用户名: 密码: 验证码:
基于神经网络的复杂非线性系统鲁棒控制与滤波研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对两大类型的复杂非线性系统,即非线性不确定Markov跳变系统和温室气候控制系统,借助于神经网络这一智能工具,分两大部分分别研究和探讨了其鲁棒控制和非线性滤波问题。
     第一部分,以一类非线性Markov跳变系统的鲁棒控制和滤波为引线,逐步深入地分析和探讨了跳变转移概率未知条件下的非线性Markov跳变系统的稳态性能和暂态性能。
     首先,针对一类含有不确定项和有界外部干扰的非线性Markov跳变系统,用智能方法研究其鲁棒性能分析与综合问题。将神经网络与鲁棒控制相结合,运用线性微分包含方法,对近似非线性项的神经网络进行分段线性化设计,再将线性微分包含方法表示的神经网络代入到这类非线性系统中,使得对允许的不确定性、外部干扰以及神经网络建模误差,相应的闭环控制系统或闭环误差系统鲁棒随机稳定且满足H∞性能指标。
     接着,考虑实际工程中跳变转移概率的难以获得性,深入分析跳变转移概率未知条件下的非线性Markov跳变系统的稳态性能,研究其鲁棒H∞控制及鲁棒H∞滤波问题。考虑建模误差带来的系统不确定项,在过程激励噪声和测量噪声统计特性无法获知的情况下,给出鲁棒H∞控制器和鲁棒H∞滤波器设计方法。基于Lyapunov稳定性理论,给出相应控制器和滤波器的存在条件。
     然后,根据实际工程需要,深入探讨了非线性Markov跳变系统的暂态性能问题,即在给定的有限时间区限内,对所有允许的参数不确定性、外部干扰以及神经网络建模误差,闭环系统的轨迹不超过某一给定的界限。在跳变转移概率完全已知和部分已知两种情况下,讨论了系统的鲁棒有限时间镇定及滤波问题,并给出了最优有限时间控制器和最优有限时间滤波器的具体设计方案。
     第二部分,以提高温室气候系统的控制精确度为目的,分别从提高控制决策策略的自适应能力和滤波精度两个角度出发,深入而系统的研究了提高温室气候控制精度的关键技术。
     首先,从提高控制决策策略的自适应能力方面考虑,研究外界干扰时变条件下的温室气候控制系统的神经网络鲁棒自适应控制策略,不仅分析了其稳定性、收敛性、鲁棒性,而且所提出的神经网络和反馈线性化控制相结合的鲁棒自适应控制策略,对提高温室气候的控制质量具有重要意义。
     其次,从滤波器角度出发,当系统过程激励噪声和测量噪声为互不相干的高斯白噪声时,提出了利用扩展卡尔曼滤波器对温室室内气候控制系统进行精确参数估计的方法。仿真结果表明,经过扩展卡尔曼滤波器估计后的系统的控制精度得到了明显的提高。
     接着,为了减少线性化误差对非线性温室气候系统控制精度的影响,采用不敏卡尔曼滤波方法对非线性系统进行高精度的滤波。不敏卡尔曼滤波器可以通过本身的自适应调整来减轻模型误差的影响,且不需要对非线性系统进行线性化,实现相对简单。
     最后,为了减小对真实噪声的高斯性假设误差对滤波性能的影响,进而提高温室气候系统的控制精度,研究了能在非高斯噪声下具有较高估计精度的非线性粒子滤波方法,解决了长期以来工业过程控制中对非线性非高斯噪声干扰较难控制的问题。
This thesis is concerned with the problem of robust control and nonlinear filtering for two kinds of complex nonlinear systems with the help of neural networks, i. e., stochastic complex nonlinear systems with Markov jump parameters and deterministic complex systems of greenhouse climate control, which falls into two major parts.
     In the first part, based on the robust control and filtering of a class of nonlinear Markov jump systems (MJSs), the steady-state behavior and the transient performance of nonlinear MJSs with partially known transition jump rates are further analyzed and discussed.
     First of all, the analysis and synthesis problem of performance robustness is studied for a class of nonlinear MJSs with uncertainties and external disturbances with the aid of intelligent control method. Incorporating neural network with robust control, the nonlinearities are initially approximated by multilayer feedback neural networks. Subsequently, the neural networks are piecewisely interpolated to generate a linear differential inclusion (LDI) model. Then, substituting the neural network with the representation of LDI into nonlinear systems, the resulting closed-loop control systems or the closed-loop error systems are robustly stochastic stable and satisfy the H∞performance index for all admissible uncertainties, the external disturbances and approximation errors of the networks.
     Subsequently, in real physical systems, not all the transition probabilities of the jumps are easy to measure, and even part of the elements in the desired transition rate matrix is not available. Therefore, it is necessary to study the steady-state behavior for more general nonlinear MJSs with partially known transition probabilities, i. e., the robust H∞control and the robust H∞filtering. Considering the uncertainties produced by modeling errors and the situation involving unknown statistic characteristics of the processor noise and the measurement noise, the robust H∞controller and filter design methodology is presented. Based on the Lyapunov theory, sufficient conditions for the existence of the desired controller and filter are derived.
     Then, in terms of practical engineering, transient performance of nonlinear MJSs is further studied, i. e., in a fixed time interval, the trajectories of the system stay within a given bound for all admissible uncertainties, the norm bounded external disturbances and approximation errors of the networks. In both situation of partially known transition probabilities and complete access to transition probabilities, the robust finite-time stabilization and filtering criteria for the underlying systems is discussed. What is more, the detailed design proposal is given for optimal finite-time controller and optimal finite-time filter.
     In the second part, with the view of improving the control accuracy of greenhouse climate systems, the relevant key technique has been further explored from two aspects:one is the adaptive capability of control policy, the other is the accuracy of filter.
     Firstly, in order to improve the adaptive capability of control policy, a general framework of robust adaptive neural network-based controller design for greenhouse climate system with time-varying external disturbances is presented, in which not only the stability, convergence property and the robustness are discussed, but also the robust adaptive control method, which combines the well-known feedback linearization with radial basis function neural networks, makes great sense to the control quality of greenhouse climate system.
     Secondly, from filter point of view and assuming the process noises and sensor noises are uncorrelated white Gaussian random process, the extended Kalman filter (EKF) is proposed to estimate the greenhouse climate system. The simulation results show that the control accuracy of EKF observer-controller combination is much better than that of controller alone.
     Thirdly, the ability of the unscented Kalman filter (UKF) to accurately estimate nonlinearities makes it attractive for implementation on greenhouse climate control systems. The unscented transformation coupled with certain parts of the classic Kalman filter, provides a more accurate method than the EKF for estimating the greenhouse states and filtering out the noises. What's more, the UKF is far easier to implement because it does not involve any linearization steps.
     Finally, to reduce the influence of filtering ability caused by Gaussian assumption of real noises and further improve the control accuracy, the nonlinear particle filter is derived in an attempt to solve the state estimation problem of the greenhouse climate control systems with non-Gaussian process and measurement noises, which solves the trouble controlling of nonlinear and non-Gaussian noises in industrial process control for a long time.
引文
1. Tustin A. The effects of black lash and of speed-dependent friction on the stability of closed-cycle control systems [J]. J. IEE pt Ⅱ,1947,94(2A):143-151
    2.韩正之,刘建华,郑毅等.非线性控制系统的特性(Ⅱ)[J].控制与决策,1994,9(5):91-97
    3. Lyapunov A M. The general problem of the stability of motion [J]. International Journal of Control,1992,55:531-773
    4. Slotine J J E. Sliding controller design for nonlinear systems [J]. International Journal of Control,1984,40:421-434
    5. Utkin V. Sliding modes in control optimization [M]. Newyork:Springer-veilag, CCES, 1992
    6. Brockett R W. Nonlinear system and differential geometry [C]. Proc. of IEEE,1976,64 (1):61-72
    7. Lanfferriere G A, Sussman H J. A differential geometric approach to motion planning [M]. Nonholonornic motion planning, Kluwer,1993.235-270
    8. Lanfferriere G A. A general strategy for computing steering controls of systems without drift [C]. In Proceeding of IEEE Conference on Decision and Control,1991.1115-1120
    9. Murray R M. Applications and extensions of goursat normal form to control of nonlinear systems [C]. In Proceeding of IEEE Conference on Decision and Control,1993. 3425-3430
    10.韩京清.反馈系统中的线性与非线性[J].控制与决策,1988,2:27-32
    11. Astrom K J. Where is the intelligent in intelligent control [J]? IEEE Control Systems Magazine,1991,11(1):37-39
    12. Mclulloch W S, Pitts W. Alogical calculus of the ideas immanent in nervous activity [J]. Bulletin of Mathematical Biophysics,1943,5:115-133
    13. Psaltis D, Sideris A, Yamamura A. Neural controllers [C]. Proc. Int. Conf. Neural Networks, San Diego, CA, U. S. A,1987
    14. Lin W, Slotine J J E. Neural network control of unknown nonlinear systems [C]. In Proc of Amer Contr Conf.1998,9 (6):1422-1429
    15. Rivals I, Personnaz L. Nonlinear internal model control using neural networks: application to processes with delay and design issues [J]. IEEE Trans. Neural Networks, 2000,11(1):89-90
    16. Montague G A, Tham M T, Morris A J. Artificial neural networks based multivariable predictive control [C]. Pro. IEE. Int. Conf. Artificial Neural Networks, Bournemouth, U. K.1991
    17. Liu F, Luan X L. Stochastic optimal control of nonlinear jump systems using neural networks [J]. Lecture Notes in Computer Science,2006,3972:975-980
    18. Medsker L R. Hybrid neural networks and expert systems [M]. Kluwer Academic Publisher, Boston,1994
    19. Buckley J J, Hayashi Y. Fuzzy neural networks:a survey [J]. Fuzzy Sets and Systems, 1994,66(1):1-14
    20. Tan S, Hang C C, Chai J S. Gain-scheduling:from Conventional to Neuro-fuzzy [J]. Automation 1997,33 (3):411-419
    21. Irwin G W, Warwick K, Hunt K J. Neural network application in control [M]. The Institution of Electrical Engineers,1995
    22.焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1990
    23.焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1993
    24.焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1995
    25.孙增沂等.智能控制理论与技术[M].北京:清华大学出版社,南宁:广西科学技术出版社,1997
    26. Hunt K J. Neural networks for control systems-a survey [J]. Automatica,1992,28(6): 1083-1112
    27.胡守仁.神经网络应用技术[M].长沙:国防科技大学出版社,1993
    28. Xin Y, Chen M, Gao W B. Adaptive control and robust adaptive control for robot manipulators with feedforward compensation [C]. International Conference on Industrial Electronics, Control and Instrumentation,1987.130-132.
    29. Mudge S K, Patton R J. Analysis of the technique of robust eigenstructure assignment with application to aircraft control [J]. IEE Proceedings Part D:Control Theory and Applications,1988,135(4):275-281
    30. Shyu K K, Yan J J. Robust Stability of uncertain time-delay systems and its stabilization by variable structure control [J]. Int. J. Control,1993,57(1):237-247
    31. Tchangani A P, Dambrine M, Richard J P. Robust stability of large-scale system with aftereffect [C]. Proc.8th Symposium on Large Scale Systems:Theory and Applications, 1988.405-410
    32. Krasovskii N M, Lidskii E A, Analytical design of controllers in systems with random attributes [J]. Automation and Remote Control, v22 (Ⅰ,Ⅱ,Ⅲ) 1961,1021-2025
    33.朱进.Markov跳跃系统的鲁棒Kalman滤波与非线性控制[D]:[博士学位论文].北京: 中国科学技术大学,2006
    34. Hartman P. Ordinary differential equation [M], Boston,1982
    35. Black H S. Inventing the negative feedback amplifier [J]. IEEE Spectrum,1927,14: 54-60
    36. Nyquist H. Regeneration theory [J]. Bell System Technical Tour,1932,2:126-147
    37. Bode H W. Network analysis and feedback amplifier design [M]. Princeton, NJ:Nostrand, 1945
    38. Horowitz I. Synthesis of feedback system [M]. New York, Academic Press,1963
    39. Davison, E J. The output control of linear time invariant multivariable systems with unmeasurable arbitrary disturbance [J]. IEEE Transactions on Automatic Control,1972, 17(5):621-630
    40. Pearson, J B, Stats, P W. Robust controllers for linear regulators [J]. IEEE Transactions on Automatic Control,1974,19:231-234
    41.张显库.H∞鲁棒控制理论发展的十年回顾[J].控制与决策,1999,14(4):240-244
    42. Zames G. Feedback and optimal sensitivity:model reference transformation, multiplicative seminorms and approximate inverses [J]. IEEE Transactions on Automatic Control,1981,26:301-320
    43. Ge J H, Frank D M, Lin C F. Robust H∞ state feedback control for linear systems with state delay and parameter uncertainty [J]. Automatica,1996,32:1183-1185
    44. Yang G H, Wang J L. Non-fragile H∞ Control for Linear Systems with Multiplicative Controller Gain Variations [J]. Automatica,2001,37(5):727-737
    45.屈百达,黄小原.多时滞系统H∞鲁棒控制[J].控制理论与应用,1999,16(6):836-841
    46. Boukas E K, Shi P, Agarwal R. An application of robust control technique to manufacturing systems with uncertain processing time [J]. Optimal Control Applications and Methods,2000,21(6):257-268
    47. Ugrinovskii V A, Petersen I R. Robust stability and performance of stochastic uncertain systems on an infinite time interval [J]. Systems and Control Letters.2001,44(4):291-308
    48. Nguang S K, Shi P. Robust control of fuzzy time-delays systems [J], Systems Analysis Modelling Simulation,2003,43:100-120
    49. Luan X L, Liu F. Design of performance robustness for uncertain nonlinear time-delay systems via neural network [J]. Journal of Systems Engineering and Electronics,2007, 18(4):852-857
    50. Shi P, Mahmoud M. Robust control for Markovian jump linear discrete-time systems with unknown nonlinearities [J]. IEEE Transactions on Circuits and Systems,2002,49(4): 538-542,2002.
    51.张有为.维纳与卡尔曼滤波理论导论[M].人民教育出版社,1980.
    52. Kalman R E. A new approach to linear filtering and predication problem [J]. Journal of Basic Engineering,1960,82(1):35-45
    53. Kalman R E. New method in Wiener filtering theory [C]. Proc. Eng. Appl. of Random Functions Theory and Probability, New York,1993
    54. Kalman R E. New result in linear filtering and predication theory [J]. Journal of Basic Engineering,1961,83:95-108
    55. Shi P, Kaya Y. Robust Kalman filtering for continuous-time systems with norm bounded nonlinear uncertainties [J]. IMA J. Mathematical Control and Information,2000,17(4): 363-373
    56. Mahmoud M, Shi P, Ismail A. Robust Kalman filtering for discrete-time Markovian jump systems with Parameter Uncertainty [J]. J. Computational and Applied Mathematics,2004, 169(1):53-69
    57. Nguang S K, Shi P. H∞ filtering of nonlinear sampled-data systems [J], Automatica, 2000,36(2):303-310
    58. Xie L, Souza C E, Wang Y. Robust filtering for a class of discrete-time uncertain nonlinear systems:an H∞ approach [J]. International Journal of Robust Nonlinear Control, 1996,2:111-123
    59. Peng C, Yue D, Tian E G, Zhang Y J. Improved Network-based Robust H∞ Filtering for Uncertain Linear Systems [J]. International Journal of Innovative Computing, Information and Control,2009,5(4):961-970
    60. Ji Y, Chizeck H J, Controllability, stability and continuous-time Markovian jump linear quadratic control [J]. IEEE Transactions on Automatic Control,1990,35 (7):777-788
    61. Liu F, Chen J. Constrained Overall Controller of Fuzzy Stochastic Jump Systems [C]. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, 2006,5065-5070.
    62. Florentin J J. Optimal control of continuous-time Markov stochastic systems [J]. J. Electron. Control,1961,10(6):473-488
    63. Sworder D, Feedback control of a class of linear systems with jump parameters [J]. IEEE Transactions on Automatic Control,1969,14(1):9-14
    64. Wonham W M. Random differential equations in control theory [J]. Probabilistic Methods in Applied Mathematies,1971,2:131-212
    65. Feng X, Loparo K A, Ji Y, Chizeck H J, Stochastic stability properties of jump linear systems [J]. IEEE Transactions on Automatic Control,1992,37,38-53.
    66. Karan M, Shi P, Kaya Y. Transition probability bounds for the stochastic stability robustness of continuous and discrete-time Markovian jump linear systems [J]. Automatica,2006,42:2159-2168
    67. Mariton M, On controllability of linear systems with stochastic jump parameters [J]. IEEE Transactions on Automatic Control,1986,31(7):680-683
    68. Shi P, Boukas E K, Agarwal R. Robust control for Markovian jumping discrete-time systems [J]. Int. J. Systems Science,1999,30(8):787-797
    69. Mariton M. Robust jump linear quadratic control:a mode stabilizing solution [J]. IEEE Transactions on Automatic Control,1985,30(11):1145-1147
    70. Shi P, Boukas E K, Agarwal R. Kalman filtering for continuous-time uncertain systems with Markovian jumping parameters [J]. IEEE Transactions on Automatic Control,1999, 44(8):1592-1597
    71. Segall A. Recursive estimation from discrete-time point processes [J]. IEEE Transactions on Automatic Control,1976,22(4):422-431
    72. Yang C, Barshalom Y, Lin C F. Discrete-time point process filter for mode estimation [J]. IEEE Transactions on Automatic Control,1992,37(11):1812-1816
    73. Kirshnamurthy V, Johnston L A. Mode-matched filtering via the EM algorithm [C]. Pro. Amer. Contr. Conf., San Diego, California,1999:1930-1934
    74. Doueet A, Ristie B. Recursive state estimation for multiple switching models with unknown transition probabilities [J]. IEEE Trans. Aerospace and Electronic systems,2002, 38(3):1098-1104
    75. Zhang L X, Boukas E K, Lam J. Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities [J]. IEEE Transactions on Automatic Control,2008,53(10):2458-2464
    76. Mahmoud M, Shi P. Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters [J]. IEEE Trans. Circuits and Systems.2003,50(1):98-105
    77. Fragoso M D, Costa O L V, Baezynski J, Rocha N. Optimal linear mean square filter for continuous-time jump linear systems [J]. IEEE Transactions on Automatic Control,2005, 50(9):1364-1369
    78. Shi P, Boukas E K. H∞ control for Markovian jump systems with parametric uncertainty [J]. Int. J. Systems Science,1997,28(10):77-82
    79. Wang Z D, Gao J P, Huang B. LMI-based robust H∞ control of uncertain linear system with time delays [J]. Automatica,2001,137:1141-1146
    80. Sthananthan S, Keel L H. Optimal practical stabilization and controllability of Systems with Marikovian jumps [J]. Nonlinear Analysis,2003,54(6):1011-1027
    81. Luan X L, Liu F. Neural network-based H∞ filtering for nonlinear systems with time-delays [J]. Journal of Systems Engineering and Electronics,2008,11(1):141-147
    82. Wang Z D, Lam J, Liu X H. Nonlinear filtering for state delayed systems with Markovian switching [J]. IEEE Trans on signal processing,2003:2321-2328
    83. Luan X L, Shi P, Liu F. Neural-network-based finite-time H∞ control for extended Markov jump nonlinear systems [J]. International Journal of Adaptive Control and Signal Processing,2010, DOI:10.1002/acs.1143
    84. Liu. F. Neural Network-Based Control:Multiobjective Design [C], IEEE Proc. Int. Conf. Systems, Man and Cybernetics, pp.295-300,2002
    85.刘飞.基于神经网络模型的最优保LQ控制设计[J].控制工程,2002
    86.潘晓宁,胡寿松,侯霞.不确定非线性系统的神经网络自适应H∞跟踪控制[J].控制与决策,2004,19(6):21-26
    87. Luan X L, Liu F. Neural net-based H∞ filtering for nonlinear jump systems [C]. Lecture Notes in Computer Science,2007,4493:1067-1076
    88. Luan X L, Liu F. Neural net-based robust H∞ filtering for nonlinear systems with parameter uncertainty [C]. Proceedings of the 6th World Congress on Control and Automation, June 21-23,2006, Dalian, China,2299-2303
    89.潘晓宁,胡寿松.基于神经网络非线性时滞系统的鲁棒可靠控制器设计[J].南京航空航天大学学报,2003,35(2)
    90. Liu F, Luan X L, Feng Ding. Robust Output Feedback Control for Uncertain Linear Systems with Delay:Beyond Bounded Real and Positive Real Conditions [C]. Proceedings of 2rd International Conference on Impulsive Dynamic Systems and Applications,2005,379-386
    91. Luan X L, Liu F. Neural Network-based Robust Control for Uncertain Systems with Nonlinearity [C]. Proceedings of 3rd International Conference on Impulsive Dynamic Systems and Applications,2006,411-413
    92.栾小丽,刘飞.非线性不确定时滞系统观测器型鲁棒无源控制[J].系统工程与电子技术,2008,30(9):1755-1758
    93. G Nakura, A. Ichiwa. Stability of a nonlinear jump systems [J]. Syst. Contr. Lett.2002, 47:79-85
    94. M. Mariton. Control of nonlinear systems with Markovian parameter changes [J]. IEEE Trans. Automat. Contr.1991,36(2):233-235
    95. P.V. Pakshin, D. M. Retinsky. Robust control of hybrid nonlinear systems with Jumps of state vector [J]. Nolinear Control Systems,2001,13:979-984
    96. Z. Wang, J. Lam, K. J. Burnham. Nonlinear filtering for state delayed systems with Markovian switching[C]. Proc 4th WCICA.2002:231-235
    97. M. D. S. Aliyu. Passivity and stability of nonlinear systems with Markovian jump Parameters [C]. Pro Amer Contr Conf. June,1999:953-957
    98. M. D. S. Aliyu. Dissipative and stability of nonlinear jump systems [C]. Pro Amer Contr Conf. June,1999:38(4):795-799
    99. Luan X L, He S P, Liu F. Neural network-based robust fault detection for nonlinear jump systems [J]. Chaos, Solitons and Fractals,2009,42:760-766
    100.Feng X, Loparo K A, Ji Y, et al. Stochastic stability properties of jump linear systems [J]. IEEE Transactions on Automatic Control,1992,37:1141-1146
    101.Luan X L, Liu F, Shi P. Passive output feedback control for non-linear systems with time delays [J]. Proc. IMechE Part Ⅰ:J. Systems and Control Engineering,2009,223:737-743
    102.Tanaka K. An approach to stability criteria of neural-network control systems [J]. IEEE Trans. on Neural Networks,1996,7:629-642
    103.Limanond S, Si J. Neural-network-based control design:an LMI approach [J]. IEEE Trans. on Neural Networks,1998,9 (6):1422-1429
    104.Lin C L. Control of perturbed systems using neural networks [J]. IEEE Trans. Neural Networks,1998,9:1046-1050
    105.Lin C L, Lin T Y. An H∞ design approach for neural net-based control schemes [J]. IEEE Transactions on Automatic Control,2001,46:1599-1605.
    106.Wang Y, Xie L, Souza C E. Robust control of a class of uncertain nonlinear systems [J]. Systems and Control Letters,1992,19 (2):139-149
    107.俞立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002
    108.Dong J X, Yang G H. An LMI-based approach for state feedback controller design of Markovian jump nonlinear systems [C]. Proceedings of the 16th IEEE International Conference on Control Applications, Singapore,2007,1516-1521
    109.张如,吴俊伟,孙国伟.LMI的鲁棒H∞滤波在惯导初始对准中的应用[J].火力与指挥控制,2007,32(8):119-121
    110.Fridman E, Shaked U. A new H∞ filter design for linear time delay systems [J]. IEEE Transactions on Signal Processing,2001,49(11):2839-2843
    111.Gao H, Lam J, Shi P, Wang C. Parameter-dependent filter design with guaranteed H∞ performance [J]. IEE Proc.-Control Theory Appl,2005,152(5):531-537
    112.Boyd S. Linear matrix inequalities in system and control theory [M]. Philadelphia:SIAM, 1994,1-46
    113.Bar-Shalom Y, Li X R. Estimation and tracking:principle, techniques and software [M]. Boston, Artech House,1993
    114.Cao Y Y, Lam J. Robust H∞ control of uncertain Markovian jump systems with time-delay [J]. IEEE Transactions on Automatic Control,2000,45(1):77-83.
    115.Sun K, Li L, Panayotopoulos G, Packard A. Extension of jump Markov system estimation techniques [M]. In:Proceedings of the American Control Conference. Anchorage, Alaska:IEEE,2002.4209-4214.
    116.Gupta V, Murray R M, Hassibi B. On the control of jump linear Markov systems with Markov state estimation [J]. In:Proceedings of the American Control Conference. Denver, Colorado:IEEE,2003.2893-2898
    117.Karan M, Shi P, Kaya C Y. Transition probability bound for the stochastic stability robustness of continuous- and discrete-time Markovian jump linear systems [J]. Automatica,2006,42(12):2159-2168.
    118.刘飞,张曦煌.L2增益约束下跳变系统鲁棒控制[M].控制理论与应用,2006,23(3):373-377
    119.Zhang L X, Boukas E K, Lam J. Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities [J]. IEEE Transactions on Automatic Control,2008,53 (10):2458-2464
    120.Zhang L X, Boukas E K. Stability and stabilization of Markovian jump linear systems with partly unknown transition probability [J]. Automatica,2009,45(2):463-468
    121.Mao X. Stability of stochastic differential equations with Markovian switching [J]. Stochastic Processes and Their Applications,1999,79 (2):45-67
    122.Feng X, Loparo KA, Ji Y. Stochastic stability properties of jump linear systems [J]. IEEE Transactions on Automatic Control,1992,37(1):38-53
    123.Liberzon, D. Switching in systems and control [M]. Berlin:Birkhauser,2003
    124.Elsayed A, Grimble M J. A new approach to the H∞ design of optimal digital linear filters [J]. IMA J Math Control Info.1989,6:233-251
    125.Dorato P. Short time stability in linear time-varying systems [C]. Proc of the IRE international Convention Record, Part 4. New York,1961,83-87
    126.Amato F, Ariola M, Abdallah C T, et. al. Dynamic output feedback finite-time control of LIT systems subject to parameteric uncertainties and disturbances [C]. Proc of the European Control Conference, Berlin:Springer,1999,1176-1180
    127.Amato F, Ariola M, Dorato P. Finite-time control of linear systems subject to parameteric uncertainties and disturbances [J]. Automatica,2001,37:1459-1463
    128.Amoto F, Ariola M, Cosentino C. Finite-time stabilization via dynamic output feedback [J]. Automatica,2006,42:337-342
    129.何舒平,刘飞.Markov跳变系统的有限时间状态反馈镇定[J].控制与决策,2009,24(1):95-99
    130.Amato F, Ariola M. Finite-time control of discrete-time linear systems [J]. IEEE Transactions on Automatic Control,2005,50(5):724-729
    131.沈艳军.一类线性离散时间系统有限时间控制问题[J].控制与决策,2008,23(1):107-113
    132.李世华,丁世宏,田玉平.一类二阶非线性系统的有限时间状态反馈镇定方法[J]自动化学报,2007,33(1):101-104
    133.Zhang W H, An X Y. Finite-time Control of Linear Stochastic Systems [J]. International Journal of Innovative Computing, Information and Control,2008,4(3):689-696
    134.Li S H, Wang Z, Fei S M. Finite-time control of a bioreactor system using terminal sliding mode [J]. International Journal of Innovative Computing, Information and Control, 2009,5(10):3495-3504
    135.Wang Z, Li S H, Fei S M. Finite-time tracking control of bank-to-turn missiles using terminal sliding mode [J]. ICIC Express Letters,2009,3(4):1373-1380
    136.Assawinchaichote W, Nguang S K, Shi P. Robust H∞ fuzzy filter design for uncertain nonlinear singularly perturbed systems with Markovian jumps:An LMI approach [J]. Information Sciences,2007,177:1699-1714
    137.Aliyu M D S, Boukas E K.H∞ control for Markovian jump nonlinear systems [C]. Pro 37th IEEE Conf Decision Control. Dec.1998:766-771
    138.Boukas E K, Shi P, Nguang S K, Agarwal R K. On designing H∞ controller for a class of nonlinear Markovian jump systems with parametric uncertainties. Pro Amer Contr Conf. June,1999:970-974
    139.Mao X R. Stability of stochastic differential equations with Markovian switching [J]. Stochastic Processes and Theory Applications,1999,79:45-67
    140.Mao X R. Stochastic versions of the Lasalle theorem [J]. Journal of Diffrential Equations, 1999,153:175-195
    141.Yuan C G, Mao X R. Asymptotic stability in distribution of stochastic differential equations with Markovian switching [J]. Stochastic Processes and Theory Applications, 2003,103:277-291
    142.Yuan C G, Mao X R. Robust stability and controllability of stochastic differential delayed equations with Markovian switching [J]. Automatica,2004,40:343-354
    143.Mariton M. Jump linear systems in automatic control [M]. NewYork:MareelDekker, 1990
    144.Sworder D D, A LQ solution to a control problem associated with a solar themal central receiver [J]. IEEE Trans. Automat. Contr.,1983,28(10):971-977
    145.Li X R, Shalom Y B. Design of an interacting multiple model tracking [J]. IEEE Trans Automat Contr.,1993,1(3):186-194
    146.Kirrubarajan T, Shalom Y B, Pattipati K R, Kadar I. Ground target tracking with variable struetureI MM estimator [J]. IEEE Trans Aerospace and Electronic systems,2000,36(1): 26-46
    147.Shin S J, Song T. Input estimation with multiple model for maneuvering target tracking [J]. Control Engineering Practice,2002,10:1385-1391
    148.Munir A, Atherton D. Maneuvering target tracking using different turn rate models in the interacting multiple model algorithm [J]. Proceedings of the 34th Confrence on Decision and Control,1995:2747-2751
    149.Akella R, Kumar P R. Optimal control of production rate in a failure prone maneufactering system [J]. IEEE Trans Automat Contr,1986,31(2):116-126
    150.Boukas E K, Yang H. Optimal control of manuafeturing flow and preventive maintenance [J]. IEEE Trans Automat Contr.,1996,41(6):881-885
    151.Zhang Q, Yin G G, Boukas E K.Optimal control of a market productions system [J]. IEEE Trans Automat Contr.,2001,46(3):416-427
    152.Boukas E K, Liu Z K. Production and maintenance control for manufacturing systems [J]. IEEE Trans Automat Contr.2001,46(9):1455-1460
    153.陈珺.基于T-S模型的非线性系统模糊控制器设计及应用[D].[博士学位论文],江苏:江南大学,2009
    154.王军.基于LMI的参数不确定线性系统鲁棒H∞滤波方法研究[D].[博士学位论文],河南:郑州大学,2007
    155.栾小丽,刘飞.输出概率密度函数鲁棒弹性最优跟踪控制[J].控制工程,2008,15(5):493-496
    156.栾小丽,刘飞.随机系统输出概率密度函数有限时间镇定[J].控制与决策,2009,24(8):1161-1166
    157.Luan X L, Liu F, Shi P. Finite-time Filtering for Nonlinear Stochastic Systems with Partially Known Transition Jump Rates [J]. IET Control Theory & Applications, 2010,4 (5):735-745
    158.Luan X L, Liu F, Shi P. Neural Network Based Stochastic Optimal Control for Nonlinear Markov Jump Systems [J]. International Journal of Innovative Computing, Information & Control,2010,6 (8):3715-3728
    159.Luan X L, Liu F, Shi P. Robust Finite-time H∞ Control for Nonlinear Jump Systems via Neural Networks [J]. Circuits System Signal Process,2010,29:481-498
    160.Luan X L, Liu F, Shi P. H∞ Filtering for Nonlinear Systems via Neural Networks [J]. Journal of the Franklin Institute,2010,347:1035-1046
    161.Balakrishnan V, Feron E. Linear Matrix Inequalities in Control Theory and Applications [J]. Special issue of the Int. J. Robust and Nonlinear Control,1996,6(9-10):896-1099
    162.Gahinet P, Nemirovski A, Laub A J, Chilali M. LMI Control Toolbox for use with Matlab [M]. Natick, MA:The Mathworks Inc,1995
    163.Xu B, Lam J. Decentralized stabilization of large-scale interconnected time-delay systems [J]. Journal of Optimization Theory and Applications,1999,103(1):231-240
    164.Xie L. Output feedback H∞ control of systems with parameter uncertainty [J]. International Journal of Control,1996,63(4):741-750
    165.Lee H J, Park J B, Chen G. Robust fuzzy control of nonlinear system with parametric uncertainties [J]. IEEE Transactions on Fuzzy Systems,2001,9(2):369-379
    166.Benbrahim M, Benjelloun K. A design of constrained controllers for linear systems with Markovian jumps [C]. Proceedings of International Conference on Machine Learning, Models, Technologies and Applications, Las Vegas, USA,2003,256-260
    167.刘永清,冯昭枢.大型动力系统的理论与应用:随机,稳定与控制[M].广州:华南理工大学出版杜,1992
    168.Ito K. Stochastic differential equation [M]. Memoirs, Amer. Math. Soc.4,1951
    169.Hasminskii R Z. Stochastic stability of diffential equations [M]. Sijhtoff and Noodrhoff, 1981
    170.Dugard L, Verriest E. Stability and Control of Time-Delay Systems [M]. London: Springer-Verlag,1998
    171.Kushner H. Stochastic Stability and Control [M]. New York:Academic,1967
    172.Costa O L V, Fragoso M D. Stability results for discrete-time linear systems with Markovian jumping parameters [J]. Journal of Mathematical Analysis and Applications, 1993,179(2):154-178
    173.Hinrichsen D, Pritchard A J. Stochastic H∞ [J]. SIAM Journal Control and Optimization, 1998,36:1504-1538
    174.Costa O L V, do Val J B R, Geromel J C. Continuous-time state-feedback H2-control of Markovian jump linear systems via convex analysis [J]. Automatica,1999,35(2):259-268
    175.de Souza C E, Fragoso M D. H∞ control for linear systems with Markovian jumping parameters [J]. Control Theory and Advanced Technology,1993,9(2):457-466
    176.Costa O L V, Marques R P. Mixed H2/H∞ control of discrete-time Markovian jump linear systems [J]. IEEE Transactions on Automatic Control,1998,43(1):95-100
    177.Nilsson J, Bnerhardsson B, Wittenmak B. Stochastic analysis and control of real-time systems with random time delays [J]. Automatica,1998,34:57-64
    178.Xie S, Xie L. Stabilization of a class of uncertain large-scale stochastic systems with time-delays [J]. Automatica,2000,40:171-181
    179.Fragoso M D, Rocha N C S. Stationary filter for continuous-time Markovian jump linear systems [C]. Proceedings of the 43rd IEEE Conference on Decision and Control,2004,4: 3702-3707
    180.de Souza C E, Trofino A, Barbosa K A. Mode-independent H∞ filters for Markovian jump linear systems [J]. IEEE Transactions on Automatic Control,2006,51(11): 1837-1841
    181.Xu S Y, Chen T W, Lam J. Robust H∞ filtering for uncertain Markovian jump systems with mode-dependent time delays [J]. IEEE Transactions on Automatic Control,2003, 48(5):900-907
    182.Arrifano N S D, Oliveira V A. Robust H∞ fuzzy control approach for a class of Markovian jump nonlinear systems [J]. IEEE Transactions on Fuzzy Systems,2006, 14(6):738-754
    183.Nguang S K, Assawinchaichote W, Shi P, et al. Robust H∞ control design for uncertain fuzzy systems with Markovian jumps:an LMI approach [C]. Proceedings of the American Control Conference, Portland, OR, USA,2005,3:1805-1810
    184.Nguang S K, Assawinchaichote W, Shi P, et al. H∞ fuzzy filter design for uncertain nonlinear systems with Markovian jumps:an LMI approach [C]. Proceedings of the American Control Conference, Portland, OR, USA,2005,3:1799-1804
    185.Nguang S K, Assawinchaichote W, Shi P. Robust H∞ control design for fuzzy singularly perturbed systems with Markovian jumps:an LMI approach [J]. IET Control Theory and Applications,2007,1(4):893-908
    186.Dong J X, Yang G H. An LMI-based approach for state feedback controller design of Markovian jump nonlinear systems [C]. Proceedings of the 16th IEEE International Conference on Control Applications, Singapore,2007,1516-1521
    187.Assawinchaichote W, Nguang S K, Shi P. Robust H∞ fuzzy filter design for uncertain nonlinear singularly perturbed systems with Markovian jumps:an LMI approach [J]. Information Sciences,2007,177(7):1699-1714
    188.Wu H N, Cai K Y. Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2006,36(3):509-519

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700