用户名: 密码: 验证码:
高耐蚀锌基涂料制备工艺及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高耐蚀锌基涂料技术是近年来发展起来的一种金属防腐蚀新技术,因其具有无污染、高耐蚀性、无氢脆等优点,故在许多工业领域中得到了日益广泛的应用。本文介绍了高耐蚀锌基涂料技术的历史及其在国内外的研究和应用情况,以及涂层性能特点。阐述了镀锌钝化膜的成膜及其耐蚀机理,高耐蚀锌基涂层的成膜机理及其防腐机理,并将锌基涂层和镀锌钝化膜进行比较,突出了锌基涂层耐蚀性的优越性。
     本文研究了采用自制的片状锌粉,铬酸和重铬酸钾按一定的比例混合而成的铬酸组分,由溶剂、乳化剂和表面活性剂等有机物混合而成得到有机物组分,三者混合搅拌均匀得到高耐蚀锌基涂料。采用离心浸涂的处理方式,经烘烤固化得到高耐蚀锌基涂层。
     研究了不同工艺条件对锌基涂层耐蚀性的影响,从中筛选出的最佳工艺条件为:搅拌时间1h为宜,甩液时电压控制在120V,甩液时间30s左右即可。烘干温度80±5℃,时间为10-20min,烧结温度为280-300℃,时间为20-30min时,所形成的高耐蚀锌基涂层的综合性能最佳。含铬组分的pH值以0.8-2.8为宜,最终涂料的pH值在4.5-6.0之间。
     采用万能金相显微镜,分析涂层的表面形貌和断面形貌,结果表明:整个涂层很均匀,涂层和基体结合紧密,涂层的厚度也比较均匀。
     各种耐蚀性试验证明:锌粉粒度越细,所得锌基涂层耐蚀性越好,当锌粉粒度小于300目时,所得高耐蚀锌基涂层的耐蚀性明显优于镀锌层。本试验中,采用自制的片状锌粉,锌粉的粒径大于5μm小于10μm,其厚度小于0.5μm。锌粉含量控制在280-320g/L为佳。
     试验证明:铬酸组分采用混合铬酸(CrO_3:K_2Cr_2O_4=7:3)比采用单一铬酸所得涂层性能要好,铬酸含量过高,在烧结过程中涂层可能析出黄色的CrO_3,涂层耐蚀性下降,表面质量差,涂层呈现黄绿色;涂层有锌粉脱落,结合力不够。铬酸不足,锌粉之间,锌粉和基体之间粘结不牢,高耐蚀锌基涂层结合力不理想,有脱落现象,膜层发黑、粉化,本试验控制在40-44g/L。
    
    昆明理工大学硕士学位论文摘要
     本研究选用的溶剂3是一种芳香族烃类溶剂,同时加一种潜溶剂(有机醇)
    后涂料分散得很好,涂层光滑、平整,颜色为亚银光色。所加溶剂的量越高,所
    得高耐蚀锌基涂层耐蚀性越好,当加到120目L时,所得高耐蚀锌基涂层的耐蚀性
    明显提高很多,不需再继续增加,故本试验控制在1209/L。
     还原剂对提高锌基涂层的质量有着重要的意义,它的加入很大程度上改善了
    涂层的外观,又不影响涂层的性能,还能防止析出而导致脱层现象,本试验选609/L
    为佳。
     试验表明:涂层的表面粗糙度随着乳化剂量的增加而逐渐变得平滑,细腻。
    乳化剂的加入,直接影响到涂料是否能够充分混合,使涂料分散均匀,也影响到
    涂料的流平性和粘稠度,但它对涂层的耐蚀性影响不大,本试验控制在26叨J。
     腐蚀试验表明,.表面活性剂的量对所得高耐蚀锌基涂层耐蚀性影响不大,当
    加到305几时,所得高耐蚀锌基涂层的耐蚀性很好,若继续增加,涂层的耐蚀性变
    化不大,反而有所降低,故在保证涂层的均匀和良好的结合力的情况下,表面活
    性剂的含量不宜太高,含量低一点涂层的耐蚀性更好。本试验控制在30乡毛。
     结果表明,采用自制的片状锌粉,在优化工艺条件下制备的高耐蚀锌基涂层
    均匀致密,对钢材具有优良的防腐蚀效果,盐雾试验的出红锈时间大于80oh,耐
    腐蚀性远高于普通镀锌层。
The zinc-basic paint with high corrosion resistance technology was a new metal anticorrosion technology for iron and steel. Its applications in some fields such as automobile industry were getting increasingly common because of the advantages of less pollution, excellent anticorrosion property and non-hydrogen embrittlement. In this paper, the progress and current situation in research of the zinc-basic paint with high corrosion resistance technique and the specialty of the properties of the coating are introduced. The mechanism of formation of the passive zinc deposits and the zinc-basic coating with high corrosion resistance and the corrosion resistance mechanism were discussed. Moreover, zinc-basic coating was compared with the passive zinc deposits, so the superiority of corrosion resistance of the zinc-basic coating stood out.
    In this thesis, the flake zinc powder made by ourselves was adopted. CrO3 and K2Cr2O4 were blended in definite proportion to form the chromium acid component. The solvent, the emulsification agent, and the surfactants were blended to form the organic matter component. Then, flake zinc powder, the chromium acid component and the organic matter component were blended and mixed to receive zinc-basic paint with high corrosion-resistance. The Dip-spin processing was adopted and by drying and solidification gained the zinc-basic coating with high corrosion-resistance.
    The effects of different conditions on the corrosion resistance of zinc-basic coating were examined. The optimal conditions screened out were as follows: the time of mixing was one hour, the voltage of paint throwing off was 120V, the time of paint throwing off was about 30S, the temperature of drying was 805, the time of drying was 10-20min, the temperature of sintering was 280-300*C, and time of sintering was 20-30min. Under such conditions the syntheses properties of zinc-basic coating with high corrosion-resistance were the best. Additional, the pH of the chromium acid component was better during 0.8 and 2.8, and the pH of the finally paint during 4.5 and 6.0.
    
    
    By omnipotence metallography microscope, the surface and cross section morphologies .were analyzed. The result showed that: the whole coating was equality, the coating combined with metal substrates tightly, and the thickness of coating was equality.
    By different means of corrosion tester showed that: the thinner the zinc powder, the better the corrosion resistance of zinc-basic coating. The corrosion resistance of the zinc-basic coating was much better than the passive zinc deposits. In this experiment, the diameter of zinc powder was more than 5m but less than 10m, and the thickness was less than 0.5m. The content of zinc was controlled between 280 and 320g/L.
    By experiment, the mixture of CrO3 and K2Cr2O4 was much better than the pure CrO3 for the properties of zinc-basic coating. If the content was too high, the coating would separate out yellow CrO3 during the course of sintering, the corrosion resistance of the coating and the quality of surface became worse, the coating turned out green-yellow color, some zinc powder was brushed off from the coating, and the binding was inadequate. If the content of was lack, the adhesion among zinc powder and between zinc powder and the substrate were inadequate, some zinc powder was brushed off from the coating, and the color of the coating became black, pulverized. The content of zinc powder was controlled between 40 and 44g/L.
    The No. 3 solvent chose in this research was an aroma hydrocarbon solvent, and a latent solvent (an organic alcohol) was used meanwhile. Consequently, the paint dispersed very well, the coating was sleek, smooth, and sub-silver color. The more the content of the solvent, the more fine the corrosion resistance of the zinc-basic coating. The property of corrosion resistance of the coating was obviously improved when the content of solvent was up to 120g/L. So the content wasn't needed to increase, and it was 120g/L in this experiment.
    The reducing agent was vital to increase the corrosion resistance
引文
[1] 胡丙群,孙占华,刘宵,环保型防腐新工艺—达克罗技术,继电器,2001,29(9),74-75。
    [2] 东建中,邱金成,锌铬膜涂覆新工艺及设备,材料与表面处理,2001,(10):37-39。
    [3] [德]鲁道夫·博克编著,谢长生,朱泳煊,陈文新译,分析化学分解手册[M],贵州:贵州人民出版社,1982,5。
    [4] 曹茂盛,超微颗粒制备科学与技术[M],哈尔滨:哈尔滨工业大学出版社,1995。
    [5] Roman L, Blidarin M. Study of conversion coatings on zinc deposition obtained from low pollution solutions [J]. Trans IMF, 1997, 75(5): 171。
    [6] 于升学,宋伟明,李阿丹等,锌铬膜的结构和性能研究,工艺技术,2001,(6):43-44。
    [7] Narusch M J. Pauline G F, Dacrosealing: A New Corrosion Resistant Metal Finishing Service For P/M Parts[J].progress in powder Metallurgy 1986 Annual powder Metallurgy Conference Proceeding(Princeton), 42:659-662.
    [8] 应宪明,金属表面防锈技术—达克罗涂覆,汽车工艺与材料,2002,(2):12~13。
    [9] 陈玲,李宁,谷云龙等,达克罗技术的绿色特点及代镉镀层研究,电镀与环保,2000,20(2):24-26。
    [10] H. Krause-Heringer, Dacromet-A New Corrosion Protection for Fasteners [J]. Product Finishing, 1977, (5):29-32.
    [11] Michel Lonca, Daerotizing-an Effective Protection Against Corrosion. Finishing, 1990,14(9):35-38.
    [12] 李宁,陈铃,周德瑞等,锌基烧结涂层基本工艺条件的探索,材料保护,1998,31(12):16-17。
    [13] A. Sontag. Zinc/Aluminium Coatings for Corrosion Protection. Finishing, 1992,16(8):38-40.
    [14] White R W. Double Teaming the Elimination of Coadium-Part Ⅱ[J]. Fastener Technology International, 1995(6):25-27.
    [15] 东建中,达克罗涂覆新工艺及设备,科技开发动态,2001,(5):18-20。
    [16] 东建中,锌铬膜涂覆新工艺简介,材料保护,2001,34(10):55-56。
    [17] Espinosa-C, Jose G, Fernandez-Garza, et al,Coated zinc,chemistry and manufacturing process, United States patent 4820552, April 1989 (17 of 18).
    [18] Fourez, Michel, Lonca, et al, Coated metal substrates with anticorrosion coating
    
    composition, United States patent 4891268, January 2, 1990 (8 of 15).
    [19] 苏红军,水系锌铬膜涂层技术的研究,表面技术,2000,29(1),12-14。
    [20] Reynolds L M. Evaluation of new surface coating for springs. Spring(USA),1985,24(10):56-58.
    [21] Higashiyama, Takao, Nakazato, et al, Anticorrosion coating composition, United States patent 5131948, July 21, 1992 (3 of 5).
    [22] NAKAZATO, MICHIAKI, SUGANO KAZUAKI, Surface coating method, patent number W09504843, 1995-02-16.
    [23] Roberto, Oscar E, Maxim, et al, Dual coatedmetal substrates and method of making, United States patent 5486414, January 23, 1996 (5 of 15).
    [24] 于兴文,曹楚南.达克罗技术工艺及转化涂膜,涂料工业,2000,(12):23-26。
    [25] Roberto, Oscar E, Maxim, et al, Dual coatedmetal substrates and methods of making the same, United States patent 5691048, November 25, 1997 (4 of 15).
    [26] Micale, Fortunato J., Jenkins, et al, Coloredmetallicpigments, United States patent 5814686, September 29, 1998 (2 of 18).
    [27] 陈玲,李宁,周德瑞,达克罗涂层性能研究,制造与工艺,22-24。
    [28] Phil H S. Alternative Zn Cadmiumschichten, Metalloberflache, 1985,39(1):13-18.
    [29] 张俊敏,李建明,张宏等,国产化达克罗工艺技术及设备初探,材料保护,2002,35(4):12-13。
    [30] 陈玲,李宁,雷孙栓,达克罗技术研究概况,材料保护,2001,34(12):3-4。
    [31] Fedrizzi L, Deflorian F, Rossi S. Corrosion Protection of Sintered Metal Parts by Coating Deposition Part Ⅰ :Microstructural Characterization [J]. Werkstoffe und Korrosion, 1994,45:222-231.
    [32] Fedrizzi L, Oeflorian F, Rossi S. Corrosion Protection of Sintered Metal Parts by Coating Deposition Part Ⅱ: Corrosion and _Electrochemical Characterization [J]. Werkstoffe und Korrosion, 1994,45:264-271.
    [33] Narusch M J, Pauline G F. Dacrosealing: a New Corrosion Resistant Metal Finishing Service for P/M Parts [J].Progress in Powder Metallurgy, 1986,42:659-662.
    [34] White R W. Double Teaming the Elimination of Coadium-Part Ⅰ[J]. Fastener Technology International, 1995(4):97-102.
    [35] 张俊敏,李瑛培,达克罗技术及其发展前景,表面技术,2000,29(3):20-22。
    [36] 郭慧林,宁生科,李恒新,达克罗技术简介,化学工程师,2002,(1):63-64。
    
    
    [37] 沈延祥,金属表面防腐蚀处理新技术—达克罗表面处理,华通技术,1999,(1):34-35。
    [38] 乌维皓,介绍一种表面处理新工艺—锌铬膜涂覆,零八一科技,2002,(1):47-49。
    [39] 王敏,黄鑫,王家禄等,达克罗技术及应用,电镀与涂饰,2001,20(2):65-67。
    [40] 郭慧林,宁生科,李恒新,达克罗技术简介,化学工程师,2002,(1):63-64。
    [41] 肖鑫,龙有前,郭贤烙等,锌铬膜涂层技术研究,2002,12(2):65-67。
    [42] Mulkin F.A, new coating for corrosion and protection of metals with zinc powder passivited by chromate [P].US:3673731,1972,6.
    [43] Mulkin F, Zn-Cr conversion coating for corrosion protection of metals substrate [P].AU:314538,1973,11.
    [44] 张伟明,达克罗—当今世界表面处理新技术[J],材料保护,1995,28(8):19-20。
    [45] 孙贺民,锌铬膜—一种特殊的表面处理新技术[J],材料保护,1994,27(8):21-23。
    [46] 万德力,牛殿瑞,苏红军,锌铬膜涂覆工艺的研究[J],腐蚀与防护,1999,(7):32-33。
    [47] 徐立冲,陈中兴,马志伟,锌铬膜的制备及其耐蚀性能研究[J],腐蚀与防护,1998,(6):108-110。
    [48] 徐军明,黄梅莉,韩树民等,钢铁表面获得锌铬膜的处理工艺[J],表面技术,2000,(6):37-38。
    [49] 肖鑫,谭明辉,王积宏等,锌镀层低铬钝化工艺的维护管理[J],上海电镀,1995,(4):15-16。
    [50] 高勤,达克罗—一种优秀新型涂层,电镀与环保,1995,15(5):29-30。
    [51] 文光男,刘希柏,锌基涂料的电化学行为及防蚀机理,材料保护,1998,31(2):8-9。
    [52] 文光男,锌-铬水系涂层的研究,材料保护,1996,29(6):1-2。
    [53] 文光男,低温热固型锌铬酸盐转化涂层的研究,东北大学学报,1996,17(1):75-78。
    [54] Sarrnaitis R R, Rozovsky V G. The Mechanism of Protection Zinc Against Atmospheric Corrosion by Chromate Coatings. Inter Congre Metall Corro V.1, Toronto, 1984.
    [55] 顾国成,吴文森编著,钢铁材料的防蚀涂层,北京:科学出版社,1987。
    [56] 曹楚南编著,腐蚀电化学原理,北京:化学工艺出版社,1985。
    [57] 韩树民,郑曾,于升学等,锌铝铬膜的防腐性能与机理,中国有色金属学报,12(3):619-622。
    [58] Heringer K. Dacromet: a new corrosion protection technique for fasteners [J]. Product Finishing, 1977(5):29-32.
    [59] Heringer K. The advantages and uses of Zincromtal in automobile bodies [J]. Sheet Metal Ind, 1979,56(10):891-898.
    
    
    [60] Furez M, Gheno F, White P E. The application of zinc-aluminum flake non-electroytic surface coatings [J]. Trans IMF, 1993,71(1):21-25.
    [61] Gheno F. Clean processes-alternatives to electroplating [J]. Trans IMF, 1996,74(5):7-10.
    [62] U.S. Patent 3967045, Concentrate for Coating Composition for Metal Substrate [P]. Feb. 24.1976.
    [63] 张伟明,锌铝膜表面技术的新发展及其应用前景[J],电镀与精饰,1996,18(6):19-21。
    [64] 文光男,刘希柏,复合涂层—锌基复合涂层的研究与设计[J].材料保护,1999,32(4):37-38。
    [65] 郑汤曾,徐军明,韩树民等,利用锌铬膜获得富锌有机涂层钢板的工艺条件,河北冶金,2000,(5):26-28。
    [66] Sontag A. "Dacromet"-corrosion Protection and the Environment [J]. Galvanotechnik(Germany), 1992, 83(6):1957-1963.
    [67] Vergne B. Zincroplex a New Generation of Pre-coated Sheet [J]. Surfaces, 1987, 26(190):44-46.
    [68] Brushwell A W, Paint J. Automobile Corrosion [J]. Convention Daily,1980, 65(20):32-34.
    [69] Griff W F. Efficient Materials and Coatings Applications for Improved Design and Corrosion Resistance-Zinc-Rich Precoated Steel [J]. American Society For Metals Metal Park, Ohio, 1981:135-136.
    [70] Krause-Heringer H. Zincrometal [J]. Blech Rohre Profile, 1982, 29(10):449-452.
    [71] 于兴文,曹楚南,李自松,锌粉粒度和搅拌对锌铬膜层质量影响的研究,电镀与环保,2001,21(1):32-35。
    [72] 于兴文,曹楚南,李自松,锌铬膜涂覆工艺的初步研究[J].电镀与精饰,2000,16(5):12-15。
    [73] 杨熙珍,杨武,金属腐蚀化学热力学电位-图及其应用[M].北京:化学工业出版社,1991:198-210。
    [74] 沈宁一,表面新技术[M].上海:上海科技出版社,1987:60-70。
    [75] 王鸿建,电镀工艺学[M].哈尔滨:哈尔滨工业大学出版社,1988:80-95。
    [76] 陈玲,李宁,烧结式富锌涂层固化影响因素的研究,电镀与精饰,2003,25(2):1-4。
    [77] Victor V. Germane. Composite coating having enhanced corrosion resistance [P], U S Patent: US 4020220, 1997-10-11.
    
    
    [78] Leo D, Barrett. Improvement in or relating to coating compositions [P], U S Patent: GB 1376067 1994-07-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700