用户名: 密码: 验证码:
亲水型PTG材料感光性能的影响因素及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,光敏热成像(Photothermographic, PTG)材料得到迅速发展并在医用胶片领域得到广泛应用,但是该材料仍存在一些问题有待于进一步研究,其中之一是材料感光性能的影响因素及其作用原理等。本论文以亲水型PVA为粘合剂,以原位或异位法制备的AgX作为光敏元,研究了影响PTG材料感光性能的各种因素,并采用红外光谱、浸泡实验及差示扫描量热法(DSC)等初步研究了它们的影响机理。
     主要的研究内容和实验结果总结如下:
     1. pH和pAg对PTG材料感光性能的影响研究了pH值对不同种类PTG分散液pAg值的影响以及pH值和pAg值共同对PTG材料感光性能的影响,并初步探讨了影响机理。结果表明,随着pH值的升高,PTG分散液的pAg值逐渐增大,当pH值在7.0-7.5之间时,PTG材料可取得最大感光度。机理研究表明这可能是由于pAg值影响到光敏元AgBr的潜影形成过程,而pH值和pAg值决定了银离子络合物的浓度以及有机还原剂的反应活性。
     2.金属离子对PTG材料感光性能的影响研究了Ca2+、Ba2+、Pb2+和Zn2+对PTG材料感光性能和储存稳定性的影响。结果表明,虽然金属离子种类不同,但随着金属离子用量的增加,PTG材料的感光度和灰雾均出现不同程度的下降。另外,老化实验表明:在老化时四种离子对PTG材料的感光度和灰雾都有影响,但作用效果有一定差异。作用机理可能是金属离子可能通过影响光敏元AgBr颗粒的潜影形成效率,以及它们与PHZ的结合造成显影过程中Ag+的迁移速率降低,从而降低了PTG材料的感光度和灰雾。
     3.三苯基磷对PTG材料感光性能的影响研究了Ph3P对PTG材料感光性能的影响,采用IR和DSC等手段研究了Ph3P的作用机理。结果表明,随着Ph3P用量的增加,PTG材料的感光度先增加后降低,灰雾始终为零,并且当Ph3P/AgSt = 0.1:1时,PTG材料的感光度可取得最大值。作用原理可能是Ph3P不仅通过与AgBr反应对PTG材料的潜影形成过程有影响,还通过与AgSt的配位作用导致硬脂酸银(AgSt)的本征相变温度降低,从而影响材料的热显影过程。
     4. 2-巯基苯并咪唑对PTG材料感光性能的影响研究了MBM的用量对PTG材料感光性能的影响,并在用IR、TG和DSC等方法测定MBM修饰后的AgSt的结构和热行为的基础上研究了影响机理。结果表明,随着MBM用量的增加,PTG材料的感光度先增加后降低,且当MBM/AgSt = 0.05:1时,感光度取得最大值。这可能是由于少量MBM修饰后的AgSt的相变温度下降,有利于热显影过程的进行,MBM用量超过一定值后,在AgSt表面生成的大量AgMBM反而会阻碍热显影的进行。
     5.羧酸盐掺杂AgBr对PTG材料感光性能的影响羧酸盐掺杂的立方体AgBr乳剂颗粒使PTG材料的感光度得到不同程度的增加,掺杂AgBr乳剂的表面化学增感使PTG材料的感光度得到进一步的提高。当掺杂AgBr乳剂的用量为AgSt摩尔数的25%时,PTG材料的相对感光度最大。这说明掺杂AgBr乳剂的潜影形成效率的提高促使PTG材料的相对感光度增大,其热显影过程仍遵循Klosterboer-Rurledge所提出的“影响球”模型。
     6.原位AgX对PTG材料感光性能和稳定性的影响考察了使用原位AgBr或AgI为光敏元的PTG材料的感光性能以及加工后的室内光照稳定性。结果表明原位AgX在PTG材料中具有一个最佳使用量;未曝光的样片经过热显影后,以AgI作为光敏元的PTG样片比以AgBr的具有更佳的室内光照稳定性。
In recent years, significant advances were made in technology of photothermographic (PTG) materials, and wide application was realized in medical films fields. However, there were still some problems needing to be further studied, such as different kinds of unknown influence factors of photographic properties of PTG materials. In this dissertation the influence factors of photographic properties of PTG materials using polyvinyl alcohol as hydrophilic binder and in situ or ex situ AgX as light sensitive elements were measured and the mechanisms were in detail investigated by means of IR spectra, soak tests and differential scanning calorimetry (DSC) and so on. The main results were summarized as follows:
     1. Effects of pH and pAg on photographic properties of PTG materials. Effect of pH on pAg of varies of PTG dispersions and the joint influences of pH and pAg on photographic properties of PTG materials were studied. It showed that pAg of PTG dispersions increased with the increment in pH. The maximal sensitivity of PTG materials was achieved while the pH was in the range of 7.0-7.5, which was possible due to the changes in latent image formation of AgBr affected by pAg, the concentration of silver complex and activity of organic developer determined by pH and pAg.
     2. Effects of metal ions on photographic properties of PTG materials. The impacts of Ca~(2+), Ba~(2+), Pb~(2+) and Zn~(2+) on photographic properties and storage stability were researched. The results showed that the sensitivity and fog of PTG materials were all decreased with increasing amount of different kinds of metal ions. In addition, in the aging experiment the photographic properties of PTG materials were affected by the four metal ions. Studies on mechanism showed that the decrease in sensitivity and fog of PTG materials might be caused by the decrement in latent image formation efficiency of AgBr grains and the dropping of transference speed of Ag~+ in thermal developing process.
     3. Effect of triphenylphosphine (Ph3P) on photographic properties of PTG materials. The impacts of Ph3P on photographic properties of PTG materials were studied and the mechanisms were investigated by IR and DSC technologies etc. The results indicated that the sensitivity of PTG materials firstly ascended and then descended with the amount of Ph3P, while the fog density was still kept zero; and when the ratio of Ph3P/AgSt was 0.1:1 the sensitivity came to a head. The possible mechanisms for Ph3P were that Ph3P not only affected the latent image formation by the reaction of Ph3P with AgBr but also the thermal developing process of PTG materials caused by the combination of Ph3P with silver stearate (AgSt) and then the decreased phase transition temperature of AgSt.
     4. Effect of 2-mercaptobenziminazole (MBM) on photographic properties of PTG materials. The influences of the amount of MBM on photographic properties of PTG materials were studied and the mechanisms were also investigated based on the measurement of the structure and thermal behaviors of modified AgSt by means of IR, TG and DSC etc. The results revealed that the sensitivity of PTG materials increased at the beginning and decreased later, and the maximum could be obtained when MBM/AgSt was equal to 0.05:1, which might be resulted from the decline in phase transition temperature of AgSt modified by a small amount of MBM that was beneficial to thermal developing process while large amount of AgMBM formed on the surface of AgSt with increasing MBM blocked thermal development proceeding.
     5. Effect of carboxylate doped AgBr on photographic properties of PTG materials. The sensitivity of PTG materials was enhanced to a certain extent by the cubic AgBr grains doped with carboxylate and that was further raised by the surface chemical sensitization to the doped cubic AgBr grains. When the mole ratio of doped AgBr to AgSt was 0.25, the maximal sensitivity of PTG materials was obtained. That was to say, the high efficiency of latent image formation as to doped AgBr resulted in the increment in the relative sensitivity of PTG materials, and the thermal development process of PTG materials still followed Klosterboer-Rurledge’s“sphere of influence”model.
     6. Effect of in situ AgX on photographic properties of PTG materials. Photographic properties and after processing stability under room light illumination of PTG materials using in situ AgBr or AgI as light sensitive element were studied. It was found that PTG materials had an optimum amount of in situ AgBr or AgI. The thermally processed unexposed PTG sample using in situ AgI was of better light stability than that of PTG sample using in situ AgBr.
引文
1. D A Morgan. New Capabilities with Dry Silver Recording Materials. J. Imag. Technol., 1987, 13(1): 4-7.
    2. W H F Talbot. Improvement in photographic pictures. US patent, 5 171, 1847.
    3. D A Morgan. Heat-developable photogaphic silver salt material. BE patent, 663 112, 1965.
    4. D Morgan. Sensitized sheet containing an organic silver salt, a reducing agent and a catalytic proportion of silver halide. BE patent, 663 112, 1965.
    5. D R Whitcomb. Advances in Photothermographic Imaging Technology based on Silver Carboxylates. International congress Imaging Scienct, Tokyo, 2002, p. 21-22.
    6. www. epa. gov/greenchemistry/aa97. html.
    7. M R V Syhun. An introduction to photothermography, www.Imaging.org/resources
    8. 杨晓玲, 刘贤豪. 热显影感光材料. 中国感光学会第六次全国感光(影像)科学大会暨第五届青年学术交流会论文集, 济南, 2001, p. 166-168.
    9. T Ito, S Nishiwaki, T Mitsuhasi. Numerical model for characteristic curves of photothermographic materials using a semiempirical simulation method. J. Imag. Sci. Technol., 2001, 45(4): 357-364.
    10. B B Bokhonov, L P Burleva. Variations in the morphology of image silver particles in thermally developed photographic materials. J. Imag. Sci. Technol., 1999, 43(6): 505-508.
    11. H L Strijckers. Image formation mechanisms in photothermographic silver imagingmedia. J. Imag. Sci. Technol., 2003, 47(2): 100-106.
    12. I Toya. Thermographic material. US patent, 5 965 348, 1999.
    13. P J Cowdery-Corvan, D R Whitcomb. Handbook of Imaging Materials, (Ed. Diamond, A. S. and Weiss, D. S.). New York, Marcel Dekker, 2PedP edition, 2002, Ch. 13, p. 486.
    14. 曹静, 林海莉, 姚林辉, 史 瑶, 李金培, 夏培杰, 传统化学增感对 PVA 为粘合剂的光敏热成像材料的光敏性的影响. 感光科学与光化学, 2005, 23(2): 108-113.
    15. H. Mifune, K. Yamane, T. Ohzeki, F. Nariyuki, K. Watanabe, M. Yoshikane, M. Nakanishi, T. Maekawa, Photothermographic materials with nano-particles of silver iodide. Proc. ICIS’06, Rochester, New York, USA, 2006, p. 227.
    16. T Funakubo, H Mifune, T Ohzeki, K Ohzeki, K Yamane, Photothermographic materials with tabular silver iodide grains, ICIS’06 Int. Conf. Imaging Sci., Rochester, New York, USA, p. 230-232.
    17. B P Tolochko, S V Chernov, S G Nikitenko, et al. EXAFS determination of the structure of silver stearate, [Ag(OB2BC(CHB2B)B16BCHB3B]B2B, and the effect of temperature on the silver coordination sphere. Nucl. Inst. and Meth. Phys. Res., A, 1998, 405: 428-434.
    18. M R V Sahyun. Thermally developable photographic (TDPM): a review of the state-of-art in mechanistic understanding. J. Imag. Sci. Technol., 1998, 42(1): 23-30.
    19. P J Cowdery-Corvan, D R Whitcomb. Handbook of Imaging Materials, (Ed. Diamond, A. S. and Weiss, D. S.). New York, Marcel Dekker, 2PedP edition, 2002, Ch. 13, p. 481-483.
    20. M Ikeda. Thermodynamic and NMR studies on silver salts of fatty acids. Photogr. Sci. Eng., 1980, 24(6): 277-280.
    21. M Chadha, M E Dunnigan, M R V Sahyun, et al. Electronic structure of layered silver carboxylates. J. Appl. Phys., 1998, 84(2): 887-892.
    22. B B Bokhonov, A A Sidelnikov, M R Sharafutdinov, et al. Thermal and mechanochemical initiated phase transformations in silver carboxylates. J. Imag. Sci.Technol., 2003, 47(2): 89-99.
    23. S E Hill, M B Mizenk, M R V Sahyun. Mechanisms of development of photothermographic media. J. Imag. Sci. Technol., 1996, 40(6): 568-575.
    24. B Lin, J S Dong, D R Whitcomb, et al. Crystallization of silver stearate from sodium stearate dispersions. Langmuir, 2004, 20(21): 9069-9074.
    25. 范明明, 邹竞, 王虹. 光敏热显成像材料概述. 感光科学与光化学, 2006, 24(2): 140-151.
    26. H Akahori, K Morita, A Nishijima, et al. Electron transfer properties of bisphenol derivatives in relation to their developing properties in silver salt photothermographic systems. J. Imag. Sci. Technol., 2003, 47(2): 124-132.
    27. Frank Ruttens. Polyvinylbutyral, More Than Just a Binder. J. Imag. Sci. Technol., 1996, 43(6): 535-539.
    28. C Uyttendaele, H V Aert, F Louwet, et al. Binders for thermographic materials. EP patent, 0 903 624, 1999.
    29. C Uyttendaele, H V Aert, F Louwet, et al. Binders for thermographic materials.US patent, 6 306 572, 2001.P
    30. M Fujita, T Ishizaka, A Hatakeyama, et al. Photothermographic material. US patent, 6 132 949, 2000.
    31. K Katoh, A Hatakeyama. Photothermographic material and method for making. US patent, 6 140 037, 2000.
    32. M Ogawa, S Nanami, K Okada, et al. FM-DP L Dry Imager. Fujifilm Research &Development, 2000, 45: 59-70.
    33. S Nanami, K Okada, T Satoh, et al. DRYPIX 7000/DI-HL Dry Imaging System. Fujifilm Research & Development, 2003, 48: 39-46.
    34. K Sakizadeh. Antifoggants and print stabilizers for photothermographic systems based on AgX/Ag carboxylates—a review. J. Imag. Sci. Technol., 2003, 47(3): 263-277.
    35. S P Birkeland. Silver halide, heat-developable image sheet containing mercuric ion. US patent, 3 589 903, 1971.
    36. T Masuda, K Adachi. Thermodevelopable photographic material with N-Haloace- tamide. US patent, 3 957 493, 1976.
    37. V P Oanh. Photothermographic elements. US patent, 4 784 939, 1988.
    38. P G Skoug. Photothermographic elements. US patent, 5 028 523, 1991.
    39. (a) W P Reeves, R M King. Synth. Commun. 1993, 23(6):855-859. (b) P G Baraldi, R Bazanini, S Manfredini, D Simoni, M J Robins. Tetrahedron Lett. 1993, 34(19): 3177-3180.
    40. N Miura, K Ishida. Thermally processable photosensitive material, image forming method and antifoggant. US patent, 6 248 512, 2001.
    41. K Fukui, M Takasaki, K Watanabe. Photothermographic material. US patent, 6 368 782, 2002.
    42. K Fukui. Photothermographic material. US patent, 6 558 894, 2003.
    43. J T Blair, R C Patel, R D Rogers, D R Whitcomb. The Molecular Structure of [bis-(2-Tribromomethylsulfonyl-benzothiazole)-silver(?)-tetrafluoroborate?(acetone)][Ag{(CB7BHB4BNS)SOB2BCBrB3B}B2BBFB4B?MeB2BCO]: A Possible Model for Bromine Elimination of Silver Halide Fog Centers. J. Imag. Sci. Technol., 1996, 40, 117-122.
    44. G J Burgmaier, R L Klaus. Water soluble halogen-contaming compounds. US patent, 6 506 934 B1, 2003.
    45. J W Carpenter, P W Lauf. Research Disclosure, item. 17 029, 1978.
    46. Y Yoshioka, M Suzuki. Photothermographic material. EP patent, 1 096 310, 2001.
    47. M Suzuki, Y Yoshioka. Bisphenol-phosphorus compound complex and thermally processed image recording material utilizing the same. US patent, 6 573 407, 2003.
    48. T Maekawa, M Yoshikane, H Fujimura, I Toya. Reaction mechanisms in thermally developed photographic systems based on silver carboxylate. J. Imag. Sci. Technol., 2001, 45(4): 365-372.
    49. C F Zou, J B Phillip, S M Shor. M C Skinner, Pu Zhou. Photothermographic element with pre-formed iridium-doped silver halide grains. US patent, 5 434 043, 1994.
    50. D R Whitcomb, R D Rogers. Chemistry of photothermographic imaging materials II.J. Imag. Sci. Technol., 1999, 43(6): 517–520.
    51. R D Rogers, C V K Sharma, D R Whitcomb. Molecular tweezers and pentamericaggregates: convergent hydrogen-bonded self-assembly of 2:1 and 2:3 cocrystals ofphthalazine: phthalic acid. Crystal Engineering, 1998, 1(3): 255-262.
    52. D R Whitcomb, R D Rogers. The properties, crystal, and molecular structure ofcatena-[(μ-acetato-)-(μ-phthalazine)silver(I)di-hydrate]:{[Ag(μ-O_2CCH_3)(μ-PHZ)(H_2O)_2]_2}_n. J. Chem. Cryst., 1995, 25(3): 137-142.
    53. D R Whitcomb, R D Rogers. The molecular structure of catena-[(μ-phthalato)-di-(μ-phthalazine)-di-silver(I)hydrate]:[Ag_2(μ-(O_2C)_2C_6H_4)(μ-PHZ)_2(H_2O)]_n: Carboxylatecontrol of side-on versus tacked coordination polymerization. Inorg. Chim. Acta,1997, 256(2): 263–267.
    54. Tomoyuki Ohzeki, Yasuhiro Yoshiosha, Kimitoshi Nagao, Features of Ag ImageTone in Water-Coated Photothermographic Materials. International Symposium onSilver Halide Technology, Ventura, California, 2004, p. 7-10.
    55. B B Bokhonov, L P Burleva, W C Frank, et al. The Influence of the PhotosensitiveSilver Halide/Silver Carboxylate Preparation Conditions on the Morphology ofThermally Developed Silver Particles. J. Imag. Sci. Technol., 1996, 40(5): 417–422.
    56. J M Winslow. US patent, 3 994 732, 1976.
    57. B A Lea. Sensitizers for photothermographic media. US patent, 4,835 096, 1989.
    58. Y Yoshioka, K Yamane and T Ohzeki, Development of rapid dry photothermographicmaterials with water-base emulsion coating method. International Symposium onSilver Halide Technology, 2004, p. 28-31.
    59. Freedman, J. R. WO 94/03833, Polaroid, 1994.
    60. Whitcomb, D. R. and Rogers, R. D., The molecular structure of [bis-triphenylphosphine-silver (Ⅰ) stearate], [((C_6H_5)_3P)_2Ag(O_2C(CH_2)_(16)CH_3)], solubilization of longalkyl chain silver carboxylates, J.Chem.Cryst. 1996, 26[2]: 99-105.
    61. J W Shepard. J. Appl. Photogr. Eng., 1982, 8: 210-212.
    62. J J A Robillard. French patent, 2 254 047, 1973.
    63. M R V Sahyun, R C Patel, R Muthyala. Photothermographic imaging media employing silver salts of tetrahydrocarbyl borate anions US patent, 5 260 180, 1993.
    64. C F Zou, M R V Sahyun, B Levy. Mechanisms of latent imaging formation in photothermographic silver imaging media. J. Imag. Sci. Technol., 1996, 40(2): 94-103.
    65. B B Bokhonov, L P Burleva, W C Frank, et al. Morphological Regularities in the Formation of Silver Halides During In Situ Halidization of Silver Stearate. J. Imag. Sci. Technol., 1996, 40(2): 85-93.
    66. P L Potapov, D Schryvers, H Strijckers, et al. Microstructural mechanism of development in photothermographic materials. J. Imag. Sci. Technol., 2003, 47(2): 115-123.
    67. D H Klosterboer. Imaging processes and materials. Neblette’s Eighth Edition, Sturge J M, Walworth V, Shepp A, Eds., Van Nostrand-Reinhold, New York, 1989, chapter 9, 279-291.
    68. Akihiro Hirano. Recent Advances and Future Opportunities in Silver Halide Imaging. IS&T/SPSTJ’s International Symposium on Silver Halide Imaging, IS&T, Springfield, VA, 1997, p.113.
    69. S H Kong. A generalized Klosterboer-Rutledge model for photothermographic silver-carboxylate media. J. Imag. Sci. Technol., 1999, 43(6): 509-516.
    70. H Tsuzuki, A Hatakeyama, K Nakajima. The aqueous-coated Phototheromographic material. Int. Conf. Imaging Sci., Japan: Tokyo, 2002. p. 27-28.
    71. D R Whitcomb, M Rajeswaran. Coordination chemistry of photothermographic imaging materials: III. J. Imag. Sci. Technol., 2003, 47(2): 107-114.
    [1] Toshihiko Maekawa, Mitsuo Yoshikane, Hidetoshi Fujimura, Reaction Mechanisms in Thermally Developed Photographic Systems Based on Silver Carboxylate. J. Imag. Sci. Technol., 2001, 45: 365-372.
    [2] A. V. Borin, Z. I. Gratsianskaya, and R. A. Podchishchalova, The influence of concentration of bromide and hydroxyl ions on the photographic properties of emulsions. Zhur. Priklad. Khim 1953, 26: 708-20.
    [3] F. C. Forsgard, The role of silver bromide complexes in the mechanism aging fog. Phot. Sci. Eng. 1959, 3: 23-6.
    [4] Birr, E. J. Reaction mechanism of antifogging agents and emulsion stabilizers. Chimia 1970, 24: 125-33.
    [5] T.H.James.The Theory of the Photographic Process. New York: 4th ed., Macmillan Publishing Co., 1977.
    [6] Mifune H, Tani T, Yamashita S, Aiba S, Ohzeki T, Yamane K. Ionic and electronic properties of silver iodide grains. Proc. ICIS’06, Rochester, New York, USA, 2006, p.224.
    [7] B.B.Bokhonov, L.P.Burleva, W.C.Frank, Morphological Regularities in the Formation of Silver Halides During In Situ Halidization of Silver Stearate. J. Imag. Sci. Technol., 1996, 40: 85-93.
    [8] John A. Dean. Lange’s Handbook of Chemistry. 13~(th) edition. New York: McGraw-Hill Book Company, 1985.
    [9] 邵学俊, 董平安, 魏益海. 无机化学(第二版上册). 武汉大学出版社, 2003. 197.
    [10]D R Whitcomb, R D Rogers, The molecular structure of catena-[(μ-pH 值 thalato)-di- (μ-phthalazine (-di-silver(I)hydrate))] [Ag_2(-μ(O_2C)_2C_6H_4)(μ-PHZ)_2(H_2O)]_n): carbo- xylate control of side-on versus stacked coordination polymerization. Inorg. Chim. Acta, 1997, 256: 263-267.
    [11]David R. Whitcomb, Manju Rajeswaran, Coordination Chemistry of Photothermo- grapHic Imaging Materials: Ⅲ . J. Imag. Sci. Technol, 2003, 47:107-114.
    [1] Birr E J. Stabilization of Silver Halide Emulsions. The Focol Press, 1974.29.
    [2] 范素月, 彭必先. 金属离子对溴碘化银乳剂微晶体的掺杂效应Ⅲ.Cu~(2+)的掺杂. 感光科学与光化学, 1988, 6(3): 52-56.
    [3] 李津. 锌离子在氯溴化银照相乳剂中的掺杂效应. 感光材料, 1987. (3): 24-26.
    [4] 崔学福, 荣惠林等. 卤化银微晶中掺杂 Ca~(2+)离子对其性能的影响. 感光科学与光化学, 1994, 12(1): 35-38.
    [5] Tani T, Saito M. Photographic effects of metal ionsⅠ: Effects of divalent metal ions upon emission and photographic process in silver bromide and silver iodobromide grains. Photo. Sci. Eng., 1973, 17(5): 434-441.
    [6] 项言, 王素娥. 钙离子对卤化银乳剂化学增感和光谱增感的影响. 感光科学与光化学, 1992, 10 (2): 131- 137.
    [7] Sakizadeh K. Antifoggants and Print Stabilizers for Photothermographic Systems Based on AgX/Ag Carboxylates-A Review. J. Imaging Sci. Techol., 2003, 47:263-277.
    [8] George J. Burgmaier, Roger L. Klaus. Water soluble halogen-containing compounds. US Patent, 6 506 934. 2003-01-14.
    [9] Maekawa T, Yoshikane M, Fujimura H, and Toya I. Reaction Mechanisms in Thermally Developed Photographic Systems Based on Silver Carboxylate. J. Imaging Sci. Techol., 2001, 45: 365-372.
    [10] ?elik ?, Ide S, Kurt M and Yurdakul S, Dichlordbis(phthalazine)zinc(Ⅱ). Acta Cryst. 2004, 60: m1134-m1136.
    1. D R Whitcomb, R D Rogers. The properties, crystal, and molecular structure of catena-[(μ-acetato-)-(μ-phthalazine)silver(I)di-hydrate]:{[Ag(μ-O_2CCH_3)(μ-PHZ) (H_2O)_2]_2}_n. J. Chem. Cryst., 1995, 25(3): 137-142.
    2. D R Whitcomb, R D Rogers. The molecular structure of catena-[(μ-phthalato)-di- (μ-phthalazine)-di-silver(I)hydrate]:[Ag_2(μ-(O_2C)_2C_6H_4)(μ-PHZ)_2(H_2O)]_n: Carboxylate control of side-on versus tacked coordination polymerization. Inorg. Chim. Acta, 1997, 256(2): 263–267.
    3. J T Blair, R C Patel, R D Rogers, D R Whitcomb. The Molecular Structure of [bis-(2-Tribromomethylsulfonyl-benzothiazole)-silver(I)-tetrafluoroborate·(acetone)][Ag{(C_7H_4NS)SO_2CBr_3}_2BF_4·Me_2CO]: A Possible Model for Bromine Elimination of Silver Halide Fog Centers. J. Imag. Sci. Technol., 1996, 40, 117-122.
    4. Y Yoshioka, K Yamane, T Ohzeki. Development of Rapid Dry Photothermographic Materials with Water-base Emulsion Coating Method, International Symposium on Silver Halide Technology, Ventura, California, 2004, p. 28-31.
    5. Cowdery-Corvan, P. J., Whitcomb, D. R., Photothermographic and Thermographic Imaging Materials, Handbook of Imaging Materials, Diamond, A. and Weiss, D., Eds., 2ed New York, Marcel Dekker, 2003, 473.
    6. Freedman, J. R. WO 94/03833, Polaroid, 1994.
    7. Whitcomb, D. R. and Rogers, R. D., The molecular structure of [bis-triphenylphos phine-silver (Ⅰ) stearate], [((C_6H_5)_3P)_2Ag(O_2C(CH_2)_(16_CH_3)], solubilization of long alkyl chain silver carboxylates, J.Chem.Cryst. 1996, 26[2]: 99-105.
    8. Whitcomb, D.R. and Rogers, R.D., Chemistry of Photothermographic Imaging Materials. II. J. Imag. Sci. Technol., 1999, 43(6): 517–520.
    9. T Tani. Photographic Sensitivity: Theory and Mechanisms. New York Oxford: Oxford University Press, 1995.
    10. T Maekawa, M Yoshikane, H Fujimura, I Toya. Reaction mechanisms in thermally developed photographic systems based on silver carboxylate. J. Imag. Sci. Technol., 2001, 45(4): 365-372.
    11. S J Lee, S W Han, H J Choi, et al. Structure and thermal behavior of a layered silver carboxylate. J. Phys. Chem. B 2002, 106, 2892-2900.
    12. B B Bokhonov, A A Sidelnikov, M R Sharafutdinov, et al. Thermal and mechanochemical initiated phase transformations in silver carboxylates. J. Imag. Sci. Technol., 2003, 47(2): 89-99.
    13. H L Strijckers. Image formation mechanisms in photothermographic silver imaging media. J. Imag. Sci. Technol., 2003, 47(2): 100-106.
    [1] T Tani. Photogr. Sci. Eng., 1997, 21, 37.
    [2] a) J Malinowski. J. Photogr. Sci., 1968, 16, 57; b) J Malinowski. Photogr.Sci. Eng.,1970,14,112.
    [3] D L Fields Jr. and H Shechter. J. Org. Chem., 1986, 51:3369-3371.
    [4] a) P D Knight, R A deMauriac and P A Graham. US Patent, 4 128 557, 1978; b) C G Houle. US Patent, 4 137 079, 1979;c) D D Shiao. US Patent, 4 138 265, 1979; d) D D Shiao. Research Disclosure, item 16977, 1978.
    [5] a) G Gutman. US Patent, 4 510 236, 1985; b) T L LePage, S M Simpson, J A Bonham and D C Lynch. EP Patent, 588 717, 1993; c) K Okada, K Okamoto and M Oda. J. Chem. Soc. Chem. Commun., 1989, 1636.
    [6] 曹静. 亲水型光敏热成像材料的化学增感. 中国科学院研究生院博士学位论文, 2006.
    [7] D R Whitcomb and M Rajeswaran. Coordination Chemistry of Photothermographic Imaging Materials: Ⅲ. J. Imag. Sci. Technol. 2003, 47, 23-30.
    [8] S J Lee, S W Han, H J Choi, et al. Structure and thermal behavior of a layered silver carboxylate. J. Phys. Chem. B 2002, 106, 2892-2900.
    [1] 夏培杰, 国红, 姚林辉, 赵文芳. 潜影形成过程中的空穴及其转换. 感光科学与光化学, 2002, 20(1): 46-59.
    [2] M Treguer, De R Keyzer, H Remita, C J Belloni. Effective quantum yield: New approach of the enhancement of the electro-hole pair escape. In: Nanostructured Materials for Imaging. Proceedings of ICPS’98, Antwerp, 1998. 243-247.
    [3] C J Belloni, M Treguer, H Remita, De R Keyzer. Enhanced yield of photoinduced electrons in doped silver halide crystals. Nature, 1999, 402: 865-867.
    [4] 马望京, 国红, 夏培杰. 溴化银乳剂中甲酸盐掺杂的位置效应研究. 感光科学与光化学, 2005, 23(1): 29-36.
    [5] D A Morgan, Proc. SPIE, 1990, 1253, 239.
    [6] H. Mifune, K. Yamane, T. Ohzeki, F. Nariyuki, K. Watanabe, M. Yoshikane, M. Nakanishi, T. Maekawa, Photothermographic materials with nano-particles of silver iodide. Proc. ICIS’06, Rochester, New York, USA, 2006, p. 227.
    [7] T. Funakubo, H. Mifune, T. Ohzeki, K. Yamane, Photothermographic materials with tabular silver iodide grains. Proc. ICIS’06, Rochester, New York, USA, 2006, p. 230.
    [8] H Guo, L H Yao, J R Chen, W F Zhao, P J Xia. Investigation on photogenerated radicals of some carboxylates in solution and in aqueous dispersions of AgBr. Imaging Sci. J., 2003, 51: 269-274.
    [9] K Yamane, S Yamashita, The role of silver halides in photothermographic materials with a water dispersible binder. Proc. ICIS’02, Tokyo, 2002, p. 30.
    [10] S H Kong. A generalized Klosterboer-Rutledge model for photothermographic silver-carboxylate media. J. Imag. Sci. Technol., 1999, 43(6): 509-516.
    [11] 曹静, 林海莉, 姚林辉, 智欣, 李金培, 夏培杰. AgBr 的尺寸及含量对 PVA 为粘合剂的光敏热成像材料的光敏性的影响. 感光科学与光化学, 2005. 23(1): 6-13.
    [1] D A Morgan, Proc. SPIE, 1990, 1253, 239.
    [2] H. Mifune, K. Yamane, T. Ohzeki, F. Nariyuki, K. Watanabe, M. Yoshikane, M. Nakanishi, T. Maekawa, Photothermographic materials with nano-particles of silver iodide. Proc. ICIS’06, Rochester, New York, USA, 2006, p. 227.
    [3] T. Funakubo, H. Mifune, T. Ohzeki, K. Yamane, Photothermographic materials with tabular silver iodide grains. Proc. ICIS’06, Rochester, New York, USA, 2006, p. 230.
    [4] P M Zavlin, A N Batrakov, P Z Velinaon, et al. Thermally Developed Photographic Materials Based on silver Organic Salts. J.Imag.Sci.Technol., 1999, 43: 540-544.
    [5] 曹静, 林海莉, 姚林辉, 智欣, 李金培, 夏培杰. AgBr 的尺寸及含量对 PVA 为粘合剂的光敏热成像材料的光敏性的影响. 感光科学与光化学, 2005. 23(1): 6-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700