用户名: 密码: 验证码:
公路顺层岩质边坡稳定及其影响因素分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以公路顺层岩质边坡为研究对象,采用有限元强度折减法、极限平衡法、敏感性分析的单因素法和正交设计法、可靠度分析的一次二阶矩法和响应面法等,针对边坡溉化模型和工程实例,进行了边坡稳定性、因素敏感性和可靠度等方面的研究。在边坡稳定性计算方面,量化分析了由通用有限元程序与传统极限平衡法得到的安全系数结果差异,以及参数选取对有限元计算结果的影响,提出并验证了一种在DP系列准则间进行安全系数转换的新方法和基于内摩擦角取值点的D-P系列准则与M-C准则的匹配方法;在因素敏感性分析中提出了采用参数的增量来分析层状边坡的思路,验证了方差分析法在边坡敏感性分析中的适用性;在边坡可靠度分析中提出了与因素敏感性分析相结合的思路,对因素敏感性在边坡可靠度分析中的应用开展了研究,并给出了可供工程设计参考的建议;根据模型计算以及工程实例分析,提出了防护设计的原则。主要内容和研究成果有:
     通过对具一组贯通软弱结构面的顺层岩质边坡有限元计算模型的分析表明,边坡坡度陡于岩层倾角、存在临空面时对稳定不利,安全系数随边坡高度的增加而降低;坡顶荷载对边坡稳定性的影响跟其与潜在滑动面的相对位置以及荷载大小有关;挡墙和锚杆通过对塑性区贯通带的阻截使塑性区转移到更薄弱的结构面,从而提高安全系数,但锚杆必须贯穿塑性区才能发挥作用。
     应用通用有限元程序计算公路顺层岩质边坡安全系数时,其计算结果偏于不安全,基于外接圆屈服准则的有限元计算结果比基于莫尔-库仑准则的极限平衡法计算结果平均高约22%。在有限元计算中,忽略剪胀角的计算结果较为保守;采用关联流动法则时的塑性区分布范围比非关联流动法则时明显缩小;杨氏模量和泊松比取值对边坡稳定安全系数计算结果几乎没影响,但模量下调将使边坡的位移增加,泊松比变小将使塑性区分布范围扩大。
     D-P系列准则与M-C准则的研究表明,在基于系列DP准则的边坡稳定安全系数有限元计算中,可以用π平面上D-P系列准则半径之比进行边坡稳定安全系数转换;当D-P系列准则与M-C准则进行匹配时,传统的方法多从“平均”角度出发,对于具体边坡,从“平均”意义得出的匹配结论可能有较大偏差;本文提出了新的方法,只需将不同内摩擦角φ值时DP1准则和M-C准则计算得到的安全系数比值数据曲线,加入内摩擦角~系列DP准则半径比值的二维空间,通过比较各曲线在相应φ值的竖向截距即可得到最佳匹配准则,该法对具体边坡更具针对性,结果也更为准确。
     均质边坡进行敏感性分析时可以直接取参数的不同水平值,由多层岩体组成的顺层岩质边坡,在敏感性分析考虑因素水平时,提出了采用参数增量的分析思路。通过单因素分析法、极差分析法和方差分析法的比较表明,三种敏感性分析法得出的结论基本一致,但方差分析法的分析效果最优。
     基于因素敏感性的可靠度分析表明,敏感性较大的因素,不管是强度参数或者几何参数,若存在一定的变异性,在可靠度分析中都不应忽视,否则将对结果产生重大影响;在边坡可靠度分析中以敏感性较大的因素作为随机变量时的破坏概率大,在边坡可靠度分析前首先确定各个稳定影响因素的敏感性排序,再根据实际参数的变异性选取随机变量进行分析,结果往往更加合理;边坡可靠度求解结合参数敏感性分析,不仅对最终的计算结果影响很大,而且从某种程度上也关系到计算工作量和复杂程度,对于顺层岩质边坡等复杂边坡,合理地应用敏感性分析结果,剔除不敏感因素,可以使原本十分复杂的边坡可靠度求解变得相对简单。
     杭千高速公路建德段典型顺层滑坡的分析表明,公路顺层岩质边坡的形成要素可以归结为层状基岩、岩层的不利走向和产状、层间软弱夹层、临空面。边坡防护设计总体原则为“下挡上缓”,即加强下部支挡,根据岩层倾角合理设计边坡坡率,有条件时尽量放缓边坡并降低边坡高度,坡面需及时防护,坡顶有荷载时,需查明其与潜在滑动面的相对位置,当边坡放缓受限时,可根据实际情况采用工程措施加强防护
Based on generalized model of highway bedding rock slope and engineering examples, the slope stability, factors sensitivity and reliability and so on were studied by using strength reduction of FEM, limit equilibrium method, single factor analysis and orthogonal design method of factors sensitivity, first order-two moment method and response surface method of reliability analysis. In the slope stability calculation, based upon the difference of safety coefficients obtained between general FEM program and traditional limit equilibrium method, and the influences of parameters selection on the results of FEM were quantitatively analyzed, a new transformation method of safety coefficients by different Drucker-Prager yield criterions, and matching method between Drucker-Prager yield criterions and Mohr Coulomb criteria based on value of the internal frictional angle were proposed. In the factors sensitivity analysis of layered slope, the idea of using parameter increment was put forward when considering the factors level, and the applicability of variance analysis method in slope sensitivity was verified. In the analysis of slope reliability, the idea of combining factors sensitivity was put forward, the application of factors sensitivity in slope reliability was studied, and reference for engineering design was proposed. According to the model calculation and analysis of engineering examples, the design principles of slope protection was suggested. The main contents and research results as follow:
     Using nonlinear FEM strength reduction method, stability analysis was made on the model of bedding rock slope with a group of runned-through plane of weakness. Results show it is disadvantage for the stability when the slope steeper than the dip angle of rock stratum and the presence of free surface, and the safety coefficient decreases with the increase of slope height. The influence of load on the top of slope to safety coefficient depends on the magnitude of load and relative position between load and the runned-through plastic zone. Retaining wall or anchor rods can increase the safety coefficient of slope by block and intercept the runned-through plastic zone, then the plastic zone moves to other more weak structure plane, only when the plastic zone is runned through can anchor rod play a role.
     The calculation results of highway bedding rock slope safety coefficient obtained by general FEM program are unsafe, for the results of FEM based on Drucker-Prager yield criterion are about22%higher than the results of traditional limit equilibrium method based on Mohr Coulomb criteria. In the finite element analysis, the calculation results are more conservative when the dilatancy angle is ignored. When using the associated flow rule, the distribution range of plastic zone reduced obviously than that of the non associated flow rule. The value of Young's modulus and Poisson's ratio almost have no effect on slope stability, but the cut of Young's modulus will make the displacement of slope increase obviously, the scope of plastic zone will increase with the reduce of Poisson's ratio.
     By study on Drucker-Prager yield criterion and traditional Mohr Coulomb criteria shows, in slope stability by FEM based on different Drucker-Prager yield criterion, ratios of D-P radii can be used as conversion coefficient of safety factors under different Drucker-Prager yield criterion. When D-P yield criterion are to be matched to Mohr Coulomb criteria, traditional method is always from the perspective of "average", the matching conclusion from "average" may have a larger deviation for a specific slope. A new method is proposed in this paper:the ratios of safety factors under Mohr Coulomb hexagon circumcircle Drucker-Prager yield criterion(DP1) and M-C criteria vary with the value of the internal frictional angle, putting the numerical value of internal frictional angle and the ratios on two-dimensional space of internal frictional angle~ratios of D-P radii, it can get the best matching yield criterion by comparing the y-intercept under corresponding value of internal frictional angle among these curves, this method is more specific and the results will be more accurate.
     For the sensitivity analysis of homogeneous slope, it may use the different level of parameters directly; but in the case of multi-layered rock mass, it is difficult to use the method mentioned above, instead a method of the available parameter increment is suggested. The comparison of single factor analysis, range analysis and variance analysis shows, the conclusion obtained from these methods are basically the same, but the effect of variance analysis is best.
     Study of slope reliability analysis based on factors sensitivity shows, whether the strength parameters or geometric parameters, if there sensitivity are larger and there exists some variability, its influence to slope stability analysis of reliability cannot be ignored, or there will have a significant impact on the analysis results. The higher sensitivity level of factors selected as random variable, the larger failure probabilities, firstly determining the sorting of parameters sensitivity, and choosing random variable according to the variation coefficient of parameters, the results of slope reliability analysis maybe more reasonable. The slope reliability analysis combined with factors sensitivity can not only influence the final results greatly; to some extent, it is also related to the computational workload and complexity. For reliability analysis of bedding rock slope and other complex slope, reasonable application of the sensitivity analysis results can eliminates the un-sensitive factors and simplify the original complex analysis of slope reliability.
     Analysis of typical bedding landslide in Jiande section of Hang Qian Expressway shows, the formation elements of highway bedding rock slope can be attributed to the layered rock, adverse trend and occurrence of rock, plane of weakness and free surface. The general design principle for bedding rock slope protection is "retaining at the bottom and slow slope above" that is strengthen the retaining of lower part of the slope, choosing reasonable slope ratio according to the obliquity of rock, when conditions permit, slowdown and reduce the height of slope as far as possible, the surface of slope should be timely protected, when there is load on the top of slope, it is necessary to identify the relative position between load and potential sliding surface, when the slowing of slope is restricted, engineering measures should be used to enhance the protection according to the actual situation.
引文
[1]陈志坚.层状岩质边坡工程安全监控建模理论及关键技术研究[D].河海大学,2001,11.
    [2]郑束宁,尚岳全,陈侃福,等.浙江省公路滑坡主要类型分析及防治对策研究[R].浙江省交通规划设计研究院,浙江大学防灾工程研究所,2004.
    [3]刘启党,刘吉福.京珠高速公路粤境北段K107滑坡综合处治[J].广东交通科技,2001(增)71:24-27.
    [4]唐建新,蔡世民,魏作安,等.万梁高速公路J合同段3#边坡滑坡机理探讨[J].岩土力学,2002.12,23(6):25-28.
    [5]许伟文,刘吉福.105国道K2330工点A2区边坡稳定性评价[J].中国地质灾害与防治学报,2002.03,13(1):49-52.
    [6]殷跃平.长江三峡库区移民迁建新址重大地质灾害及防治研究[M].北京:地质出版社,2004.
    [7]杨明亮,袁从华,骆行文,等.高速公路路堑边坡顺层滑坡分析与治理[J].岩石力学与工程学报,2005.24,23(7):4383-4389.
    [8]曾庆利,张西娟,杨志法.云南虎跳峡“滑石板”岩质滑坡的基本特征与成因[J].自然灾害学报,2007.06,16(3):1-6.
    [9]Fellenius W.1927. Erdstatisch Berechnungen[M]. Berlin:W. Ernst und Sohn revised edition,1939.
    [10]Bishop A W. The use of the slip circle in the stability analysis of slopes [J]. Geotechnique,1955,5 (1):7-17.
    [11]Janbu N. Application of composite slip surface for stability analysis[A]. Proc.,European Conf. on stability of earth slopes [C], Sweden,1954,3,43-49.
    [12]Janbu N. Earth pressure and bearing capcity calculations by generalized procedure of slices[J]. Proc.4th Conf. on soil mechanics and foundation engineering, London,1957,2:207-212.
    [13]Morgenstern N R,Price V E. The analysis of the stability of general slip surface [J].Geotechnique,1965,15(1):79-93.
    [14]Spencer E. A method of analysis of embankments assuming parallel interslice forces [J].Geotechnique,1967,17(1):11-26.
    [15]Janbu N. Slope stability computations[A]. In:Embankment Dam Engineering[C]. NewYork:John Wiley and Sons,1973.47-86.
    [16]Sarma S K. Stability analysis of embankments and slopes [J]. Geotechnique, 1973,23(3):423-433.
    [17]Sarma S K. Stability analysis of embankments and slopes [J]. J. Div. ASCE, 1979,105(12):1511-1524.
    [18]Revilla J,Castillo E.The calculus of variation applied to stability of slope [J].Geotechnique,1997,27 (1):1-11.
    [19]张宜虎,尹红梅,简文星.剩余推力法及其在斜坡稳定性评价中的应用[J].岩土力学,2004,25(4):628-631.
    [20]徐青,陈士军,陈胜宏.滑坡稳定分析剩余推力法的改进研究[J].岩土力学,2005,26(3):465-470.
    [21]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利电力出版社,1980.
    [22]张天宝.土坡稳定分析和土工建筑物的边坡设计[M].成都:成都科技大学出版社,1987.
    [23]Duncan J M. State of the art:limit equilibrium and finite-element analysis of slope[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1996,122(7):577-596.
    [24]殷宗泽.土力学学科发展的现状与展望[J].河海大学学报(自然科学版),1999,27(1):1-5.
    [25]钱家欢,殷宗泽.土工原理与计算[M].第二版.北京:中国水利水电出版社,2003.
    [26]陈祖煜.土质边坡稳定分析[M].北京:中国水利水电出版社,2003.
    [27]Osias, J R.; Swedlow, J L. Finite elasto-plastic deformation-I:theory and numerical examples [J]. International Journal of Solids and Structures; 1974,10(3):321-339.
    [28]Snitbhan, Nimitchai; Chen, Wai-Fah. Finite element analysis of large deformation in slopes[J]. American Society of Mechanical Engineers,Applied Mechanics Division, AMD, 1976, (2):744-756.
    [29]Wiberg,N E; Koponen,M; Runesson,K. Finite element analysis of progressive failure in long slopes[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1990,14 (9):599-612.
    [30]Ugai K. Static and dynamic analysis of slopes by the 3-D elasto-plastic FEM Landslides[J]. In:international Symposium on landslides,1996:1413-1416.
    [31]Day,Robert W.State of Art:Limited Equilibrium and Finite-Element Analysis of slopes [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997, 123(9):894.
    [32]Jing G L,Magnan J P. Stability analysis of embankments:comparison of limite analysis with methods of slices[J]. Geotechnique,1997,47(4):854-872.
    [33]Dawson, Ethan(Dames & Moore); You, Kwangho; Park, Yeonjun. Strength-reduction stability analysis of rock slopes using the Hoek-Brown failure criterion [J]. Geotechnical Special Publication,2000,102:65-77.
    [34]Xiang J, et al. A New Slope Stability Analysis Method Based on FEM and Discussion on a Failure Mechanism of a Cut Slope [J]. Jisuberi (Landslides),2001,38 (2):129-135.
    [35]赵尚毅,时卫民,郑颖人.边坡稳定性分析的有限元法[J].地下空间,2001,21(5):450-455.
    [36]周翠英,刘祚秋,董立国,等.边坡变形破坏过程的大变形有限元分析[J].岩土力学2003,24(4):444-448.
    [37]孙伟,龚晓南.弹塑性有限元法在土坡稳定性分析中的应用[J].太原理工大学学报,2003,34(2):199-202.
    [38]马建勋,赖志生,蔡庆娥,等.基于强度折减法的边坡稳定性三维有限元分析[J].岩石力学与工程学报,2004,23(16):2690-2693.
    [39]Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity in soil mechanics[J]. Geotechnique,1975,25(4):671-689.
    [40]Griffiths D V, Lane P A.Slope stability analysis by finite elements [J]. Geotechnique,1999,49 (3):387-403.
    [41]Dawson,E. M.,Roth W. H.& Drescher A. Slope stability analysis by strength reduction [J]. Geotechnique,1999,49 (6):835-840.
    [42]Lane P A, Griffiths D V. Assessment of stability of slopes under drawdown condition [J]. Geotech Geoenv Eng ASCE,2000,126 (5):443-450.
    [43]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7.
    [44]江学良,曹平,杨慧.层状岩质边坡开挖过程的有限元模拟[J].岩土力学2006,(11):1935-1940.
    [45]年廷凯,栾茂田,杨庆,等.基于强度折减弹塑性有限元方法的路堤稳定性分析[J].中国公路学报,2008.03,21(3):18-22.
    [46]吕庆,孙红月,尚岳全.强度折减有限元法中边坡失稳判据的研究[J].浙江大学学报(工学版),2008,(1):83-87.
    [47]林杭,曹平,李江腾,等.层状岩质边坡破坏模式及稳定性的数值分析[J].岩土力学,2010,(10):3300-3304.
    [48]郑颖人,赵尚毅,张鲁渝.用有限元强度折减法进行边坡稳定分析[J].中国工程科学,2002.10,4(10):57-61.
    [49]张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003,(1):21-27.
    [50]赵尚毅,郑颖人,刘明维,等.基于Drucker-Prager准则的边坡安全系数定义及其转换[J].岩石力学与工程学报,2006.2,(增1):2730-2734.
    [51]郑颖人,赵尚毅,邓楚键,等.有限元极限分析法发展及其在岩土工程中的应用[J].中国工程科学,2006.12,8(12):39-61.
    [52]Manzari M T, Nour M A.Significance of soil dilatancy in slope stability analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000,126(1):75-80.
    [53]张鲁渝,刘东升,时卫民.扩展广义Drucker-Prager屈服准则在边坡稳定分析中的应用[J].岩土工程学报,2003,25(2):216-219.
    [54]张培文,陈祖煜.剪胀角对求解边坡稳定的安全系数的影响[J].岩土力学,2004,25(11):1757-1760.
    [55]Lechman J B, Griffiths D V.Analysis of the progression of failure of earth slopes by finite elements[A]. In:Geotechnical Special Publication:Slope Stability 2000 [C]. U. S. A:ASCE,2000.250-265.
    [56]Zheng Hong,Liu Defu,Lee C F, et al. Displacement-controlled method and its applications to material non-linearity[J].International Journal for Numerical and Analytical Methods in Geotechnics,2005,29 (3).209-226.
    [57]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [58]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报, 2004.10,23(19):3381-3388.
    59]杨雪强,凌平平,向胜华.基于系列Drucker-Prager破坏准则评述土坡的稳定性[J].岩土力学,2009.04,30(4):865-870.
    60]邓楚键,何国杰,郑颖人.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程学报,2006.06,28(6):735-739.
    61]李珍,吴旭东.强度折减方法中对各材料参数调整的探讨[J].盐城工学院学报(自然科学版),2006.06,19(1):65-68.
    62]赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002.05,24(3):343-346.
    [63]ANDERSON M G,RICHARDS KS.Slope Stability[M]. New York:John Wiley and Sons,1987.
    [64]倪恒,刘佑荣,龙治国.正交设计在滑坡敏感性分析中的应用[J].岩石力学与工程学报,2002.7,21(7):989-992.
    [65]张旭辉,龚晓南,徐日庆.边坡稳定影响因素敏感性的正交法计算分析[J].中国公路学报,2003.1,16(1):36-39.
    [66]陈高峰,程圣国,卢应发,等.基于均匀设计的边坡稳定性敏感性分析[J].水利学报,2007.11,37(11):1397-1401.
    [67]陈高峰,卢应发,陈龙,等.基于均匀设计的边坡敏感性灰色关联分析[J].地质与勘测,2010.04,36(4):20-22.
    [68]毛新生,张玉灯,郑涛.基于正交设计的边坡稳定性影响因素敏感性分析[J].灾害与防治工程,2008(1):36-41.
    [69]谭文俊,郑海君,王运生.软岩对边坡影响的敏感性分析及工程对策[J].路基工程,2009,(6):79-80.
    [70]戴志仁,张莎莎,谢永利.岩质边坡参数敏感度数值分析[J].路基工程,2010(3):100-102.
    [71]Freudenthal A M. The safety of structure. Transaction of ASCE,1947,112:125-159.
    [72]ISO/DIS2394.General principles on reliability for structures.1986.
    [73]中华人民共和国国家标准.工程结构设计可靠度设计统一标准(GB50153-92).北京:中国计划出版社,1992.
    [74]中华人民共和国国家标准.公路工程结构可靠度设计统一标准(GB/T50216-94).北京: 中国计划出版社,1999.
    [75]中华人民共和国国家标准.建筑结构可靠度设计统一标准(GB50068-2001).北京:中国建筑工业出版社,2001.
    [76]Cornell C A.A probabilistic based structural code.Journal of the American Concrete Institute,1969,66 (12):974-985.
    [77]Cornell C A. First-order uncertainty analysis of soils deformation and stability [A]. In:Proc.1st Int. Conf. On Application of Probability and Statistics in Soil and Structural Engineering(ICAPI) [C],Hong Kong,1971.129-144.
    [78]Hasofer A M,Lind N C. An exact and invariant first order reliability format [J]. Journal of Engineering Mechanics,ASCE 1974,100(EM1):11-21.
    [79]Rackwitz R,Fiessler B. Structural reliability under combined random load sequences[J]. Computers and Structures,1978,9 (5):489-494.
    [80]Fiessler B, Neumann H J, Rackwitz R. Quadratic limit states in structural reliability [J]. Journal of Engineering Mechanics, ASCE,1979,105(4):661-676.
    [81]Tvedt L.Distribution of quadratic forms in normal space-application to structural reliability [J]. Journal of Engineering Mechanics,1990,116(6):83-97.
    [82]Kiureghian A D, Stefano M D. Efficient algorithm for second-order reliability analysis [J]. Journal of Engineering Mechanics,1991,117(12):2904-2923.
    [83]Box G E P, Wilson K B. The exploration and exploitation of response surfaces:some general considerations and examples[M].Biometrics 1954; 10:16-60.
    [84]Alonso E E. Risk analysis of slopes and its application to slopes in Canadian sensitive clays[J]. Geotechnique,1976,26:453-472.
    [85]Tang W H,Yucemen M S,Ang A H S.Probability-based short term design of slopes [J].Canadian Geotechnical Journal 1976,13(3):201-215.
    [86]Vanmarcke E H. Reliability of earth slopes[J]. Journal of Geotechnical Engineering,1977,103(11):1247-1265.
    [87]Rosenblueth E, Two-point estimates in probabilities. Journal of Application Mathmatical Modelling,1981,5 (5):329-335.
    [88]Chowdhury R N.1984. Recent developments in landslide studies:probabilistic methods [A]. In Proceedings of the 4th International Symposium on Landslides[C],Toronto, Ont., September 16-21.Canadian Geotechnical Society, Vol.1, pp.209-228.
    [89]Chowdhury R N, Xu D W. Rational Polynomial Technique in Slope-Reliability Analysis [J]. Journal of Geotechnical Engineering,1993,119(12):1910-1927.
    [90]Christian J T.Reliability methods for stability of existing slopes[A]. In Proceedings of Uncertainty[C]. Geotechnical Special Publication,1996,2: 409-419.
    [91]Malkawi A I H,Hassan W F, Abdul la F A. Uncertainty and Reliability analysis to slope stability[J]. Structural safety,2000,22:161-187.
    [92]Bhattacharya G,Jana D, Ojha S, Chakraborty S.Direct search for reliability index of earth slopes[J]. Computers and Geotechnics,2003,30:452-462.
    [93]罗文强,龚珏Rosenblueth方法在斜坡稳定性概率评价中的应用[J].岩石力学与工程学报,2003.2,22(2):232-235.
    [94]罗文强,王亮清,龚珏.正态分布下边坡稳定性二元指标体系研究[J].岩石力学与工程学报,2005.07,24(13):2288-2292.
    [95]谭晓慧,王建国,刘新荣,等.边坡稳定的有限元可靠度分析[J].重庆大学学报(自然科学版),2006.01,29(1):102-104.
    [96]谭晓慧,王建国.边坡的弹塑性有限元可靠度分析[J].岩土工程学报,2007.01,29(1):44-50.
    [97]谭晓慧,余兵,王茂松,等.水库边坡稳定可靠度分析[J].岩土力学,2008.12,29(12):3427-3430.
    [98]谭晓慧,胡晓军,储诚富,等.模糊响应面法及其在边坡稳定可靠度分析中的应用[J].中国科学技术大学学报,2011.03,41(3):233-237.
    [99]郑荣跃,梧松.基于Spencer法的边坡稳定性可靠度指标分析[J].岩土力学,2006.01,27(1):147-150.
    [100]苏永华,赵明华,邹志鹏,等.边坡稳定性分析的Sarma模式及其可靠度计算方法[J].水利学报,2006.04,37(4):457-463.
    [101]苏永华,赵明华,蒋德松,等.响应面方法在边坡稳定可靠度分析中的应用[J].岩石力学与工程学报,2006.07,25(7):1417-1424.
    [102]黄超,王水林.基于不平衡推力法的边坡可靠度分析[J].岩土力学,2007.10,28:613-615.
    [103]蒋德松,苏永华,赵明华.边坡稳定可靠性分析程序研制[J].铁道科学与工程学报,2008.10,5(5):41-45.
    [104]吴坤铭,王建国,谭晓慧等.响应面与强度折减有限元耦合的方法研究边坡可靠度[J].合肥工业大学学报(自然科学版),2009.06,32(6):885-889.
    [105]李隐,邓建,彭泽.基于蒙特卡罗模拟的边坡可靠度评价[J].采矿技术,2010.01,10(1):39-42.
    [106]范昭平,吴勇信.考虑土性参数概率分布对边坡可靠度的影响[J].公路,2010.01,1:14-16.
    [107]吴振君,王水林,汤华等.边坡可靠度分析的一种新的优化求解方法[J].岩土力学,2010.03,31(3):713-718.
    [108]许湘华,曲广琇,方理刚.基于节理几何参数不确定性的边坡可靠度分析[J].中南大学学报(自然科学版),2010.06,41(3):1139-1145.
    [109]李桂荣,余成学,陈胜宏.层状岩体边坡的弯曲变形破坏试验及有限元分析[J].岩石力学与工程学报,1997.8,16(4):305-311.
    [110]刘钧.顺层边坡弯曲破坏的力学分析[J].工程地质学报,1997.12,5(4):335-339.
    [111]孙红月,尚岳全.顺斜向坡变形破坏机制的数值模拟研究[J].地质灾害与环境保护,1999.03,7(1):47-53.
    [112]孙红月,尚岳全.顺斜向坡变形破坏特征研究[J].工程地质学报1999.06,7(2):141-146.
    [113]李云鹏,杨治林,王芝银.顺层边坡岩体结构稳定性位移理论[J].岩石力学与工程学报,2000.11,19(6):747-750.
    [114]胡新丽,殷坤龙.大型水平顺层滑坡形成机制数值模拟方法[J].山地学报2001.04,19(2):175-179.
    [115]黄洪波,符文熹,尚岳全.层状岩质边坡的屈曲破坏分析[J].山地学报,2003.02,21(1):96-100.
    [116]袁从华,章光,杨明亮,等.某公路顺层滑坡的整治及对该区段选线的反思[J].岩土力学,2003.06,24(3):428-430.
    [117]李保雄,苗天德.红层软岩顺层滑坡临滑预报的强度控制方法[J].岩石力学与工程学报,2003.10,22(2):2703-2706.
    [118]白云峰,周德培,王科,等.顺层滑坡的发育环境及分布特征[J].自然灾害学报, 2004.06,13(3):39-43.
    [119]朱晗迓,马美玲,尚岳全.顺倾向层状岩质边坡溃屈破坏分析[J].浙江大学学报(工学版),2004.09,38(9):1144-1149.
    [120]吕美君、晏鄂川.顺层边坡岩体结构稳定性分析[J].地球与环境,2005.33(增):285-289.
    [121]傅鹤林,周宁,罗强,等.板裂介质理论在牟珠洞滑坡机理分析中的应用[J].中南大学学报(自然科学版),2005.02,37(1):188-193.
    [122]冯君,周德培,李安洪.顺层岩质边坡开挖松弛区试验研究[J].岩石力学与工程学报,2005.03,24(5):840-845.
    [123]郑静,覃木庆.某高速公路一顺层岩质滑坡的形成及治理[J].路基工程,2005,05:92-96.
    [124]白云峰,周德培,冯君.顺向坡岩层走向与边坡走向夹角的上限值[J].西南交通大学学报,2005.06,40(3):326-329.
    [125]许建聪,尚岳全,陈侃福,等.顺层滑坡弹塑性接触有限元稳定性分析[J].岩石力学与工程学报,2005.07,24(13):2231-2236.
    [126]孟刚,余志雄.顺层岩质边坡稳定性影响因素分析[J].岩土力学2005.10,26(增):52-56.
    [127]高大水,徐年丰,高银水,等.用混凝土阻滑健技术治理灰岩顺层滑坡[J].岩石力学与工程学报,2005.11,24(2):5433-5437.
    [128]许润龙,郑明新,杜宇飞.长晋高速公路K31顺层滑坡成因分析及防治效果评价[J].中外公路,2005.12,25(6):50-53.
    [129]张忠平.K47+450滑坡变形原因分析及整治工程设计[J].路基工程,2006,06:144-145.
    [130]王运生,唐兴君,石豫川,等.西南某水电站中倾顺层滑坡稳定性分析[J].南水北调与水利科技,2006.10,4(5):23-25.
    [131]孙书勤,黄润秋,丁秀美.天台乡滑坡特征及稳定性的FLAC3D分析[J].水土保持研究,2006.10,13(5):30-32.
    [132]李维光,楼建国.降雨条件下顺层滑坡影响因素和稳定性分析[J].采矿与安全工程学报,2006.12,23(4):498-501.
    [133]龚文惠,王平,陈峰.顺层岩质路堑边坡稳定性的敏感性因素分析[J].岩土力学, 2007.04,28(4):812-816.
    [134]孙强,李厚恩,李雄.基于拱效应的顺层边坡失稳突变模型[J].人民黄河,2007.09,29(9):79-80.
    [135]冯君,江南,周德培.顺层边坡岩层走向与边坡走向夹角对其稳定性的影响[J].工业建筑,2008.38(10):76-79.
    [136]汪荣鑫.数理统计[M].西安:西安交通大学出版社,1995.
    [137]熊传治等.岩石边坡工程[M].长沙:中南大学出版社,2010.
    [138]Chowdhury R N.Slope analysis. Elserier Scientific Publishing Company, Amsterdam-Oxford-Newyork,1978.
    [139]谭文辉,蔡美峰.边坡工程广义可靠性理论与实践[M].北京:科学出版,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700