用户名: 密码: 验证码:
取样光纤光栅光学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着波分复用技术的广泛应用和网络全光化进程的加快,对各种具有先进功能的光电子器件的研究正日益成为推动光通信技术进一步发展的关键。从一定程度上讲,正是各种先进光器件的出现推动和决定了光通信的发展前景与方向。
     光纤光栅作为一种重要的光电子器件,具有制作简单、成本低廉、结构形式多样、插入损耗低、兼容性好、滤波特性好等诸多优点,在光纤激光器、光纤传感器、波分复用解复用、光信息处理等多方面具有广泛而重要的应用。尤其重要的是,采用对光栅折射率调制进行取样而获得的取样光纤光栅具有多波长滤波特性,可广泛应用于可调谐激光器技术、多信道色散补偿技术和多波长滤波等重要的领域。
     本文通过数值方法对取样光栅(振幅取样和相位取样)的光学特性进行了较详尽的分析。具体内容如下:
     (1)光纤光栅耦合模方程是研究任意结构光纤光栅的光学特性前提和基础,本文对此进行了详细的推导。在此基础上对任意结构光纤光栅光学特性的数值计算和分析方法进行了讨论,并编制了相应的数值计算程序。
     (2)对各种类型的振幅取样光纤光栅(矩形取样、间插取样、Sinc取样)的谱响应进行了详细的分析和计算,研究了光栅的各项参数对其光谱特性和时延特性的影响。
     (3)在讨论了相位取样光栅所具有的突出优点的基础上,对二进制相位取样光纤光栅的光学特性进行了分析和计算,研究了不同光栅参数对取样光栅反射谱和时延特性的影响进行了分析和比较。
     (4)通过对计算结果的分析,对各种不同应用情况下取样光纤光栅的设计原则进行了总结和归纳,提出了不同场合对取样光纤光栅进行设计的参考依据,具有一定的理论指导价值。
As a result of the widely use of wavelength division multiplexing (WDM) technology and the fast progress of all-optical communication networks, high-performance photonic devices become one of the key issues for further development optical communication technology. It can be said, to a certain extent, that the prospect and the development direction of optical communication technique depends largely on the research of various novel photonic devices with high performances.
     Optical fiber gratings have many advantages when they are used in fiber systems, such as the flexible structures, low insertion loss, full compatibility, and good filtering performance. Optical fiber gratings have found many applications in the fields of fiber lasers, fiber sensing, multiplexing and demultiplexing in WDM systems, optical signal processing and so on. Due to their multiple-wavelength filtering properties, sampled fiber gratings can be used as the key components in the developments of tunable fiber lasers, multi-channel dispersion compensation, and multi-wavelength filters, and received more and more attentions in resent years. In this thesis, the optical properties of various sampled fiber gratings have been discussed and analyzed via numerical techniques. The major points are as follows.
     (1) As the basis for the analysis of fiber gratings with arbitrary structures, the coupled mode equations for fiber gratings were derived in great details, based on which, the numerical methods for calculating the optical properties of arbitrary structure fiber gratings were analyzed and discussed, and the corresponding programs have been complied.
     (2) The optical spectral properties of various amplitude sampled fiber gratings have been calculated and analyzed in details. The effects of various design parameters, such as grating length, chirp parameters, etc. on the grating properties were studied.
     (3) Based on the discussion of the great advantages of phase sampled fiber gratings, the optical properties of binary sampled fiber gratings were calculated, and the effects of various parameters were analyzed and discussed.
     (4) A theoretical basis and guide line for the design of sampled fiber gratings for specific applications have been concluded based on large amount of calculations.
引文
铩颷1]K.O.Hill,GMeltz.Fiber Bragg grating technology fundamentals and overview.LightwaveTechnol.1997,15(8).P1263-1276.
    [2]R.Kashyap,P.F.Mckee,R.J.Campbell et al.Novel method of producing all fiber photoinduced chirped gratings.Electron.Lett.1994,Vol.30,P996-997.
    [3]V.Javaraman,Z.M.chuang,and L.A.Coldren.Theory design and performance of extendedtuning semiconductor lasers with sampled gratings.IEEE J.Quantum Electron.Vol.29.June 1993,P1824-1834.
    [4]Morten Ibsen,Michael K.Durkin,Martin J.Cole,and Richard I.Laming.Sinc-SampledFiber Bragg Gratings for Identical Multiple Wavelength Operation.IEEE Photonics TechnologyLetters.Vol.10,No.6,June 1998.P842-844.
    [5]Hongpu Li,Yao Li.Phased-Only Sampled Fiber Bragg Gratings for High-Channel-CountChromatic Dispersion Compensation.Journal of Light wave Technology.Vol.21.No.9,P2074-2083.
    [6]W.H.Loh,F.Q.Zhou.Sampled fiber grating based-dispersion slope compensator.PhotonicsTechnology Letters.Vol.11,P1280-1282.
    [7]Y.Painchaud,A.Mailoux,H.Chotard,E.Pelletier,and M.Guy,Multichannel fiber Bragggratings for dispersion and slope compensation,Optical Fiber Communication Conf.,2002
    [8]Hojoon Lee.Purely Phase-Sampled Fiber Bragg Gratings for Broad-Band Dispersion andDispersion Slope Compensation.Photonics Technology Letters.Vol.15,No.8,August 2003.P1091-1093.
    [9]Durand.o,Gohin.E.Simple and low-cost realization method of low reflective and almost flat200-GHz multichannel filter over 50nm with sampled FBG.In OFC.2002.
    [10]Johannes Skaar,Ligang Wang,and Turan Erdogan.On the Synthesis of Fiber BraggGratings by Layer Peeling.IEEE Journal of Quantum Electronics,Vol37,No.2,February2001.P163-173.
    [11]Eva Peral,Jose Capmany.Iterative Solution to the Gel'Fand-Levitan-Marchenko CoupledEquations and Application to Synthesis of fiber gratings.IEEE Journal of Quantum Electronics,Vol32,No.12,December 1996.P 2078-2084.
    [12]吴强等.啁啾sinc取样光纤光栅研究.光子学报.2005年3月.34卷.P404-407.
    [13]J.E.Rothenberg.Dammann Fiber Bragg Gratings and Phase-Only Sampling for HighChannel Counts.Photonics Technology Letters.VOL.14,NO.9,September 2002.
    [14]陈根祥主编.光波技术基础.中国铁道出版社.2000.P243-248.
    [15]刘勇,叶志清.啁啾叠栅光纤光栅反射特性和时延特性的研究.光子学报.2002年7月.31卷.P824-826.
    [16]刘勇,叶志清.龙格库塔法与矩阵分析法处理线性啁啾光纤光栅时延特性的差异.光通信技术.2002年第1期.26卷.
    [17]叶志清等.变迹啁啾Bragg光纤光栅的矩阵分析.光子学报.2001年2月.30卷.P184-186.
    [18]程本俊,吕乃光.啁啾光纤光栅反射谱与时延仿真研究.北京机械工业学院学报.2004 年12月.19卷第4期.P21-24.
    铩颷19]贾宝华,盛秋琴,冯丹琴,董孝义.超结构光纤布拉格光栅的理论研究.中国激光.2003年3月.30卷.P247-250.
    [20]汤树成.光纤光栅谱特性的数值模拟.现代有线传输.2002年6月第2期.P23-25
    [21]New Sampling-Based Design of Simultaneous Compensation of Both Dispersion andDispersion Slope for Multichannel Fiber Bragg Gratings.Qiang Wu,Chongxiu Yu.PhotonicsTechnology Letters.Vol.17.No.2,February 2005.
    [22]游澜,余重秀.取样光纤光栅的光普特性分析.中央民族大学学报.2005年2月.第14卷第2期.P19-24.
    [23]游澜,余重秀,陈思勤,李云.取样光纤光栅及其应用研究.2004年11月.第13卷第4期,P322-325.
    [24]王燕.取样光栅及其在光纤通信中应用的理论研究.江西师范大学硕士学位论文.2003年4月.P12-26.
    [25]王旭等.间插取样光纤光栅多通道滤波器.光学技术.2005年第1期.31卷.P117-119.
    [26]Ball G A,Morey W W.Continuously tunable single-mode erbium fiber grating laser[J].OptLett,1992,17:420-422.
    [27]Ball G A,Morey WW.Compression-tuned single frequency Bragg grating fiber gratinglaser[J].
    [28]Jorg Hubner,Dan Zauner and Martin Kristensen.Strong sampled Bragg gratings for WDMapplications.IEEE Photon.Technol.Lett,1998,Vol.10,P552-554
    [29]Hojoon Lee.Add-Drop Multiplexers and Interleavers With Broad-Band ChromaticDispersion Compensation Based on Purely Phase-Sampled Fiber Gratings.Photonics TechnologyLetters.VOL.16,NO.2,FEBRUARY 2004.
    [30]Alexander V.Buryak,Kazimir Y.Kolossovski,and Dmitrii Yu.Stepanov.Optimization ofRefractive Index Sampling for Multi-channel Fiber Bragg Gratings.IEEE Journal of QuantumElectronics,VOL.39,NO.1,January 2003
    [31]刘玉敏,俞重远等.优化二元相位取样光栅布拉格光栅及对色散及色散斜率补偿的应用.光子学报.2005年11月.34卷.P1701-1704
    [32]X.F.Chen,Y.Luo,C.-C.Fan,T.Wu,and S.-Z.Xie,Analytical Expression of sampledBragg gratings with chirp in the sampling period and its application in dispersion managementdesign in WDM system,IEEE Photonics Tech.Lett.,vol.12,P1013-1015,Aug.2000.
    [33]H.Dammann and K.Gortler,High-efficiency in-line multiple imaging by means ofmultiple phase holograms,Opt.Commun.,vol.3,P312-315,1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700