用户名: 密码: 验证码:
基于触媒原理的CVD金刚石薄膜抛光
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CVD金刚石是金刚石材料未来发展的主流,其超精密加工则是扩大CVD金刚石薄膜应用的关键技术之一。本文研究了一种高效的抛光方法——基于触媒原理的CVD金刚石抛光方法(简称触媒法抛光)。该方法以金刚石石墨化原理为基础,在加工过程中充分利用铁(Fe)、镍(Ni)、钴(Co)等过渡金属对金刚石的触媒作用,有效地降低金刚石石墨化所需要的活化能,形成易于研磨的石墨和无定形碳,通过机械研磨以及碳原子的在金属中扩散和在空气中的氧化来提高材料的去除效率。
     本文的主要工作和成果有以下几方面:
     1.采用基于触媒作用的CVD金刚石膜“软硬兼施”的石墨化加工思想,有效地利用了过渡金属对金刚石的催化作用。
     2.研究了一种适用于CVD金刚石薄膜研磨和抛光,具有结构紧凑,加工效率和加工精度高,负面影响小,使用便捷等特点的抛光加工系统。
     3.通过化学热力学和动力学的研究以及试验分析,论证了过渡金属对CVD金刚石的触媒作用,在常温条件下实现了石墨化反应。
     4.通过正交分析法的研究表明,触媒抛光法各试验控制因素与CVD金刚石加工质量成正比,其中时间t的影响最大,速度v的次之,而负载f的影响最小。
     5.通过试验研究表明,触媒抛光是一种高效的抛光方法,在相同的加工条件下,其加工质量明显优于传统的机械抛光法。
CVD diamond is the mainstream of future development of diamond materials, and its ultra-precision machining is one of the key technologies to expand the application of CVD diamond films. This paper presents an efficient method of diamond polishing- accelerant polishing of CVD diamond. This method based on the principle of diamond graphitization, which make full use of Fe, Ni, Co and other transition metals as catalysts for diamond, effective in reducing the activation energy of diamond graphitization, produce easy-to-ground graphite, then improve the processing efficiency by mechanical polishing, Carbon spread in metal and air oxidation.
     The main results and work in this paper as the following aspects:
     1. Introduce the idea of polishing based on the principle of diamond graphitization, and make full use of Fe, Ni and other transition metals as catalysts for diamond.
     2. Research a polishing system suitable for CVD diamond polishing and grinding, which have the features as compact frame, high processing efficiency and precision, and easy to use.
     3. By studies and experimental analysis of chemical thermodynamics and kinetics, it shows the catalytic role of CVD diamond by transition metal, and achieve the diamond graphitization at room temperature.
     4. Though the research of Orthogonal Experimental Analysis, it shows the control factors of accelerant polishing is proportional to processing quality of CVD diamond, whish polishing time is the biggest influencing factors, second is polishing the speed, and the load has little impact
     5. Experimental studies show that accelerant polishing is a highly efficient polishing method, under the same processing conditions, its processing quality is significantly better than the traditional mechanical polishing.
引文
[1]谈耀麟. CVD金刚石应用前景探讨[J].超硬材料工程, 2009, 21(4): 49-53.
    [2]吕反修. CVD金刚石膜新兴研究方向及市场现状与趋势[J].金属热处理, 2008, 33(11): 1-5.
    [3]廖先炳.金刚石半导体薄膜及其应用[J].微电子学, 1993, 23(5): 61-64.
    [4]董长顺,玄真武,秦松岩,等. CVD金刚石膜技术研究发展综述(DB/OL). http://www.hardalloy.com.cn/news_info.asp?id=3516. 2007.11.13.
    [5]王利涛,闫占辉. CVD金刚石刀具制备情况及应用[J].工具技术, 2005, 39(12): 81-82.
    [6]吕反修. CVD金刚石膜的产业化应用与目前存在的问题[J].新材料产业, 2003, (7): 63-67.
    [7] Ken-ya Hashimot著,王景山,刘天飞,孙玮译.声表面波器件模拟与仿真[M].北京:国防工业出版社, 2002.
    [8]王丽军,王小平,张雷,等.衬底位置对大面积CVD金刚石薄膜质量的影响[J].微细加工技术, 2008, (4): 39-42.
    [9] H.Y. Tsai, C.J.Ting, C.P.Chou. Evaluation research of polishing methods for large area diamond films produced by chemical vapor deposition[J]. Refractory Metals & Hard Materials, 2007, (16): 253-261.
    [10] X.M. Meng, W.Z. Tang, L.F. Hei, et al. Application of CVD nanocrystalline diamond films to cemented carbide drills[J]. Refractory Metals & Hard Materials, 2008, (26): 485-490.
    [11]余忠民,匡同春,白晓军,等. CVD金刚石膜的机械抛光加工研究[J].硬质合金, 2000, 17(3): 151-155.
    [12] A.P. Malshe, B.S. Park, W.D. Brown, et al. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates[J]. Diamond and Related Materials, 1999, (8): 1198–1213.
    [13]王丽军,王小平,张雷,等.衬底位置对大面积CVD金刚石薄膜质量的影响[J].微细加工技术, 2008, (4): 39-42.
    [14]吴振辉,马志斌,谭必松,等. CVD金刚石膜的抛光研究进展[J].硬质合金, 2008, 25(3): 192-197.
    [15]严朝辉,汪建华,满卫东,等. CVD金刚石厚膜的机械抛光研究[J].金刚石与磨料磨具工程, 2007, 159(3): 32- 35.
    [16] Tang C J, Neves A J, Femandes A J S et al. A new elegant techniquefor polishing CVD diamond films [J]. Diamond and Related Materials, 2003, (12): 1411–1416.
    [17] H. Ohmori a, I. Takahashi, B.P. Bandyopadhyay. Ultra-precision grinding of structural ceramics by electrolyticin-process dressing (ELID) grinding[J]. Diamond and Related Materials, 1996, (57):272-277.
    [18] A. Ueda, Y. Nishibayashi, T. Imai. Development and evaluation of a diamond electron source for electron beam instruments[J]. Diamond & Related Materials, 2009, (18): 854-859.
    [19] C.D.Ollison, W.D.Brown, A.P.Malshe, et al. A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapordeposited (CVD) diamond[J]. Diamond & Related Materials, 1999, (8): 1083-1090.
    [20] C.Y. Wang, F.L. Zhang, T.C. Kuang, et al. Chemical/mechanical polishing of diamond films ssisted by moltenmixture of LiNO3 and KNO3[J]. Thin Solid Films, 2006, (4): 698-702.
    [21] Grodzinski P. Diamond technology[M], NAG, London, 1953.
    [22]张恒大,刘敬明,宋建华,等. CVD金刚石膜的抛光技术[J].表面技术, 2001, 30.(1): 15-18.
    [23] Yujing Sun, Shubin Wang, Shi Tian, et al. Polishing of diamond thick films by Ce at lower temperatures[J], Diamond & Related Materials, 2006, (15): 1412-1417.
    [24]马泳涛,孙玉静,陈五一.热铁盘法高速抛光CVD金刚石[J].北京航空航天大学学报, 2008, 34(4): 412-416.
    [25]王帅强,武文斌,张峻岭,等. CVD金刚石膜等离子体弧抛光的机理研究[J].机械工程师, 2009, (7): 25-27.
    [26]陈俊,杨保雄,王建军,等.离子束轰击法金刚石薄膜抛光[J].北京科技大学学报, 1993, 15(5): 503-507.
    [27] Leech P.W, Reeves G.K, HollandA.S, et al. Ion beam etching ofCVD diamond films in Ar,Ar/O2 and Ar/CF4 gas mixtures [J]. Diamondand Related Materials, 2002, (11): 833- 836.
    [28]季国顺,张永康.激光抛光化学气相沉积金刚石膜[J].激光技术, 2003, 27(2): 106-109.
    [29] Tokarev.V.N, Wilson.J.I.B, Jubber.M..G, et al. Modelling of self-limiting laser ablation of rough surfaces: application to the polishing of diamond films[J].Diamond and Related Materials, 1995, (4): 169-176.
    [30]王俊峰,汪建华,满卫东,等.微波等离子刻蚀CVD金刚石膜提高机械研磨效率[J].武汉化工学院学报, 2005, 25(1): 56-59.
    [31] Buchkremer- Hermanns H, Long C, Weiss H. ECR plasma polishingof CVD diamond films [J]. Diamond and Related Materials, 1996, (5): 845-849.
    [32]刘学璋,王柏春,许向阳,等.硬盘微晶玻璃基板的纳米金刚石抛光[J].微纳电子技术, 2007, (3): 155-158.
    [33]王俊峰,汪建华.机械法研磨CVD金刚石厚膜[J].武汉化工学院学报, 2005, 27(5): 39-41.
    [34]王适,孙宝元,王裕昌,等.聚晶金刚石石墨化温度的研究[J].超硬材料工程, 2005, 17(5): 32-35.
    [35]邓福铭.超高压高温烧结中金刚石表面石墨化反应过程再研究[J].高压物理学报, 2001,15(3):35-240.
    [36]张宏福,路凤香,赵磊.中国原生金刚石的碳同位素组成及其来源[J].中国地质大学学报, 2009, 34(1): 37-42.
    [37]张万甲.冲击引起石墨-金刚石相转变机理的探讨[J].高压物理学报, 2005, 18(3): 209-219.
    [38]王秦生.超硬材料制造[M ].北京:中国标准出版社, 2002.
    [39]宋月清,康志君,高云,等.镧参与金属胎体/金刚石复合材料界面反应的热力学及动力学分析[J].稀有金属, 2001, 25(1): 1-4.
    [40] Naomichi Furushiroa, Masahiro Higuchia, Tomomi Yamaguchia, et al. Polishing of single point diamond tool based on thermo-chemical reaction with copper[J]. Precision Engineering, 2009, (33): 486-491.
    [41]谢有赞.金刚石理论与合成技术[M].长沙:湖南科学技术出版, 1993.
    [42] Ed.Paul, Chris.J.Evans, Anthony, Mangamelli. Chemical aspects of tool wear in single point diamond turning[J]. Precision Engineering, 1996, (18): 4-19.
    [43]赵崇礼. CVD钻石膜复合抛光及微加工之加工机制与加工表面性状研究[D].博士论文,淡江大学, 2007.
    [44] N.Govindaraju, A.Aleksov. Comparative study of textured diamond films by thermal conductivity measurements[J]. Materials Science & Processing, 2006, (3): 332-334.
    [45]周丽,黄树涛,许立福,等.金刚石膜超高速抛光温度场的有限元模拟[J].人工晶体学报, 2009, (2): 152-158.
    [46]赵宇飞,左敦稳,孙玉利,等.基于有限元法的硅片冰冻固结磨料抛光温度场分析[J].金刚石与磨料磨具工程, 2009, (1): 32-35.
    [47]曾志革,邓建明,姜文汉.能动抛光磨盘的有限元法分析[J].强激光与离子束, 2002, (1): 29-34.
    [48]刘素田,唐伟忠,耿春雷,等.纳米金刚石薄膜的制备和应用[J].金刚石与磨料模具工程, 2006, (2): 76-78.
    [49]谭援强,李艺, Sheng Yong.磨粒流加工的固液两相流模型及压力特性模拟[J].中国机械工程, 2008, 4(2): 439-441.
    [50]黄润秋,刘卫华.基于正交设计的滚石运动特征现场试验研究[J].岩石力学与工程学报, 2009, 28(5): 882-891.
    [51]翁闪凡,庄锡伟,邝婉容,等.正交设计法优选元江芦荟多糖提取工艺的研究[J].现代医药卫生, 2009, 25(11): 1675-1676.
    [52]罗纯,马海南,潘长缘,等.零成分搜索法在正交设计工艺优化中的应用[J].上海应用技术学院学报, 2009, 9(2): 115-118.
    [53]肖驰.正交设计法在软件测试中的应用[J].实践与经验, 2009, (6): 113-115.
    [54]管洪海,曹庆波,孙仁杰,等.碳纤维水泥基材料性能试验的正交分析[J].商品混凝土, 2007, (1): 11-13.
    [55]张学良,万秀颖,郑竹林,等.摩擦焊工艺参数对焊接接头性能影响的正交分析[J].新技术新工艺, 2006, (4): 108-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700