用户名: 密码: 验证码:
新生大鼠脑干耳蜗核存在神经前体细胞的初步证据
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感音神经性聋是临床常见病和多发病,严重影响患者的生活质量,临床上尚无理想的治疗方法。目前关于感音神经性聋的防治研究已成为听力学和耳科学研究的热点和难点之一。近年来,运用胚胎或神经干细胞(neural stem cells,NSCs)以及(neural progenitor cells,NPCs)的替代治疗应运而生,并受到密切的关注。目前大量的研究致力于干细胞/前体细胞移植促进听觉功能恢复,研究方向主要集中于外源性NSCs的直接或定向诱导后移植,或者将NSCs作为外源性基因的载体进行移植。虽然国内外学者在此方面已经进行了很多工作,取得了一定的进展,但仍有很多难题亟待解决。其关键问题之一是:对于NSCs/NPCs在听功能的形成与发育过程中的作用,尤其是听觉中枢神经核团内是否存在多向分化潜能的NSCs/NPCs还不甚清楚。
     实验一:新生大鼠脑干耳蜗核神经前体细胞的分离、培养
     目的:目前听觉系统是否存在NSCs/NPCs的研究主要集中在内耳感受神经元的干细胞/前体细胞上,近年研究证实哺乳动物内耳中存在着一定数量毛细胞的前体细胞,而听觉中枢神经核团内是否存在多向分化潜能的NSCs/NPCs目前尚未见报道。本研究拟分离、培养新生大鼠脑干耳蜗核NPCs,观察其增殖及传代特性,建立新生大鼠脑干耳蜗核NPCs的培养方法,为进一步研究打下基础。方法:P1、P3、P5、P7、P9、P11以及成年SD成年大鼠麻醉后,75%酒精消毒,无菌条件下开颅切取脑干耳蜗核,经剪碎、消化、离心、洗涤、吹打、过滤、计数,接种于无血清培养液DMEM/F12 (1∶1)培养,内含B27 (1∶50)、100 U/ ml青霉素、100μg/ml链霉素、20ng/ml EGF、20ng/mlbFGF,置于5 % CO2培养箱(37℃)内培养。细胞每5~7 d传代1次。取次代神经球离心后消化,吹打成单细胞悬液,通过“有限稀释法”获得从一个单细胞克隆扩增出的大量均质的脑干耳蜗核“神经前体细胞”。采取免疫荧光、免疫组织化学的方法,对NSCs/NPCs的特异性标记物Nestin、Musashi1的表达进行鉴定;通过台盼蓝染色技术检测不同日龄组细胞活力;CCK-8法绘制不同日龄组生长曲线,观察不同生长因子对于细胞增殖的影响。结果:新生5-7日龄大鼠脑干耳蜗核可以分离培养“神经前体细胞”,体外培养可以形成神经球,并保持旺盛的增殖活力,可持续传代100代以上;这些细胞经稀释纯化、传代后可以继续形成细胞克隆。细胞克隆呈nestin、musashil1免疫反应阳性;5-7日龄大鼠脑干耳蜗核中“神经前体细胞”数量较多,增殖能力旺盛,而在小于5日龄与大于9日龄大鼠中该细胞数量很少,而且增殖能力差,很难连续传代。表皮生长因子(EGF)和碱性成纤维细胞生长因子(bFGF)联合应用可以明显促进耳蜗核中的“神经前体细胞”的传代、增殖。结论:从新生5-7日龄大鼠脑干耳蜗核可以分离、培养出具有长期自我更新、维持自身数量稳定、保持未分化状态进行传代分裂增殖的具有部分NSCs特性的“神经前体细胞”。
     实验二:新生大鼠脑干耳蜗核神经前体细胞体外分化特性的对比研究
     目的:在实验一中,我们在新生5-7日大鼠的脑干耳蜗核中分离出了具有体外连续传代增殖能力的“神经前体细胞”,这些细胞体外培养可以形成神经球,并表达NSCs/NPCs的特异性抗体,但还没有证实其是否存在NSCs/NPCs的另一个重要的特性——多向分化潜能。本实验拟通过免疫组织化学、免疫荧光、分子生物学的方法,验证该细胞的体外多向分化能力,观察分析其分化特性,并比较其与嗅球NSCs、嗅上皮NSCs分化特性的差异。方法:三种细胞分别取材培养,进行体外诱导分化后免疫细胞化学、免疫荧光化学以及分子生物学的鉴定;进行细胞的BrdU的体外标记,观察增殖与分化情况。结果:我们的实验结果提示大部分细胞分化为NeuN免疫反应阳性的神经元和GFAP免疫反应阳性的星形胶质细胞,少部分细胞分化为GalC免疫反应阳性的少突胶质细胞;标记后大部分细胞均为BrdU阳性,表明其处于增殖期,通过对三种来源细胞BrdU阳性率的比较可以发现,嗅球来源与耳蜗核来源的细胞BrdU的阳性率相近,均高于嗅上皮来源的NSCs。这可能由于不同脑区的发育特性导致其干细胞增殖能力不同。结论:新生大鼠脑干耳蜗核中的这种“神经前体细胞”具有了体外多向分化的潜能。
     实验三:新生大鼠脑干耳蜗核神经前体细胞的超微结构研究
     目的:了解大鼠脑干耳蜗核“神经前体细胞”的超微结构、细胞之间的联系以及细胞的增殖和发育状态,有助于阐明该细胞在体外培养条件下的生长、发育和分化等生物学行为,为该细胞的研究和应用奠定基础。方法:本研究在成功分离、培养新生大鼠脑干耳蜗核“神经前体细胞”的基础上,应用扫描及透射电子显微镜观察新生大鼠脑干耳蜗核“神经前体细胞”的超微结构,进一步研究新生大鼠脑干耳蜗核“神经前体细胞”的生物学特征,以期为更深层次的研究和应用提供依据。结果:体外培养的NSCs呈圆形或椭圆形,表面有微突起或微绒毛,细胞核浆比例高,稀少的细胞浆中有多少不等的未成熟线粒体、核糖体及高尔基复合体。不同培养时期的神经球内未分化NSCs的结构大致相同,均有分裂增殖细胞及少数凋亡细胞。分化后细胞伸出树突、轴突样结构,相邻细胞之间有突触样组织。结论:电镜提示耳蜗核“神经前体细胞”具有原始细胞的形态和结构,分化后的细胞均有神经细胞的形态学特点。
     实验四大鼠脑干耳蜗核神经前体细胞的冻存与复苏
     目的:NSCs在神经组织中含量少,获取大量纯化NSCs是研究工作的基础。NSCs在体外的合理冻存与复苏及无损保存是NSCs研究的关键。建立一种能够长期储存并维持NSCs生物学特性的方法对促进神经科学的基础和临床移植的研究具有重要的意义。方法:我们应用不同冻存保护液对新生大鼠脑干耳蜗核“神经前体细胞”进行冻存,研究低温冻存对该细胞的增殖及多向分化潜能的影响,并以胚胎大鼠嗅球神经干细胞作为对照进行研究,分析冻存与复苏对于新生大鼠脑干耳蜗核“神经前体细胞”生物学特性的影响。结果:采取正确的冻存与复苏方法,对新生大鼠脑干耳蜗核“神经前体细胞”的生物学特性无影响。结论:新生大鼠脑干耳蜗核“神经前体细胞”经低温长期冻存,复苏后对于该细胞的基本生物学特性没有明显影响,可以长期低温冻存。
Hearing loss is one of the most frequent diseases that disable people. Options for improvement of hearing of patient with sensorineural deafness are limited to hearing aid and cochlear implants. The effect of aid and cochlear implants depends on the number of live hair cell and spiral ganglion neuron. It’s new strategy for restoring hearing to improve inner ear hair cell and spiral ganglion neuron regeneration and to prevent necrosis of spiral ganglion neuron after hair cell injury. Cell therapy may replace damaged and lost hair cell and spiral ganglion neuron and hence restore hearing pathway. Stem cells are undifferentiated cells, which have the ability to undergo numerous divisions and self-renewal in culture, as well as to differentiate into multilineage, functionally specialized cells. The replacement of lost or damaged neurons by neural stem cells (NSCs) or neural progenitor cells(NPCs) represents a great promise for clinical treatment for hearing loss. NSCs, with the capacity for unlimited self renewal and the production of none-restricted lineage committed progenitors in contrast to neural‘progenitor’or‘precursor’cells, have long been thought of as central to the repair and regeneration processes to replacing cells lost in hearing loss diseases. Although hair cell replacement occurs spontaneously following injury in birds and lower vertebrates, the mature mammalian cochlea is unable to regenerate new hair cells. As a matter of fact, cochlear hair cell loss is one of the major causes of hearing impairment. Hair cell replacement, either by stimulation of regeneration or by transplantation of progenitor cells capable of differentiating into hair cells, remains the ultimate goal in the development of treatment applications to reconstruct damaged inner ears. An alternative way to replace lost hair cells is by introducing exogenous stem cells into the inner ear. Recent work by Heller and co-workers has demonstrated the existence of progenitor/stem cells in the sensory epithelium of a mature mouse vestibular end organ, which is responsible for balance. These cells are not only able to differentiate into cells that express hair cell markers in vitro, but also differentiate into hair cell-like cells in developing chick ears. The recent discovery of stem cells in the adult inner ear that is capable of differentiating into hair cells, as well as the finding that embryonic stem cells can be converted into hair cells, raise hope for the future development of stem-cell-based treatment regimens. While stem cells/progenitors may exist in adult vestibular end organs, stem cells/progenitors from the cochlear nucleus have not been isolated.
     We have for the first time isolated neural precursor cells from the newborn rat cochlear nucleus. Under our optimized conditions, precursor cells isolated from the cochlear nucleus proliferate in culture in the same way as neural stem cells after epigenetic stimulation and retain all of the typical characteristics of neural stem cells: they proliferate in response to mitotic factors (basic fibroblast growth factor, bFGF, and epidermal growth factor, EGF) and have the ability to give rise to neurons, astrocytes, and oligodendrocytes.
     Part I Isolation and culture of NPCs from the newborn rat cochlear nucleus.
     NPCs were isolated and cultured from P3, P5, P7, P9, P11 and adult rat cochlear nucleus using DMEM/F12 (1:1) containing 10% heat-inactivated fetal bovine serum. Cell clones were formed 8 days after culture. Cell clones and most single round cells were semi-suspending. Cell clones can be formed again after dilution, purification and passage. Observe the growth of NPCs every day in inverted microscope, 24h later, in experiment group, we can observe many living cell homogeneous distribution and many collagenoblast sink in the base of culture flask, part of cells grow floating in culture fluid, cell appear conjugation usually and some cells begin to division. 72h later, cell aggregation and the cell colony consist of about 4-6 cells; 5 days later, cell colony is consisted of about ten to hundred cells; we can observe lots of cell colony. The cell sphere growth floating and arrange tight among cells, some cell colony appear cellular necrosis because of alimentary deficiency. In control group, we can not observe cell proliferate. Cell clones were nestin immuno-positive and Musashi1 immuno- positive. The Cell viability of P5 and P7 rat cochlear nucleus was higher than the others. The viability of NPCs had significant difference between P5、P7 and the others (P>0.05). Made cell sphere into mono-cell suspension, add dispase during dispersive process. The method is to obtain neural cell spheres that growth good in culture flask first\digest them for 2 hours\then blow lightly and get out supernatant after sink nature and obtain mono-cell suspension. Divide into 4 groups, Add EGF in experiment group 1; add bFGF in experiment group 2; add EGF and bFGF together in experiment group 3; add base serum-free medium only in control group. Count cell amount of cell spheres in micro after cultured for 3 days and measure the diameter of cell spheres at 7 days. EGF and bFGF can significantly promote proliferation of cochlear nucleus NPCs. EGF can excite neural stem cells proliferate lonely; bFGF can not excite neural stem cells proliferate lonely but can enhance the proliferation function of EGF. The results showed that NPCs with self-renewal capacity could be cultured in vitro from cochlear nucleus of newborn rat.
     Part II Cell differentiation biologic characteristics of NPCs from cochlear nucleus of newborn rat.
     NPCs and NSCs were isolated and cultured from P7 rat cochlear nucleus, E14 rat olfactory bulb and adult rat olfactory epithelium using serum free media with mitogen and neurosphere forming method. Cultured NPCs and NPCs were round or oval without process. Cells from P7 cochlear nucleus, E14 olfactory bulb and adult olfactory epithelium divided 2 days after primary culture, looked like bean sprout and at 4th day formed suspending small neurospheres, which grew gradually. After omitting mitogen and adding fetal bovine serum, most of NSCs/NPCs from P7 rat cochlear nucleus, E14 olfactory bulb and adult rat olfactory epithelium differentiated into Neun and Tuc-4 immunopositive neuron and GFAP immunopositive astrocyte, some of them differentiated into GalC immunopositive oligodendrocyte. RT-PCR and In-cell Western also show the same result. The proliferation of P7 rat cochlear nucleus, E14 olfactory bulb and adult rat olfactory epithelium NSCs/NPCs depended on EGF and bFGF. The results showed that NSCs with self-renewal capacity and potential multi-differentiation could be cultured in vitro from P7 rat cochlear nucleus. The newborn rat cochlear nucleus maybe is rich source of NSCs/NPCs and thereby an ideal providing organ for the study of NSCs/NPCs transplantation.
     Part III Ultrastructure of NSCs from rat olfactory bulb
     The ultrastructures of NPCs from newborn rat cochlear nucleus were investigated with scanning and transmission electron microscopes. Cultured NPCs were round or oval, with many tiny processes or microvilli on the surface. Neurospheres contained healthy, apoptotic, and necrotic cells. Healthy cells were attached to each other by adherens junctions. They showed many pseudopodia and occasionally a single cilium. Sphere cells showed phagocytic capability because healthy cells phagocytosed the cell debris derived from dead cells in a particular process that involves the engulfment of dying cells by cell processes from healthy cells. The nucleus/cytoplasm ratio was very high. Cells had very little cytoplasm with various numbers of immature mitochondria, ribosome and Golgi complex. Inside neurosphere, dividing cells and apoptosis can be found and the structure of pre-differentiating NSCs remains the same at different time after culture. Differentiated cells with rough endoplasmic reticulum and thick and long processes appeared 1~2 months after culture. Gap junction was found between the processes of adjacent differentiated cells. The results showed that cultured NPCs from newborn rat cochlear nucleus were primitive cells that can differentiate into nerve cells.
     Part IV Proliferation, Multipotency and Neuronal Differentiation of Cryopreserved Neural Progenitor Cells Derived from Newborn Rat Cochlear Nucleus
     Stem cell replacement has emerged as the novel therapeutic strategy for many diseases. These researches not only offers unique opportunities for developing new medical therapies for devastating diseases, but also provides a new mode to explore fundamental questions of biology. The study of newborn rat cochlear nucleus NPCs requires efficient recovery methods and cryopreservation procedures. The purpose of this study was to evaluate different cryopreservation techniques for NPCs derived from newborn rat cochlear nucleus. Initially, we compared the survival rates of cryopreserved NPCs treated with four different cryoprotectants: dimethylsulphoxide (DMSO), glycerol and each with or without 10% FBS, meanwhile with two different storage period at liquid nitrogen (–196℃) , that is 3 days standing for short-term storage and 3 months for long-term storage. We assessed the recovery efficiency of NPCs after freezing and thawing by viability testing, colony-forming assay as well as immunocytochemistry under different conditions. No significant difference in survival rate was observed among these different cryoprotectants. With these protocols, NPCs from newborn rat cochlear nucleus retained their multipotency, differentiated into glial (GFAP-positive), neuronal (NeuN-positive). Collectively, our results imply that, under the optimal conditions, NPCs from newborn rat cochlear nucleus might be cryopreserved for longer storage period than 3 months without losing proliferation and multipotency activity.
引文
1 Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science, 1992; 255(5052):1707-10.
    2 Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG,van der Kooy D. Is there a neural stem cell in the mammalian forebrain?[J]. Trends Neurosci, 1996; 19(9):387-93.
    3 Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC,Reynolds BA. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis[J]. J Neurosci, 1996; 16(23):7599-609.
    4 Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD,Vescovi AL. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor[J]. J Neurosci, 1996; 16(3):1091-100.
    5 Davis AA, Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex[J]. Nature, 1994; 372(6503):263-6.
    6 Morrison SJ, White PM, Zock C,Anderson DJ. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells[J]. Cell, 1999; 96(5):737-49.
    7 王宏, 胡江, 李凌松, 洪天配, 李丽英. 筛选后的巢蛋白阳性细胞流式鉴定及诱导分化[J]. 中国医学科学院学报, 2005; (06).
    8 林玲,郑志竑,胡建石,张琦,林建银. 体外培养的神经球中表达神经巢蛋白细胞的流式细胞术检测[J]. 神经解剖学杂志, 2004; (04).
    9 Nagato M, Heike T, Kato T, Yamanaka Y, Yoshimoto M, Shimazaki T, Okano H,Nakahata T. Prospective characterization of neural stem cells by flow cytometry analysis using a combination of surface markers[J]. J Neurosci Res, 2005; 80(4):456-66.
    10 Nishi H, Nishimura S, Higashiura M, Ikeya N, Ohta H, Tsuji T, Nishimura M, Ohnishi S,Higashi H. A new method for histamine release from purified peripheral blood basophils using monoclonal antibody-coated magnetic beads[J]. J Immunol Methods, 2000; 240(1-2):39-46.
    11 Hamasaki T, Tanaka N, Ishida O, Yanada S, Kamei N, Fujiwara Y, Nishida K, Nakanishi K, Sharman P, Kawamata S,Ochi M. Characterization of labeled neural-progenitor cells for magnetic targeting[J]. Neuroreport, 2005; 16(15):1641-5.
    12 陈福权, 邱建华, 王锦玲, 刘顺利, 米文娟. 大鼠嗅上皮神经干细胞的分离及培养[J]. 临床耳鼻咽喉科杂志, 2006; 20(14):656-9.
    13 陈福权, 邱建华, 王锦玲, 刘顺利, 米文娟. 大鼠嗅球神经干细胞培养[J]. 中华耳鼻咽喉科杂志, 2004; 39(11):687-90.
    14 陈福权, 王锦玲, 邱建华, 刘顺利, 米文娟. 胚胎大鼠嗅神经干细胞的培养及分化特性[J]. 中华神经外科疾病研究杂志, 2004; 3(04):344-7.
    15 Tao Xue, Li Qiao, Jianhua Qiu, Lianjun Lu, Dingjun Cha, Li Wei. Proliferation, multipotency and neuronal Differentiation of cryopreserved neural progenitor cells derived from olfactory neuroepithelium of adult Rat[J]. Cell Biol Int, 2008; Accepted.
    16 Lendahl U, Zimmerman LB,McKay RD. CNS stem cells express a new class of intermediate filament protein[J]. Cell, 1990; 60(4):585-95.
    17 Strojnik T, Rosland GV, Sakariassen PO, Kavalar R,Lah T. Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival[J]. Surg Neurol, 2007; 68(2):133-43; discussion 143-4.
    18 Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK,Buck DW. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning[J]. Blood, 1997; 90(12):5013-21.
    19 Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti JC, Hutnick L, Krueger RC Jr, Fan G, de Vellis J,Sun YE. CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain[J]. Proc Natl Acad Sci U S A, 2008.
    20 Winner B, Cooper-Kuhn CM, Aigner R, Winkler J,Kuhn HG. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb[J]. Eur J Neurosci, 2002; 16(9):1681-9.
    21 Yamaguchi M, Mori K. Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb[J]. Proc Natl Acad Sci U S A, 2005; 102(27):9697-702.
    22 Valero J, Weruaga E, Murias AR, Recio JS, Curto GG, Gomez C,Alonso JR. Changes in cell migration and survival in the olfactory bulb of the pcd/pcd mouse[J]. Dev Neurobiol, 2007; 67(7):839-59.
    23 Pagano SF, Impagnatiello F, Girelli M, Cova L, Grioni E, Onofri M, Cavallaro M, Etteri S, Vitello F, Giombini S, Solero CL,Parati EA. Isolation and characterization of neuralstem cells from the adult human olfactory bulb[J]. Stem Cells, 2000; 18(4):295-300.
    24 Gould E, Reeves AJ, Graziano MS,Gross CG. Neurogenesis in the neocortex of adult primates[J]. Science, 1999; 286(5439):548-52.
    25 Gould E. How widespread is adult neurogenesis in mammals?[J]. Nat Rev Neurosci, 2007; 8(6):481-8.
    26 Gerd Kempermann. Adult Neurogenesis: Stem Cells and Neuronal Development in the Adult Brain[M]. New York:Oxford University Press,2006.
    27 Garcia-Verdugo JM, Doetsch F, Wichterle H, Lim DA,Alvarez-Buylla A. Architecture and cell types of the adult subventricular zone: in search of the stem cells[J]. J Neurobiol, 1998; 36(2):234-48.
    28 Zigova T, Pencea V, Betarbet R, Wiegand SJ, Alexander C, Bakay RA,Luskin MB. Neuronal progenitor cells of the neonatal subventricular zone differentiate and disperse following transplantation into the adult rat striatum[J]. Cell Transplant, 1998; 7(2):137-56.
    29 Huard JM, Youngentob SL, Goldstein BJ, Luskin MB,Schwob JE. Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells[J]. J Comp Neurol, 1998; 400(4):469-86.
    30 Kornack DR, Rakic P. Continuation of neurogenesis in the hippocampus of the adult macaque monkey[J]. Proc Natl Acad Sci U S A, 1999; 96(10):5768-73.
    31 Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, Manuel-Garcia Verdugo J, Berger MS,Alvarez-Buylla A. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration[J]. Nature, 2004; 427(6976):740-4.
    32 Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM,Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain[J]. Cell, 1999; 97(6):703-16.
    33 Alvarez-Buylla A, Herrera DG,Wichterle H. The subventricular zone: source of neuronal precursors for brain repair[J]. Prog Brain Res, 2000; 127:1-11.
    34 Alvarez-Buylla A, Seri B,Doetsch F. Identification of neural stem cells in the adult vertebrate brain[J]. Brain Res Bull, 2002; 57(6):751-8.
    35 Picard-Riera N, Nait-Oumesmar B,Baron-Van Evercooren A. Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system[J]. J Neurosci Res, 2004; 76(2):223-31.
    36 Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders[J]. Nature, 2006; 441(7097):1094-6.
    37 Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, Ko Y, Jeong SW,Kim SU. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model[J]. Stem Cells, 2007.
    38 Li X, Liu T, Song K, Guan S, Zhu L, Ge D,Cui Z. Effect of neural stem cells on apoptosis of PC12 cells induced by serum deprivation[J]. Biotechnol Prog, 2007; 23(4):952-7.
    39 Ader M, Schachner M,Bartsch U. Integration and differentiation of neural stem cells after transplantation into the dysmyelinated central nervous system of adult mice[J]. Eur J Neurosci, 2004; 20(5):1205-10.
    40 Muller FJ, Snyder EY,Loring JF. Gene therapy: can neural stem cells deliver?[J]. Nat Rev Neurosci, 2006; 7(1):75-84.
    41 Schmidt A, Haas SJ, Hildebrandt S, Scheibe J, Eckhoff B, Racek T, Kempermann G, Wree A,Putzer BM. Selective targeting of adenoviral vectors to neural precursor cells in the hippocampus of adult mice: new prospects for in situ gene therapy[J]. Stem Cells, 2007; 25(11):2910-8.
    42 Li QJ, Tang YM, Liu J, Zhou DY, Li XP, Xiao SH, Jian DX,Xing YG. Treatment of Parkinson disease with C17.2 neural stem cells overexpressing NURR1 with a recombined republic-deficit adenovirus containing the NURR1 gene[J]. Synapse, 2007; 61(12):971-7.
    43 Kameda M, Shingo T, Takahashi K, Muraoka K, Kurozumi K, Yasuhara T, Maruo T, Tsuboi T, Uozumi T, Matsui T, Miyoshi Y, Hamada H,Date I. Adult neural stem and progenitor cells modified to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia[J]. Eur J Neurosci, 2007; 26(6):1462-78.
    44 Boockvar JA, Schouten J, Royo N, Millard M, Spangler Z, Castelbuono D, Snyder E, O'Rourke D,McIntosh T. Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells[J]. Neurosurgery, 2005; 56(1):163-71; discussion 171.
    45 Goh EL, Ma D, Ming GL,Song H. Adult neural stem cells and repair of the adult central nervous system[J]. J Hematother Stem Cell Res, 2003; 12(6):671-9.
    46 Merkle FT, Mirzadeh Z,Alvarez-Buylla A. Mosaic organization of neural stem cells in the adult brain[J]. Science, 2007; 317(5836):381-4.
    47 Scharfman HE, Hen R. Neuroscience. Is more neurogenesis always better?[J]. Science, 2007; 315(5810):336-8.
    48 Fuchs E, Tumbar T,Guasch G. Socializing with the neighbors: stem cells and their niche[J]. Cell, 2004; 116(6):769-78.
    49 Taupin P. Adult neural stem cells, neurogenic niches, and cellular therapy[J]. Stem Cell Rev, 2006; 2(3):213-9.
    50 Wurmser AE, Nakashima K, Summers RG, Toni N, D'Amour KA, Lie DC,Gage FH. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage[J]. Nature, 2004; 430(6997):350-6.
    51 So K, Moriya T, Nishitani S, Takahashi H,Shinohara K. The olfactory conditioning in the early postnatal period stimulated neural stem/progenitor cells in the subventricular zone and increased neurogenesis in the olfactory bulb of rats[J]. Neuroscience, 2008; 151(1):120-128.
    52 余资江, 应大君. 神经干细胞微环境的研究进展[J]. 解剖与临床, 2005; (01):70-72.
    53 Lathia JD, Rao MS, Mattson MP,Ffrench-Constant C. The microenvironment of the embryonic neural stem cell: Lessons from adult niches?[J]. Dev Dyn, 2007.
    54 Williams C, Wirta V, Meletis K, Wikstrom L, Carlsson L, Frisen J,Lundeberg J. Catalog of gene expression in adult neural stem cells and their in vivo microenvironment[J]. Exp Cell Res, 2006.
    55 Xi R, Xie T. Stem cell self-renewal controlled by chromatin remodeling factors[J]. Science, 2005; 310(5753):1487-9.
    56 Nakafuku M, Nakamura S. Establishment and characterization of a multipotential neural cell line that can conditionally generate neurons, astrocytes, and oligodendrocytes in vitro[J]. J Neurosci Res, 1995; 41(2):153-68.
    57 Maric D, Maric I, Chang YH,Barker JL. Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation[J]. J Neurosci, 2003; 23(1):240-51.
    58 Bauer S, Patterson PH. Leukemia Inhibitory Factor Promotes Neural Stem Cell Self-Renewal in the Adult Brain. J Neurosci. 26(46), 2006. 12089-12099.
    59 Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S,van derKooy D. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling[J]. Genes Dev, 2004; 18(15):1806-11.
    60 Ying QL, Nichols J, Chambers I,Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3[J]. Cell, 2003; 115(3):281-92.
    61 Salero E, Hatten ME. Differentiation of ES cells into cerebellar neurons[J]. Proc Natl Acad Sci U S A, 2007; 104(8):2997-3002.
    62 Schulz TC, Noggle SA, Palmarini GM, Weiler DA, Lyons IG, Pensa KA, Meedeniya AC, Davidson BP, Lambert NA,Condie BG. Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture[J]. Stem Cells, 2004; 22(7):1218-38.
    63 张琦, 林玲, 胡建石, 郑志竑. BMP-2 和 EGF 对神经干细胞向神经元分化及 Notch信号分子表达的影响[J]. 神经解剖学杂志, 2006; 22(02):158-162.
    64 Huang S, Yan B, Sullivan SA,Moody SA. Noggin signaling from Xenopus animal blastomere lineages promotes a neural fate in neighboring vegetal blastomere lineages[J]. Dev Dyn, 2007; 236(1):171-83.
    65 Zimmerman LB, De Jesus-Escobar JM,Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4[J]. Cell, 1996; 86(4):599-606.
    66 Caldwell MA, He X, Wilkie N, Pollack S, Marshall G, Wafford KA,Svendsen CN. Growth factors regulate the survival and fate of cells derived from human neurospheres[J]. Nat Biotechnol, 2001; 19(5):475-9.
    67 Martinez-Monedero R, Edge AS. Stem cells for the replacement of inner ear neurons and hair cells[J]. Int J Dev Biol, 2007; 51(6-7):655-61.
    68 Ito J, Murata M,Kawaguchi S. Regeneration and recovery of the hearing function of the central auditory pathway by transplants of embryonic brain tissue in adult rats[J]. Exp Neurol, 2001; 169(1):30-5.
    69 Ito J, Kojima K,Kawaguchi S. Survival of neural stem cells in the cochlea[J]. Acta Otolaryngol, 2001; 121(2):140-2.
    70 Hu Z, Wei D, Johansson CB, Holmstrom N, Duan M, Frisen J,Ulfendahl M. Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear[J]. Exp Cell Res, 2005; 302(1):40-7.
    71 Hu Z, Ulfendahl M,Olivius NP. Central migration of neuronal tissue and embryonic stem cells following transplantation along the adult auditory nerve[J]. Brain Res, 2004; 1026(1):68-73.
    72 Tateya I, Nakagawa T, Iguchi F, Kim TS, Endo T, Yamada S, Kageyama R, Naito Y,Ito J. Fate of neural stem cells grafted into injured inner ears of mice[J]. Neuroreport, 2003; 14(13):1677-81.
    73 Okano T, Nakagawa T, Endo T, Kim TS, Kita T, Tamura T, Matsumoto M, Ohno T, Sakamoto T, Iguchi F,Ito J. Engraftment of embryonic stem cell-derived neurons into the cochlear modiolus[J]. Neuroreport, 2005; 16(17):1919-22.
    74 Sekiya T, Kojima K, Matsumoto M, Kim TS, Tamura T,Ito J. Cell transplantation to the auditory nerve and cochlear duct[J]. Exp Neurol, 2006; 198(1):12-24.
    75 Coleman B, Hardman J, Coco A, Epp S, de Silva M, Crook J,Shepherd R. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea[J]. Cell Transplant, 2006; 15(5):369-80.
    76 Corrales CE, Pan L, Li H, Liberman MC, Heller S,Edge AS. Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti[J]. J Neurobiol, 2006; 66(13):1489-500.
    77 Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder EY,Cotanche DA. Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells[J]. Hearing Res, 2007.
    78 Coleman B, de Silva MG,Shepherd RK. Concise review: the potential of stem cells for auditory neuron generation and replacement[J]. Stem Cells, 2007; 25(11):2685-94.
    79 Iguchi F, Nakagawa T, Tateya I, Kim TS, Endo T, Taniguchi Z, Naito Y,Ito J. Trophic support of mouse inner ear by neural stem cell transplantation[J]. Neuroreport, 2003; 14(1):77-80.
    80 Tamura T, Nakagawa T, Iguchi F, Tateya I, Endo T, Kim TS, Dong Y, Kita T, Kojima K, Naito Y, Omori K,Ito J. Transplantation of neural stem cells into the modiolus of mouse cochleae injured by cisplatin[J]. Acta Otolaryngol Suppl, 2004; (551):65-8.
    81 陈阳, 陈福权, 邱建华, 刘顺利, 米文娟. 毒性损伤大鼠耳蜗核移植嗅球神经前体细胞的初步观察[J]. 中华神经外科疾病研究杂志, 2007; 6(01):44-7.
    82 Chen Y, Qiu J, Chen F,Liu S. Migration of neural precursor cells derived from olfactorybulb in cochlear nucleus exposed to an augmented acoustic environment[J]. Hearing Res, 2007; 228(1-2):3-10.
    83 Coleman B, Fallon JB, Pettingill LN, de Silva MG,Shepherd RK. Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons[J]. Exp Cell Res, 2007; 313(2):232-43.
    84 Doyle KL, Kazda A, Hort Y, McKay SM,Oleskevich S. Differentiation of adult mouse olfactory precursor cells into hair cells in vitro[J]. Stem Cells, 2007; 25(3):621-7.
    85 张媛, 郭维, 胡吟燕, 郑贵亮, 翟所强. 大鼠耳蜗毛细胞前体细胞与耳蜗间质细胞共培养的实验研究[J]. 听力学及言语疾病杂志, 2007; 15(03):205-7.
    86 郑鸿燕, 邰浩清, 曾水林, 周春祥, 詹臻, 王明艳. 耳蜗提取液诱导海马神经干细胞分化的实验研究[J]. 神经解剖学杂志, 2006; 22(05):542-6.
    87 Li H, Roblin G, Liu H,Heller S. Generation of hair cells by stepwise differentiation of embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2003; 100(23):13495-500.
    88 袁雅生. 神经干细胞和新生大鼠 Corti 氏器组织联合培养的实验研究[D]. 迟放鲁;王德辉;顾以瑾;戴春富;周国民;汪洋 (博士); 复旦大学.
    89 Cotanche DA. Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma[J]. Hear Res, 1987; 30(2-3):181-95.
    90 Lawlor P, Marcotti W, Rivolta MN, Kros CJ,Holley MC. Differentiation of mammalian vestibular hair cells from conditionally immortal, postnatal supporting cells[J]. J Neurosci, 1999; 19(21):9445-58.
    91 Li H, Liu H,Heller S. Pluripotent stem cells from the adult mouse inner ear[J]. Nat Med, 2003; 9(10):1293-9.
    92 Wang Z, Li H. Microglia-like cells in rat organ of Corti following aminoglycoside ototoxicity[J]. Neuroreport, 2000; 11(7):1389-93.
    93 王宇澄. 大鼠耳蜗氨基糖甙类药物损伤后出现的新细胞[D]. 王正敏 (博士); 复旦大学.
    94 Doetzlhofer A, White PM, Johnson JE, Segil N,Groves AK. In vitro growth and differentiation of mammalian sensory hair cell progenitors: a requirement for EGF and periotic mesenchyme[J]. Dev Biol, 2004; 272(2):432-47.
    95 Zhai S, Shi L, Wang BE, Zheng G, Song W, Hu Y,Gao WQ. Isolation and culture of hair cell progenitors from postnatal rat cochleae[J]. J Neurobiol, 2005; 65(3):282-93.
    96 Zhang Y, Zhai SQ, Shou J, Song W, Sun JH, Guo W, Zheng GL, Hu YY,Gao WQ. Isolation, growth and differentiation of hair cell progenitors from the newborn ratcochlear greater epithelial ridge[J]. J Neurosci Methods, 2007; 164(2):271-9.
    97 张媛, 郭维维, 宋巍, 郑贵亮, 翟所强. 大鼠耳蜗大上皮嵴及小上皮嵴细胞永生细胞系的建立[J]. 临床耳鼻咽喉科杂志, 2006; 20(10):460-3,5.
    98 Oshima K, Grimm CM, Corrales CE, Senn P, Martinez Monedero R, Geleoc GS, Edge A, Holt JR,Heller S. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear[J]. J Assoc Res Otolaryngol, 2007; 8(1):18-31.
    99 时文杰, 时利, 翟所强, 杨伟炎. 毛细胞前体细胞的分离和鉴定[J]. 天津医药, 2005; 33(6):366-8.
    100 郑鸿燕, 邰浩清, 周春祥, 吴颢昕, 詹臻, 王明艳. 耳蜗前体细胞体外培养和诱导分化的实验研究[J]. 复旦学报(医学版), 2006; 33(5):601-4.
    101 Savary E, Hugnot JP, Chassigneux Y, Travo C, Duperray C, Van De Water T,Zine A. Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis[J]. Stem Cells, 2007; 25(2):332-9.
    102 Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N,Groves AK. Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development[J]. Development, 2007; 134(24):4405-15.
    103 Wang Z, Jiang H, Yan Y, Wang Y, Shen Y, Li W,Li H. Characterization of proliferating cells from newborn mouse cochleae[J]. Neuroreport, 2006; 17(8):767-71.
    104 Lou X, Zhang Y,Yuan C. Multipotent stem cells from the young rat inner ear[J]. Neurosci Lett, 2007; 416(1):28-33.
    105 White PM, Doetzlhofer A, Lee YS, Groves AK,Segil N. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells[J]. Nature, 2006; 441(7096):984-7.
    106 江红群. 新生大鼠耳蜗高增殖细胞的研究及新霉素对耳蜗 nestin 表达的影响[D]. 王正敏;李华伟 (博士); 复旦大学.
    107 Martinez-Monedero R, Oshima K, Heller S,Edge AS. The potential role of endogenous stem cells in regeneration of the inner ear[J]. Hear Res, 2007; 227(1-2):48-52.
    108 Shapiro SM. Somatosensory and brainstem auditory evoked potentials in the Gunn rat model of acute bilirubin neurotoxicity[J]. Pediatr Res, 2002; 52(6):844-9.
    109 Shapiro SM, Nakamura H. Bilirubin and the auditory system[J]. J Perinatol, 2001; 21 Suppl 1:S52-5; discussion S59-62.
    110 Markand ON. Brainstem auditory evoked potentials[J]. J Clin Neurophysiol, 1994;11(3):319-42.
    111 Rubel EW, Fritzsch B. Auditory system development: primary auditory neurons and their targets[J]. Annu Rev Neurosci, 2002; 25:51-101.
    112 Mayhew IG, Washbourne JR. Brainstem auditory evoked potentials in horses and ponies[J]. Vet J, 1997; 153(1):107-13.
    113 Thai-Van H, Cozma S, Boutitie F, Disant F, Truy E,Collet L. The pattern of auditory brainstem response wave V maturation in cochlear-implanted children[J]. Clin Neurophysiol, 2007; 118(3):676-89.
    114 Doyle WJ, Saad MM,Fria TJ. Maturation of the auditory brain stem response in rhesus monkeys (Macaca mulatta)[J]. Electroencephalogr Clin Neurophysiol, 1983; 56(2):210-23.
    115 Ribeiro FM, Carvallo RM. Tone-evoked ABR in full-term and preterm neonates with normal hearing[J]. Int J Audiol, 2008; 47(1):21-9.
    116 Geal-Dor M, Freeman S, Li G,Sohmer H. Development of hearing in neonatal rats: air and bone conducted ABR thresholds[J]. Hear Res, 1993; 69(1-2):236-42.
    117 何斯纯, 周卓妍, 郑辉, 王跃春, 林兴会, 周丽丽, 姚平. 大鼠 BAEP 波峰潜伏期比值和波幅比值的生后动态观察[J]. 临床神经电生理学杂志, 2002; (03).
    118 Fujita A, Hyde ML,Alberti PW. ABR latency in infants: properties and applications of various measures[J]. Acta Otolaryngol, 1991; 111(1):53-60.
    119 Freeman S, Geal-Dor M,Sohmer H. Development of inner ear (cochlear and vestibular) function in the fetus-neonate[J]. J Basic Clin Physiol Pharmacol, 1999; 10(3):173-89.
    120 李厚勇, 吴俐雯, 李华伟, 沈云珍. 听功能发育的实验动物研究[J]. 中国眼耳鼻喉科杂志, 2002; 2(3):138-42.
    121 van Herten M, Pasman J, van Leeuwen TH, Been PH, van der Leij A, Zwarts F,Maassen B. Differences in AERP responses and atypical hemispheric specialization in 17-month-old children at risk of dyslexia[J]. Brain Res, 2008; (Epub ahead of print).
    122 Ohara S, Wang L, Ku Y, Lenz FA, Hsiao SS, Hong B,Zhou YD. Neural activities of tactile cross-modal working memory in humans: An event-related potential study[J]. Neuroscience, 2008; (Epub ahead of print).
    123 Henley CM, Rybak LP. Ototoxicity in developing mammals[J]. Brain Res Brain Res Rev, 1995; 20(1):68-90.
    124 梁勇, 王正敏. 大鼠听觉事件相关电位的反应特性[J]. 中国耳鼻咽喉-头颈外科, 2006; (01).
    125 Lasky RE, Beach KE,Laughlin NK. Immittance and otoacoustic emissions in rhesus monkeys and humans[J]. Audiology, 2000; 39(2):61-9.
    126 Norton SJ, Gorga MP, Widen JE, Folsom RC, Sininger Y, Cone-Wesson B, Vohr BR, Mascher K,Fletcher K. Identification of neonatal hearing impairment: evaluation of transient evoked otoacoustic emission, distortion product otoacoustic emission, and auditory brain stem response test performance[J]. Ear Hear, 2000; 21(5):508-28.
    127 Khvoles R, Freeman S,Sohmer H. Transient evoked otoacoustic emissions can be recorded in the rat[J]. Hear Res, 1996; 97(1-2):120-6.
    128 王勤瑛,华清泉,肖伯奎,廖华. 大鼠畸变产物耳声发射的基本特性[J]. 听力学及言语疾病杂志, 2004; 12(01):35-7.
    129 Khvoles R, Freeman S,Sohmer H. Development of transient evoked otoacoustic emissions in the neonatal rat[J]. Audiol Neurootol, 1998; 3(1):40-53.
    130 Norton SJ, Bargones JY,Rubel EW. Development of otoacoustic emissions in gerbil: evidence for micromechanical changes underlying development of the place code[J]. Hear Res, 1991; 51(1):73-91.
    131 Zhang LI, Bao S,Merzenich MM. Disruption of primary auditory cortex by synchronous auditory inputs during a critical period[J]. Proc Natl Acad Sci U S A, 2002; 99(4):2309-14.
    132 Nakahara H, Zhang LI,Merzenich MM. Specialization of primary auditory cortex processing by sound exposure in the "critical period"[J]. Proc Natl Acad Sci U S A, 2004; 101(18):7170-4.
    133 吴秀梅, 张凌, 许兢宏, 徐凤, 杨文伟, 张季平, 孙心德. 生后早期听觉剥夺、经验改变大鼠听皮层 NMDA 受体 NR2B 蛋白表达[J]. 生物化学与生物物理进展, 2006; (11).
    134 高下, 王锦玲, 袁军, 李志宏. 沙土鼠耳蜗腹核的生后发育[J]. 第四军医大学学报, 2000; 21(11):1310-3.
    135 Friauf E, Kandler K. Auditory projections to the inferior colliculus of the rat are present by birth[J]. Neurosci Lett, 1990; 120(1):58-61.
    136 方耀云,杨旭春,姜泗长,王沛英. 不同年龄大鼠耳蜗核细胞的定量观察[J]. 临床耳鼻咽喉科杂志, 1997; (03).
    137 Bortone DS, Mitchell K,Manis PB. Developmental time course of potassium channel expression in the rat cochlear nucleus[J]. Hear Res, 2006; 211(1-2):114-25.
    138 Caminos E, Vale C, Lujan R, Martinez-Galan JR,Juiz JM. Developmental regulationand adult maintenance of potassium channel proteins (Kv 1.1 and Kv 1.2) in the cochlear nucleus of the rat[J]. Brain Res, 2005; 1056(2):118-31.
    139 姚小红. 大鼠 MGBv 神经元电生理特性和形态学出生后的发育变化[D]. 熊鹰 (硕士); 第三军医大学.
    140 Lapper SR, Bolam JP. The anterograde and retrograde transport of neurobiotin in the central nervous system of the rat: comparison with biocytin[J]. J Neurosci Methods, 1991; 39(2):163-74.
    141 Linke R, Schwegler H. Convergent and complementary projections of the caudal paralaminar thalamic nuclei to rat temporal and insular cortex[J]. Cereb Cortex, 2000; 10(8):753-71.
    142 李雪松. 大鼠出生后听皮层神经元电生理特性的发育变化及听觉丘脑-皮层脑片突触传递的研究[D]. 熊鹰 (硕士); 第三军医大学.
    143 Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, Ogawa Y, Toyama Y, Miyata T,Okano H. Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci. 22(1-2). SWITZERLAND, 2000. 139-53.
    144 Dayer AG, Jenny B, Sauvain MO, Potter G, Salmon P, Zgraggen E, Kanemitsu M, Gascon E, Sizonenko S, Trono D,Kiss JZ. Expression of FGF-2 in neural progenitor cells enhances their potential for cellular brain repair in the rodent cortex[J]. Brain, 2007; 130(Pt 11):2962-76.
    145 DeYulia GJ Jr, Carcamo JM, Borquez-Ojeda O, Shelton CC,Golde DW. Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling[J]. Proc Natl Acad Sci U S A, 2005; 102(14):5044-9.
    146 Fukuda R, Hayashi A, Utsunomiya A, Nukada Y, Fukui R, Itoh K, Tezuka K, Ohashi K, Mizuno K, Sakamoto M, Hamanoue M,Tsuji T. Alteration of phosphatidylinositol 3-kinase cascade in the multilobulated nuclear formation of adult T cell leukemia/lymphoma (ATLL)[J]. Proc Natl Acad Sci U S A, 2005; 102(42):15213-8.
    147 Egorina EM, Sovershaev MA,Osterud B. In-cell Western assay: a new approach to visualize tissue factor in human monocytes[J]. J Thromb Haemost, 2006; 4(3):614-20.
    148 Seaberg RM, van der Kooy D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors[J]. J Neurosci, 2002; 22(5):1784-93.
    149 Vescovi AL, Galli R,Gritti A. The neural stem cells and their transdifferentiationcapacity[J]. Biomed Pharmacother, 2001; 55(4):201-5.
    150 郑学胜, 刘伟国, 杨小锋, 冯军峰, 胡未伟, 李谷. 一种新的神经干细胞抗贴壁培养方法[J]. 解剖学报, 2006; 37(02):236-9.
    151 付勇, 龚树生, 薛秋红, 刘英鹏, 鄢开胜. 胚胎大鼠神经干细胞的分离培养和鉴定及标记[J]. 临床耳鼻咽喉头颈外科杂志, 2007; 86(04):172-5.
    152 冯东福, 卢亦成, 刘勇, 楼美清, 汪洋, 李文生. 神经干细胞增殖能力的组织差异性研究[J]. 中华医学杂志, 2006; 86(43):3077-81.
    153 Lei Z, Yongda L, Jun M, Yingyu S, Shaoju Z, Xinwen Z,Mingxue Z. Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro[J]. Cell Biol Int, 2007; 31(9):916-23.
    154 Liu Z, Martin LJ. Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human[J]. J Comp Neurol, 2003; 459(4):368-91.
    155 Watanabe K, Kondo K, Takeuchi N, Okano H,Yamasoba T. Musashi-1 expression in postnatal mouse olfactory epithelium[J]. Neuroreport, 2007; 18(7):641-4.
    156 顾瑜蓉, 李华伟, 张重华, 沈云珍. 嗅球摘除后嗅觉神经元凋亡的实验研究[J]. 中华耳鼻咽喉头颈外科杂志, 2006; 41(04):297-301.
    157 羡慕, 魏永祥, 韩德民, 范尔钟, 刘仲燕, 苗旭涛, 张聪, 张欣. 嗅神经切断对小鼠嗅感觉神经元的影响[J]. 中华耳鼻咽喉头颈外科杂志, 2005; 40(09):671-4.
    158 Papanikolaou T, Lennington JB, Betz A, Figueiredo C, Salamone JD,Conover JC. In vitro generation of dopaminergic neurons from adult subventricular zone neural progenitor cells[J]. Stem Cells Dev, 2008; 17(1):157-72.
    159 Itoh T, Satou T, Nishida S, Hashimoto S,Ito H. Immature and mature neurons coexist among glial scars after rat traumatic brain injury[J]. Neurol Res, 2007; 29(7):734-42.
    160 Yamashima T, Tonchev AB, Vachkov IH, Popivanova BK, Seki T, Sawamoto K,Okano H. Vascular adventitia generates neuronal progenitors in the monkey hippocampus after ischemia[J]. Hippocampus, 2004; 14(7):861-75.
    161 Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J,Superti-Furga G. A myristoyl/phosphotyrosine switch regulates c-Abl[J]. Cell, 2003; 112(6):845-57.
    162 Brzoska M, Geiger H, Gauer S,Baer P. Epithelial differentiation of human adipose tissue-derived adult stem cells[J]. Biochem Biophys Res Commun, 2005; 330(1):142-50.
    163 Vanderluit JL, Ferguson KL, Nikoletopoulou V, Parker M, Ruzhynsky V, Alexson T, McNamara SM, Park DS, Rudnicki M,Slack RS. p107 regulates neural precursor cellsin the mammalian brain[J]. J Cell Biol, 2004; 166(6):853-63.
    164 Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor[J]. Nature, 1990; 347(6295):762-5.
    165 陈福权[1], 王锦玲[1], 邱建华[1], 刘顺利[1], 米文娟[1], 黄晓峰[2]. 大鼠嗅球神经干细胞的超微结构[J]. 中国耳鼻咽喉颅底外科杂志, 2005; 11(3):133-135.
    166 姬西团, 章翔, 林绿标, 费舟, 程光, 王西玲, 吴景文, 梁景文. 人神经干细胞体外培养、鉴定及电镜观察[J]. 中华神经外科疾病研究杂志, 2003; 2(4):347-350.
    167 Lobo MV, Alonso FJ, Redondo C, Lopez-Toledano MA, Caso E, Herranz AS, Paino CL, Reimers D,Bazan E. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres[J]. J Histochem Cytochem, 2003; 51(1):89-103.
    168 曹翠丽, 闫蕴力, 马常升, 郑力芬, 石葛明. 体外培养的神经干细胞聚集体结构分析[J]. 基础医学与临床, 2004; (06).
    169 郑志竑, 胡建石, 陈文列, 林玲, 钟秀容, 林建银. 体外培养的神经干细胞球的超微结构[J]. 解剖学报, 2003; (06).
    170 安沂华,翟晶,历俊华,张绍东,孙异临,王忠诚. 离体培养神经干细胞的超微结构学研究[J]. 中国康复理论与实践, 2004; (01).
    171 杨立业[1], 刘相名[2], 等. 人类神经干细胞的长期培养和传代[J]. 中华神经外科杂志, 2002; 18(5):286-289.
    172 李庆国, 梁鹏, 等. 人胚中脑神经干细胞的分离、增殖及分化的研究[J]. 中华神经外科疾病研究杂志, 2002; 1(2):153-154.
    173 Nakamura Y, Sakakibara S, Miyata T, Ogawa M, Shimazaki T, Weiss S, Kageyama R,Okano H. The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells[J]. J Neurosci, 2000; 20(1):283-93.
    174 张琦, 胡建石, 林玲, 郑志竑. 体外培养的神经干细胞球几种离散方法的探讨[J]. 中华神经医学杂志, 2004; 3(6):404-407.
    175 许汉鹏, 卢春蓉, 苟琳, 鞠躬. 体外神经干细胞克隆球的超微结构-透射电镜观察[J]. 细胞生物学杂志, 2002; (04).
    176 Duval N, Gomes D, Calaora V, Calabrese A, Meda P,Bruzzone R. Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells[J]. J Cell Sci, 2002; 115(Pt 16):3241-51.
    177 Park SH, Park SH, Kook MC, Kim EY, Park S,Lim JH. Ultrastructure of human embryonic stem cells and spontaneous and retinoic acid-induced differentiating cells[J]. Ultrastruct Pathol, 2004; 28(4):229-38.
    178 许汉鹏, 苟琳, 黄晓峰, 鞠躬. 神经干细胞克隆内细胞的扫描电镜超微结构研究[J]. 电子显微学报, 2003; (06).
    179 涂汉军, 胡钧涛, 张力, 李东升, 李新建, 王辉, 周章明. 体外培养及冻存对大鼠胚胎神经干细胞生物学特性的影响[J]. 中华神经医学杂志, 2007; 6(3):241-244.
    180 涂汉军, 胡钧涛, 张力, 李东升, 李新建, 陈晟. 大鼠胚胎神经干细胞的体外培养及冻存[J]. 中国神经精神疾病杂志, 2007; 33(2):114-117.
    181 魏东光, 孟凡刚, 吴承远, 朱树干, 刘玉光, 王建刚, 杨扬. 低温冻存对胚胎大鼠神经干细胞生物学特性的影响[J]. 中华实验外科杂志, 2003; 20(8):691-692.
    182 Kotobuki N, Hirose M, Machida H, Katou Y, Muraki K, Takakura Y,Ohgushi H. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells[J]. Tissue Eng, 2005; 11(5-6):663-73.
    183 朱晓锋. 神经干细胞基础及应用[M]:科学出版社,2005:92-95.
    184 Ha SY, Jee BC, Suh CS, Kim HS, Oh SK, Kim SH,Moon SY. Cryopreservation of human embryonic stem cells without the use of a programmable freezer[J]. Hum Reprod, 2005; 20(7):1779-85.
    185 Frederickx V, Michiels A, Goossens E, De Block G, Van Steirteghem AC,Tournaye H. Recovery, survival and functional evaluation by transplantation of frozen-thawed mouse germ cells[J]. Hum Reprod, 2004; 19(4):948-53.
    186 Martin G, Sabido O, Durand P,Levy R. Cryopreservation induces an apoptosis-like mechanism in bull sperm[J]. Biol Reprod, 2004; 71(1):28-37.
    187 Stroh C, Cassens U, Samraj AK, Sibrowski W, Schulze-Osthoff K,Los M. The role of caspases in cryoinjury: caspase inhibition strongly improves the recovery of cryopreserved hematopoietic and other cells[J]. FASEB J, 2002; 16(12):1651-3.
    188 Zhao J, Hao HN, Thomas RL,Lyman WD. An efficient method for the cryopreservation of fetal human liver hematopoeitic progenitor cells[J]. Stem Cells, 2001; 19(3):212-8.
    189 Xiang Y, Zheng Q, Jia B, Huang G, Xie C, Pan J,Wang J. Ex vivo expansion, adipogenesis and neurogenesis of cryopreserved human bone marrow mesenchymal stem cells[J]. Cell Biol Int, 2007; 31(5):444-50.
    190 Katkov II, Kim MS, Bajpai R, Altman YS, Mercola M, Loring JF, Terskikh AV, Snyder EY,Levine F. Cryopreservation by slow cooling with DMSO diminished production of Oct-4 pluripotency marker in human embryonic stem cells[J]. Cryobiology, 2006; 53(2):194-205.
    191 Fujioka T, Yasuchika K, Nakamura Y, Nakatsuji N,Suemori H. A simple and efficientcryopreservation method for primate embryonic stem cells[J]. Int J Dev Biol, 2004; 48(10):1149-54.
    192 Yang H, Acker JP, Cabuhat M,McGann LE. Effects of incubation temperature and time after thawing on viability assessment of peripheral hematopoietic progenitor cells cryopreserved for transplantation[J]. Bone Marrow Transplant, 2003; 32(10):1021-6.
    193 Vescovi AL, Galli R,Gritti A. Clonal analyses and cryopreservation of neural stem cell cultures[J]. Methods Mol Biol, 2002; 198:115-23.
    194 Hancock CR, Wetherington JP, Lambert NA,Condie BG. Neuronal differentiation of cryopreserved neural progenitor cells derived from mouse embryonic stem cells[J]. Biochem Biophys Res Commun, 2000; 271(2):418-21.
    195 Balint B, Ivanovic Z, Petakov M, Taseski J, Vojvodic D, Jovcic G, Bugarski D, Marjanovic S, Malesevic M,Stojanovic N. Evaluation of cryopreserved murine and human hematopoietic stem and progenitor cells designated for transplantation[J]. Vojnosanit Pregl, 1999; 56(6):577-85.
    196 Syme R, Bewick M, Stewart D, Porter K, Chadderton T,Gluck S. The role of depletion of dimethyl sulfoxide before autografting: on hematologic recovery, side effects, and toxicity[J]. Biol Blood Marrow Transplant, 2004; 10(2):135-41.
    197 Balint B, Ivanovic Z, Petakov M, Taseski J, Jovcic G, Stojanovic N,Milenkovic P. The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of marrow repopulating ability[J]. Bone Marrow Transplant, 1999; 23(6):613-9.
    198 Chen-Plotkin AS, Vossel KA, Samuels MA,Chen MH. Encephalopathy, stroke, and myocardial infarction with DMSO use in stem cell transplantation[J]. Neurology, 2007; 68(11):859-61.
    199 Savolainen H. Encephalopathy, stroke, and myocardial infarction with DMSO use in stem cell transplantation[J]. Neurology, 2007; 69(5):494; author reply 494-5.
    200 Hentschke S, Hentschke M, Hummel K, Salwender HJ, Braumann D,Stang A. Bilateral thalamic infarction after reinfusion of DMSO-preserved autologous stem-cells[J]. Leuk Lymphoma, 2006; 47(11):2418-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700