology,2003,272:191-202.
    144. Shi Haibin, A kae Takeo, Nagahori Kinzo, et al. Simulation of leaching requirement for Hetao irrigation district considering salt redistribution after irrigation. Transactions of the CSAE,2002,18(5):67-72.
    145.刘强,何岩,章光新.苏打盐渍土土壤水分动态及其与浅层地下水的交换关系[J].地理科学,2008,28(6):782-786.
    146.杨建强,罗先香.土壤盐渍化与地下水动态特征关系研究[J].水土保持通报,1999,19(6):11-15.
    147.周洪华,陈亚宁,李卫红.新疆铁干里克绿洲水文过程对土壤盐渍化的影响[J].地理学报,2008,63(7):714-724.
    148.张妙仙,杨劲松.地下水埋深对土壤及地下水盐分影响的信息统计分析[J].土壤,2001,(5):239-242.
    149.陈亚新,史海滨,田存旺.地下水与土壤盐渍化关系的动态模拟[J].水利学报,1997,(5):77-83.
    150.刘广明,杨劲松,李冬顺.地下水蒸发规律及其与土壤盐分的关系[J].土壤学报,2002,39(,3): 384-389.
    151.Dehaan R, Laylor GR. Image-derived spectral endmembers as indicators of salinization.International [J].Journal of Remote Sensing,2003,24 (4):775-794.
    152. Howari F M. Chemical and environmental implications of visible and near-infrared spectral features of salt crusts formed from different brines [J]. Annali di Chimica, 2004,94(4):315-323.
    153. Akhter J, Ahmed S, Malik K A. Use of brackish water for agriculture:Growth of salt tolerant plants and their effects on soil properties [J]. Science Vision,2002,7: 230-241
    154.屈忠义,陈亚新,范泽华等.大型灌区节水灌溉工程实施后土壤水盐动态规律预测及效果评估[J].中国农村水利水电,2007,(8):27-30.
    155.李彬,史海滨,张建国等.基于多元指示克立格方法的土壤盐分空间分布评价[J].节水灌溉,2010,(5):31-34.
    156.李彬,史海滨,张建国.河套灌区农田土壤水分空间变异分析[J].现代节水高效农业与生态灌区建设论文集,2010,471-476.
    157.薛铸,史海滨,郭云等.盐渍化土壤水肥耦合对向日葵苗期生长影响的试验[J].农业工程学报,2007,23(3):91-94.
    158.刘坤,陈新平,张福锁.不同灌溉策略下冬小麦根系的分布与水分养分的空间有效性[J].土壤学报,2003,40(5):697-703.
    159.张艳玲,欧阳竹,郭建青等.作物根层土壤水分动态监测最佳测量深度研究[J].中国农村水利水电,2010,(9):192-104.
    160.刘晶淼,安顺清,廖荣伟等.玉米根系在土壤剖面中的分布研究[J].中国生态农业学报,2009,17(3):517-521.
    161.刘荣花,朱自玺,方文松等.冬小麦根系分布规律[J].生态学杂志,2008,27(11):2024-2027.
    162.刘霞,王丽萍,张圣微等.内蒙古河套灌区灌排水离子组成及淋洗盐分用水量评价[J].中国生态农业学报,2011,19(3):500-505.
    63.王瑞久.三线图解及其水文地质解释[J].工程勘察,1983,(6):6-11.4.孙亚乔,钱会,张黎等.基于矩形图的天然水化学分类和水化学规律研究[J].地球科学与环境学报,2007,29(1):75-79.
    165.郭占荣,刘花台。西北内陆灌区土壤次生盐渍化与地下水动态调控[J].农业环境保护,2002,21(1):45-48.
    166.Van Genuchten, F J Leig, L J lund. Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soil.Proceedings of the International Workshop on Indirection Method for Estimating the Hydraulic Properties of Unsaturated Soil[M]. USA:California,1992.
    167.程满金,申利刚等.大型灌区节水改造工程技术试验与实践[M].北京:中国水利水电出版社,2003.
    168.阮本清,韩宇平,蒋任飞.灌区生态用水研究[M].北京:中国水利水电出版社,2007.
    169.李远华,崔远来.不同尺度灌溉水高效利用理论与技术[M].北京:中国水利水电出版社,2009.
    170.李彬,李晓烨,何贤伟等.土地开发整理项目绩效评价探析[J].中国科技信息,2011,(7):304-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700