用户名: 密码: 验证码:
体外共培养诱导嗅球神经前体细胞分化为功能性外周神经元
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的听觉神经系统损伤后的修复是临床亟待解决的问题之一。近几年的研究寄希望于将外源性多潜能细胞移植到内耳并替代受损的听感觉上皮和听神经元的功能。尽管不同来源的移植细胞在被移植动物的内耳可以部分存活,我们对它们的功能却一无所知。我们尝试在体外模拟内耳微环境,检测嗅球来源神经前体细胞在体外分化进程中能否发育为较成熟的神经元,拥有一定的功能。
     方法培养嗅球神经前体细胞取自孕14-16d胚胎大鼠,有限稀释法传代并免疫荧光染色鉴定神经干细胞及其分化潜能。将嗅球来源神经前体细胞与新生大鼠耳蜗细胞悬液共同培养,应用免疫组织化学、膜片钳技术、RT-PCR、钙测定等技术检测嗅球来源NPCs在体外分化细胞的形态学、分子生物学、生理学特性,并与听感觉神经元——螺旋神经节细胞进行比较。
     结果虽然经诱导分化得到的神经元样细胞、毛细胞样细胞的比例仍然不够高,但是这些细胞已显示对外周神经元标志物、毛细胞标志物免疫组织化学染色阳性。RT-PCR提示外周感觉神经原特异的蛋白与转录因子的mRNA的表达。在共培养诱导分化条件下,细胞逐渐发育,并能在外加刺激下形成较成熟的动作电位。分化两周的神经元样细胞可以形成有一定功能的离子型的谷氨酸受体。
     结论本试验说明嗅球来源NPCs可以在体外转化为功能性的谷氨酸能外周神经元,可以成为耳聋细胞移植治疗的合适的供体细胞。
Hearing impairment is one of the most common disabilities in the modern era, affecting 250 million people worldwide. Hearing depends largely on hair cells(HCs) and their associated spiral ganglion neurons (SGNs), and defects in these cells produce permanent deafness. The cochlear sensory epithelium and its associated neural components do not, in mammals, regenerate or repair naturally following severe injury. As functional recovery by innate regeneration is thus not possible, the development of therapeutic techniques that were able to replace damaged cells and thus to restore inner ear function would represent a considerable advance in the treatment of deafness.
     Recent studies have revealed the potential of cell transplantation for the treatment of inner ear diseases. When implanted in the inner ear, embryonic tissue, neural stem cells (NSCs) and ESCs can survive, migrate toward afferent neurons, and generate neurite projections. However, although morphological and immunohistochemical analyses show that the implanted cells in these studies resemble neurons, no physiological information has been obtained that would identify these cells as functional neurons. In addition, it is not clear whether the cochlea of adults is able to provide the necessary extracellular microenvironment needed to drive these neuron-like cells through the developmental stages that would be required to generate functional afferent neurons and hair cells. Since the ultimate goal of this group of studies is to restore hearing in patients, it is of key importance to assess the function of implanted cells.
     Aim: The objective of the present study was to induce the differentiation of NPCs towards functional auditory-neuron-like cells, using an established coculture model in vitro to mimic, as closely as possible, the developing cochlear environment.
     Methods: We undertook to direct the differentiation of NPCs derived from the olfactory bulb in vitro, using established co-culture models.
     Result: Differentiated NPCs were immunolabeled for peripheral neuron markers. RT-PCR assays also indicated expression of peripheral neuron marker transcripts. Over a period of four weeks in culture, differentiated neuron-like cells showed a number of electrophysiological properties and gradually developed into mature cells compared with SGNs. After two weeks, the newly differentiated neurons also expressed functional ionotropic glutamate receptors.
     Conclusion: These results demonstrated that NPCs from the olfactory bulb can differentiate into functional auditory neuron-like cells, and thus may potentially provide a source of replacement neurons for repair of the deafened mammalian cochlea.
引文
1. Hu, Z., D. Wei, C.B. Johansson, et al., Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear. Exp Cell Res, 2005. 302(1): p. 40-7.
    2. Tamura, T., T. Nakagawa, F. Iguchi, et al., Transplantation of neural stem cells into the modiolus of mouse cochleae injured by cisplatin. Acta Otolaryngol Suppl, 2004(551): p. 65-8.
    3. Kojima, K., M. Murata, T. Nishio, S. Kawaguchi, and J. Ito, Survival of fetal rat otocyst cells grafted into the damaged inner ear. Acta Otolaryngol Suppl, 2004(551): p. 53-5.
    4. Hu, Z., M. Ulfendahl, and N.P. Olivius, Survival of neuronal tissue following xenograft implantation into the adult rat inner ear. Exp Neurol, 2004. 185(1): p. 7-14.
    5. Fujino, K., T.S. Kim, A.T. Nishida, et al., Transplantation of neural stem cells into explants of rat inner ear. Acta Otolaryngol Suppl, 2004(551): p. 31-3.
    6. Kim, T.S., K. Kojima, A.T. Nishida, et al., Expression of calretinin by fetal otocyst cells after transplantation into damaged rat utricle explants. Acta Otolaryngol Suppl, 2004(551): p. 34-8.
    7. Ryder, E.F., E.Y. Snyder, and C.L. Cepko, Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J Neurobiol, 1990. 21(2): p. 356-75.
    8. Coleman, B., J. Hardman, A. Coco, et al., Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transplant, 2006. 15(5): p. 369-80.
    9. Murugasu, E., Recent advances in the treatment of sensorineural deafness. Ann Acad Med Singapore, 2005. 34(4): p. 313-21.
    10. Spitzer, J.B., J.N. Fayad, and J.J. Wazen, The expanding domain of implantable hearing devices: an update on current status in the United States. Rev Laryngol Otol Rhinol (Bord), 2003. 124(1): p. 39-44.
    11. Snik, A.F., E.A. Mylanus, C.W. Cremers, et al., Multicenter audiometric results with the Vibrant Soundbridge, a semi-implantable hearing device for sensorineural hearing impairment. Otolaryngol Clin North Am, 2001. 34(2): p. 373-88.
    12. Tang, L.S., C. Montemayor, and F.A. Pereira, Sensorineural hearing loss: potential therapies and gene targets for drug development. IUBMB Life, 2006. 58(9): p. 525-30.
    13. Whittemore, S.R., D.J. Morassutti, W.M. Walters, R.H. Liu, and D.S. Magnuson, Mitogen and substrate differentially affect the lineage restriction of adult rat subventricular zone neural precursor cell populations. Exp Cell Res, 1999. 252(1): p. 75-95.
    14. Garbossa, D., M. Fontanella, C. Fronda, et al., New strategies for repairing the injured spinal cord: the role of stem cells. Neurol Res, 2006. 28(5): p. 500-4.
    15. Storch, A. and J. Schwarz, Neural stem cells and neurodegeneration. Curr Opin Investig Drugs, 2002. 3(5): p. 774-81.
    16. Dunnett, S.B., A. Bjorklund, and O. Lindvall, Cell therapy in Parkinson's disease - stop or go? Nat Rev Neurosci, 2001. 2(5): p. 365-9.
    17. Schwartz, P.H., The potential of stem cell therapies for neurological diseases. Expert Rev Neurother, 2006. 6(2): p. 153-61.
    18. Hildebrand, M.S., S.S. Newton, S.P. Gubbels, et al., Advances in molecularand cellular therapies for hearing loss. Mol Ther, 2008. 16(2): p. 224-36.
    19. Sekiya, T., K. Kojima, M. Matsumoto, and J. Ito, "Replacement of diseased auditory neurons by cell transplantation". Front Biosci, 2008. 13: p. 2165-76.
    20. Cruz, R.M., P.R. Lambert, and E.W. Rubel, Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea. Arch Otolaryngol Head Neck Surg, 1987. 113(10): p. 1058-62.
    21. Tsue, T.T., D.L. Watling, P. Weisleder, M.D. Coltrera, and E.W. Rubel, Identification of hair cell progenitors and intermitotic migration of their nuclei in the normal and regenerating avian inner ear. J Neurosci, 1994. 14(1): p. 140-52.
    22. Corwin, J.T. and D.A. Cotanche, Regeneration of sensory hair cells after acoustic trauma. Science, 1988. 240(4860): p. 1772-4.
    23. Rivolta, M.N., N. Grix, P. Lawlor, et al., Auditory hair cell precursors immortalized from the mammalian inner ear. Proc Biol Sci, 1998. 265(1406): p. 1595-603.
    24. Forge, A., L. Li, J.T. Corwin, and G. Nevill, Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science, 1993. 259(5101): p. 1616-9.
    25. Wang, Z. and H. Li, Microglia-like cells in rat organ of Corti following aminoglycoside ototoxicity. Neuroreport, 2000. 11(7): p. 1389-93.
    26. Warchol, M.E., P.R. Lambert, B.J. Goldstein, A. Forge, and J.T. Corwin, Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science, 1993. 259(5101): p. 1619-22.
    27. Li, H., H. Liu, and S. Heller, Pluripotent stem cells from the adult mouse inner ear. Nat Med, 2003. 9(10): p. 1293-9.
    28. Kojima, K., S. Takebayashi, T. Nakagawa, K. Iwai, and J. Ito, Nestin expression in the developing rat cochlea sensory epithelia. Acta Otolaryngol Suppl, 2004(551): p. 14-7.
    29. Oshima, K., C.M. Grimm, C.E. Corrales, et al., Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc Res Otolaryngol, 2007. 8(1): p. 18-31.
    30. Segers, V.F. and R.T. Lee, Stem-cell therapy for cardiac disease. Nature, 2008. 451(7181): p. 937-42.
    31. Ameen, C., R. Strehl, P. Bjorquist, et al., Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol, 2008. 65(1): p. 54-80.
    32. Li, J.Y., N.S. Christophersen, V. Hall, D. Soulet, and P. Brundin, Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci, 2008. 31(3): p. 146-53.
    33. Sakamoto, T., T. Nakagawa, T. Endo, et al., Fates of mouse embryonic stem cells transplanted into the inner ears of adult mice and embryonic chickens. Acta Otolaryngol Suppl, 2004(551): p. 48-52.
    34. Li, H., G. Roblin, H. Liu, and S. Heller, Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci U S A, 2003. 100(23): p. 13495-500.
    35. Okano, T., T. Nakagawa, T. Endo, et al., Engraftment of embryonic stem cell-derived neurons into the cochlear modiolus. Neuroreport, 2005. 16(17): p. 1919-22.
    36. Kim, T.S., T. Nakagawa, T. Kita, et al., Neural connections between embryonic stem cell-derived neurons and vestibular hair cells in vitro. Brain Res, 2005. 1057(1-2): p. 127-33.
    37. Sekiya, T., K. Kojima, M. Matsumoto, et al., Cell transplantation to the auditory nerve and cochlear duct. Exp Neurol, 2006. 198(1): p. 12-24.
    38. Corrales, C.E., L. Pan, H. Li, et al., Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti. J Neurobiol, 2006. 66(13): p. 1489-500.
    39. SHI, F., CORRALES, C.E. and EDGE, A.S.B., Sensory neurons produced by induction of human ES cells with BMP4: engraftment in the organ of Corti. Association for Research in Otolarygology 2007. Abstract, Annual Meeting.
    40. Gage, F.H., Mammalian neural stem cells. Science, 2000. 287(5457): p. 1433-8.
    41. Kojima, K., S. Tamura, A.T. Nishida, and J. Ito, Generation of inner ear hair cell immunophenotypes from neurospheres obtained from fetal rat central nervous system in vitro. Acta Otolaryngol Suppl, 2004(551): p. 26-30.
    42. Doyle, K.L., A. Kazda, Y. Hort, S.M. McKay, and S. Oleskevich, Differentiation of adult mouse olfactory precursor cells into hair cells in vitro. Stem Cells, 2007. 25(3): p. 621-7.
    43. Ito, J., K. Kojima, and S. Kawaguchi, Survival of neural stem cells in the cochlea. Acta Otolaryngol, 2001. 121(2): p. 140-2.
    44. Tateya, I., T. Nakagawa, F. Iguchi, et al., Fate of neural stem cells grafted into injured inner ears of mice. Neuroreport, 2003. 14(13): p. 1677-81.
    45. Iguchi, F., T. Nakagawa, I. Tateya, et al., Trophic support of mouse inner ear by neural stem cell transplantation. Neuroreport, 2003. 14(1): p. 77-80.
    46. Nagy, I., S. Fuchs, A. Monge, A. Huber, and D. Bodmer, [Transplantationof neural stem cells into the cochlea]. Hno, 2007. 55(11): p. 862-70.
    47. Li, H., C.E. Corrales, A. Edge, and S. Heller, Stem cells as therapy for hearing loss. Trends Mol Med, 2004. 10(7): p. 309-15.
    48. Moe, M.C., M. Varghese, A.I. Danilov, et al., Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain, 2005. 128(Pt 9): p. 2189-99.
    49. Jiang, Y., B.N. Jahagirdar, R.L. Reinhardt, et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-9.
    50. Naito, Y., T. Nakamura, T. Nakagawa, et al., Transplantation of bone marrow stromal cells into the cochlea of chinchillas. Neuroreport, 2004. 15(1): p. 1-4.
    51. Kondo, T., S.A. Johnson, M.C. Yoder, R. Romand, and E. Hashino, Sonic hedgehog and retinoic acid synergistically promote sensory fate specification from bone marrow-derived pluripotent stem cells. Proc Natl Acad Sci U S A, 2005. 102(13): p. 4789-94.
    52. Matsuoka, A.J., T. Kondo, R.T. Miyamoto, and E. Hashino, Enhanced survival of bone-marrow-derived pluripotent stem cells in an animal model of auditory neuropathy. Laryngoscope, 2007. 117(9): p. 1629-35.
    53. Jeon, S.J., K. Oshima, S. Heller, and A.S. Edge, Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol Cell Neurosci, 2007. 34(1): p. 59-68.
    54. Wilmut, I., A.E. Schnieke, J. McWhir, A.J. Kind, and K.H. Campbell, Viable offspring derived from fetal and adult mammalian cells. Nature, 1997. 385(6619): p. 810-3.
    55. Hagg, T., Molecular regulation of adult CNS neurogenesis: an integratedview. Trends Neurosci, 2005. 28(11): p. 589-95.
    56. Malgrange, B., B. Rogister, P.P. Lefebvre, et al., Expression of growth factors and their receptors in the postnatal rat cochlea. Neurochem Res, 1998. 23(8): p. 1133-8.
    57. Hu, Z., M. Andang, D. Ni, and M. Ulfendahl, Neural cograft stimulates the survival and differentiation of embryonic stem cells in the adult mammalian auditory system. Brain Res, 2005. 1051(1-2): p. 137-44.
    58. Miller, J.M., D.H. Chi, L.J. O'Keeffe, et al., Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. Int J Dev Neurosci, 1997. 15(4-5): p. 631-43.
    59. Staecker, H., R. Gabaizadeh, H. Federoff, and T.R. Van De Water, Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngol Head Neck Surg, 1998. 119(1): p. 7-13.
    60. Higashi, T., T. Nakagawa, T. Kita, et al., Effects of bone morphogenetic protein 4 on differentiation of embryonic stem cells into myosin VIIa-positive cells. Acta Otolaryngol Suppl, 2007(557): p. 36-40.
    61. Zhao, Y., Y. Wang, Z. Wang, et al., Sonic hedgehog promotes mouse inner ear progenitor cell proliferation and hair cell generation in vitro. Neuroreport, 2006. 17(2): p. 121-4.
    62. Song, H.J., C.F. Stevens, and F.H. Gage, Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci, 2002. 5(5): p. 438-45.
    63. Coleman, B., J.B. Fallon, L.N. Pettingill, M.G. de Silva, and R.K. Shepherd, Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons. Exp Cell Res, 2007.313(2): p. 232-43.
    64. 郑鸿雁,邰浩清,曾水林,周春祥,詹臻,王明艳, 耳蜗提取液诱导海马神经干细胞分化的实验研究. 神经解剖学杂志, 2006. 22(5): p. 542-546.
    65. Le Visage, C., B. Dunham, P. Flint, and K.W. Leong, Coculture of mesenchymal stem cells and respiratory epithelial cells to engineer a human composite respiratory mucosa. Tissue Eng, 2004. 10(9-10): p. 1426-35.
    66. Emsley, J.G., B.D. Mitchell, G. Kempermann, and J.D. Macklis, Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol, 2005. 75(5): p. 321-41.
    67. Lois, C. and A. Alvarez-Buylla, Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A, 1993. 90(5): p. 2074-7.
    68. Sanai, N., A.D. Tramontin, A. Quinones-Hinojosa, et al., Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 2004. 427(6976): p. 740-4.
    69. Lois, C. and A. Alvarez-Buylla, Long-distance neuronal migration in the adult mammalian brain. Science, 1994. 264(5162): p. 1145-8.
    70. Luskin, M.B. and M.S. Boone, Rate and pattern of migration of lineally-related olfactory bulb interneurons generated postnatally in the subventricular zone of the rat. Chem Senses, 1994. 19(6): p. 695-714.
    71. Winner, B., C.M. Cooper-Kuhn, R. Aigner, J. Winkler, and H.G. Kuhn, Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci, 2002. 16(9): p. 1681-9.
    72. Parmar, M., C. Skogh, and U. Englund, A transplantation study ofexpanded human embryonic forebrain precursors: evidence for selection of a specific progenitor population. Mol Cell Neurosci, 2003. 23(4): p. 531-43.
    73. Lledo, P.M. and A. Saghatelyan, Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci, 2005. 28(5): p. 248-54.
    74. Lennington, J.B., Z. Yang, and J.C. Conover, Neural stem cells and the regulation of adult neurogenesis. Reprod Biol Endocrinol, 2003. 1: p. 99.
    75. Doetsch, F., I. Caille, D.A. Lim, J.M. Garcia-Verdugo, and A. Alvarez-Buylla, Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 1999. 97(6): p. 703-16.
    76. Gross, R.E., M.F. Mehler, P.C. Mabie, et al., Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron, 1996. 17(4): p. 595-606.
    77. Vicario-Abejon, C., M.J. Yusta-Boyo, C. Fernandez-Moreno, and F. de Pablo, Locally born olfactory bulb stem cells proliferate in response to insulin-related factors and require endogenous insulin-like growth factor-I for differentiation into neurons and glia. J Neurosci, 2003. 23(3): p. 895-906.
    78. Zheng, W., R.S. Nowakowski, and F.M. Vaccarino, Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev Neurosci, 2004. 26(2-4): p. 181-96.
    79. Lim, D.A., A.D. Tramontin, J.M. Trevejo, et al., Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 2000. 28(3): p. 713-26.
    80. Jin, K., Y. Zhu, Y. Sun, et al., Vascular endothelial growth factor (VEGF)stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11946-50.
    81. Pencea, V., K.D. Bingaman, S.J. Wiegand, and M.B. Luskin, Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci, 2001. 21(17): p. 6706-17.
    82. Zigova, T., V. Pencea, S.J. Wiegand, and M.B. Luskin, Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci, 1998. 11(4): p. 234-45.
    83. Kuhn, H.G., J. Winkler, G. Kempermann, L.J. Thal, and F.H. Gage, Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci, 1997. 17(15): p. 5820-9.
    84. Cooper-Kuhn, C.M., M. Vroemen, J. Brown, et al., Impaired adult neurogenesis in mice lacking the transcription factor E2F1. Mol Cell Neurosci, 2002. 21(2): p. 312-23.
    85. Soria, J.M., P. Taglialatela, S. Gil-Perotin, et al., Defective postnatal neurogenesis and disorganization of the rostral migratory stream in absence of the Vax1 homeobox gene. J Neurosci, 2004. 24(49): p. 11171-81.
    86. Sakakibara, S., Y. Nakamura, H. Satoh, and H. Okano, Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci, 2001. 21(20): p. 8091-107.
    87. Taupin, P., J. Ray, W.H. Fischer, et al., FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron,2000. 28(2): p. 385-97.
    88. Shi, Y., D. Chichung Lie, P. Taupin, et al., Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature, 2004. 427(6969): p. 78-83.
    89. Matarredona, E.R., M. Murillo-Carretero, B. Moreno-Lopez, and C. Estrada, Role of nitric oxide in subventricular zone neurogenesis. Brain Res Brain Res Rev, 2005. 49(2): p. 355-66.
    90. Machold, R., S. Hayashi, M. Rutlin, et al., Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron, 2003. 39(6): p. 937-50.
    91. Pagano, S.F., F. Impagnatiello, M. Girelli, et al., Isolation and characterization of neural stem cells from the adult human olfactory bulb. Stem Cells, 2000. 18(4): p. 295-300.
    92. 陈福权、邱建华、王锦玲等., 大鼠嗅球神经干细胞培养. 中华耳鼻咽喉科杂志, 2004. 39(11): p. 687-90.
    93. 陈福权、王锦玲、邱建华等, 胚胎大鼠嗅球神经干细胞的培养及分化特性. 中华神经外科疾病研究杂志, 2004. 3(4): p. 344-377.
    94. Reynolds, B.A. and S. Weiss, Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992. 255(5052): p. 1707-10.
    95. Pomp, O., I. Brokhman, I. Ben-Dor, B. Reubinoff, and R.S. Goldstein, Generation of peripheral sensory and sympathetic neurons and neural crest cells from human embryonic stem cells. Stem Cells, 2005. 23(7): p. 923-30.
    96. Wyatt, S., L. Ensor, J. Begbie, et al., NT-3 regulates expression of Brn3a but not Brn3b in developing mouse trigeminal sensory neurons. Brain ResMol Brain Res, 1998. 55(2): p. 254-64.
    97. Quinn, C.C., E. Chen, T.G. Kinjo, et al., TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J Neurosci, 2003. 23(7): p. 2815-23.
    98. van Praag, H., A.F. Schinder, B.R. Christie, et al., Functional neurogenesis in the adult hippocampus. Nature, 2002. 415(6875): p. 1030-4.
    99. Hasson, T., P.G. Gillespie, J.A. Garcia, et al., Unconventional myosins in inner-ear sensory epithelia. J Cell Biol, 1997. 137(6): p. 1287-307.
    100. Berglund, A.M. and D.K. Ryugo, Neurofilament antibodies and spiral ganglion neurons of the mammalian cochlea. J Comp Neurol, 1991. 306(3): p. 393-408.
    101. Fedtsova, N.G. and E.E. Turner, Brn-3.0 expression identifies early post-mitotic CNS neurons and sensory neural precursors. Mech Dev, 1995. 53(3): p. 291-304.
    102. Kim, J.H., J.M. Auerbach, J.A. Rodriguez-Gomez, et al., Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature, 2002. 418(6893): p. 50-6.
    103. Englund, U., A. Bjorklund, K. Wictorin, O. Lindvall, and M. Kokaia, Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci U S A, 2002. 99(26): p. 17089-94.
    104. Uchida, K., T. Momiyama, H. Okano, et al., Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin. Neurosci Res, 2005. 52(3): p. 276-86.
    105. Toda, H., J. Takahashi, A. Mizoguchi, K. Koyano, and N. Hashimoto, Neurons generated from adult rat hippocampal stem cells form functionalglutamatergic and GABAergic synapses in vitro. Exp Neurol, 2000. 165(1): p. 66-76.
    106. Mo, Z.L. and R.L. Davis, Endogenous firing patterns of murine spiral ganglion neurons. J Neurophysiol, 1997. 77(3): p. 1294-305.
    107. Liu, R.H., D.J. Morassutti, S.R. Whittemore, J.S. Sosnowski, and D.S. Magnuson, Electrophysiological properties of mitogen-expanded adult rat spinal cord and subventricular zone neural precursor cells. Exp Neurol, 1999. 158(1): p. 143-54.
    108. Akaike, N. and N. Harata, Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Jpn J Physiol, 1994. 44(5): p. 433-73.
    109. Nordang, L., E. Cestreicher, W. Arnold, and M. Anniko, Glutamate is the afferent neurotransmitter in the human cochlea. Acta Otolaryngol, 2000. 120(3): p. 359-62.
    110. Li, X., J. Sun, N. Yu, et al., Glutamate induced modulation of free Ca(2+) in isolated inner hair cells of the guinea pig cochlea. Hear Res, 2001. 161(1-2): p. 29-34.
    111. Kao, J.P., A.T. Harootunian, and R.Y. Tsien, Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem, 1989. 264(14): p. 8179-84.
    112. Klassen, H., K.L. Imfeld, J. Ray, et al., The immunological properties of adult hippocampal progenitor cells. Vision Res, 2003. 43(8): p. 947-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700