用户名: 密码: 验证码:
基于有机载体的荧光化学传感技术用于重金属离子检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于有机载体的光化学传感研究是传感器研究中极为活跃的领域,寻找具有高选择性的新型有机分子识别载体用于化学传感研究是一项十分有意义的工作。针对探针和传感器在灵敏度和选择性等方面存在的问题,结合我们实验小组相关研究工作成果,论文完成的主要工作是:依据荧光探针的一般设计原理和信息传递机制,设计合成了一系列新型荧光探针用于重金属离子的检测;由于共价固定法在荧光传感器构建过程中具有染料不易流失、使用寿命长、机械性能好等优点,设计合成了一些新型的可供共价固定的荧光载体,并应用于重金属离子的荧光化学传感器研究。
     具体内容如下:
     1.在第2章中,构建了一种基于N-甲基四苯基卟啉(NMTPPH)荧光增强型探针用于Zn2+的检测。当Zn2+存在时,N-甲基-5, 10, 15, 20-四苯基卟啉(NMTPPH)的荧光发射强度增强。研究结果表明:该探针和Zn2+形成了1:1的络合物,以此为基础进行Zn2+的定量检测;该探针对Zn2+的线性响应范围为5.0×10-7 -1.0×10-5 mol/L,检测下限为1.5×10-7 mol/L。除Cu2+外,大部分的碱金属、碱土金属和过渡金属离子对Zn2+的测定无明显干扰。将该探针用于水样中Zn2+的测定,其测量结果良好。
     2.在第3章中,研制了一种基于酰胺喹啉衍生物的比率型荧光探针用于Zn2+的检测。该荧光探针可在pH为7.24的乙醇/水(v:v=1:1)溶液中对Zn2+进行高选择性识别。当有Zn2+存在时,探针的荧光发射强度增强,同时最大荧光发射波长红移。对此探针的分析性能进行了系统研究,研究结果表明:探针与Zn2+形成了1:1的络合物,对Zn2+的线性响应范围是2.0×10-6-5.0×10-5 mol/L,检测下限是2.7×10-7 mol/L。将该探针用于自来水和湘江水中Zn2+的测定,所得结果较好。
     3.在第4章中,发展了一种基于苯并噁唑类化合物的比率型荧光传感器用于Zn2+的传感。为了构建此传感器,先合成末端带有双键的苯并噁唑类衍生物,再将其与甲基丙烯酸-β-羟乙酯(HEMA)通过紫外光(UV)照射在活化的玻片表面进行聚合。在没有Zn2+的pH为7.24溶液中,该荧光传感器通过激发态分子内质子迁移(ESIPT)在450 nm处有最大荧光发射峰;当有Zn2+存在时,由于ESIPT过程被抑制,最大荧光发射波长蓝移。因此,基于ESIPT原理可以构建一个比率型的荧光传感器以实现对Zn2+的灵敏检测。此传感器对Zn2+表现出良好的选择性、较好的重现性以及快的响应速度。该传感器对Zn2+的线性响应范围是8.0×10-5 -
     4.0×10-3 mol/L,检测下限为4.0×10-5 mol/L。该传感器的光极膜具有很好的稳定性,有至少三个月的使用寿命。利用该传感器对自来水与湘江水中的Zn2+进行测定,均得到令人满意的结果。
     4.在第5章中,构建了一种基于萘酰亚胺类化合物的荧光传感器用于Cu~(2+)的检测。为了构建此传感器,先合成末端带有双键的萘酰亚胺类衍生物作为荧光载体。为了阻止染料的流失,在紫外光(UV)照射下将该载体共价固定到硅烷化试剂活化的玻片表面进行构建传感界面。当Cu~(2+)存在时该传感器的荧光被猝灭从而实现Cu~(2+)的选择性识别。此激发波长在可见区的传感器对Cu~(2+)表现出良好的选择性、较好的重现性以及快的响应速度。该传感器的光极膜具有很好的稳定性,有至少两个月的使用寿命。该传感器对Cu~(2+)的线性响应范围是4.0×10-7 - 6.0×10-4 mol/L,检测下限为2.0×10-7 mol/L。利用该传感器对湘江水中的Cu~(2+)进行检测,测定结果令人满意。
     5.在第6章中,制备了一种基于罗丹明-噻吩类化合物的荧光探针用于Hg~(2+)检测。该探针可在pH为6.00的乙腈/水(v:v=1:1)溶液中对Hg~(2+)进行检测,具有灵敏度高和选择性好等优点。当Hg~(2+)存在时,该探针的荧光发射强度增强同时溶液的颜色也从无色变为粉红色,这些变化产生的可能原因是Hg~(2+)络合导致探针的罗内酰胺结构开环。我们还系统考查了该荧光探针对Hg~(2+)的分析性能。研究结果表明:探针和Hg~(2+)形成了2:1的络合物,以此为基础实现对Hg~(2+)的定量检测;该探针对Hg~(2+)的线性响应范围是5.0×10-8-1.0×10-5 mol/L,检测下限是2.0×10-8 mol/L。将该探针用于自来水和湘江水中Hg~(2+)的检测,测定结果令人满意。
     6.在第7章中,设计合成了一种基于罗丹明-香豆素类化合物的荧光探针用于Hg~(2+)检测。该探针可在pH为7.24的乙醇/水(v:v=1:1)溶液中对Hg~(2+)进行检测,具有灵敏度高和选择性好等优点。当Hg~(2+)存在时,该探针的荧光发射强度增强同时溶液的颜色也从黄色变为粉红色,这些变化产生的可能原因是Hg~(2+)络合导致探针的罗内酰胺结构开环。我们考查了该荧光探针对Hg~(2+)的分析性能。研究结果表明:探针和Hg~(2+)形成了1:1的络合物,以此为基础实现对Hg~(2+)的定量检测;该探针对Hg~(2+)的线性响应范围是8.0×10-8-2.0×10-5 mol/L,检测下限是4.0×10-8 mol/L。将该探针用于自来水和湘江水中Hg~(2+)的检测,测定结果令人满意。
In recent years, the research on chemical probes and sensors based on organic dyes remains very active and searching for new fluorophores to improve sensitivity and selectivity of chemical probes and sensors is still a challenge for the analytical research efforts. In this dissertation, a series of novel fluorescent probes and sensors were designed and synthesized to recognize heavy metal ions. The details are summarized as follows:
     1. In chapter 2, N-methyl-5, 10, 15, 20-tetraphenylporphine(NMTPPH) as an organic carrier has been used to detect trace amount of zinc ions in ethanol-water solution by fluorescence spectroscopy. The fluorescent probe undergoes a fluorescent emission intensity enhancement upon binding to zinc ions in EtOH/H2O (1:1, v/v) solution. The fluorescence enhancement of NMTPPH is attributed to the 1:1 complex formation between NMTPPH and Zn~(~(2+)) which has been utilized as the basis for the selective detection of Zn~(~(2+)). The linear response range covers a concentration range of Zn~(~(2+)) from 5.0×10-7 to 1.0×10-5 mol/L and the detection limit is 1.5×10-7 mol/L. The fluorescent probe exhibits high selectivity over other common metal ions except Cu~(~(2+)). And the probe has been used for determination of Zn~(~(2+)) in water samples with satisfactory results.
     2. In chapter 3, a ratiometric fluorescent zinc probe of carboxamidoquinoline with a carboxylic acid group was designed and synthesized. Probe exhibits high selectivity for sensing Zn~(~(2+)); increase in fluorescence emission intensity and red-shift of fluorescence emission are observed upon binding Zn~(~(2+)) in EtOH/H2O (1:1, v/v) solution at pH 7.24. The ratiometric fluorescence response is attributed to the 1:1 complex formation between probe and Zn~(~(2+)) which has been utilized as the basis for the selective detection of Zn~(~(2+)). The analytical performance characteristics of the proposed Zn~(~(2+))-sensitive probe were investigated. The probe can be applied to the quantification of Zn~(~(2+)) with a linear range covering from 2.0×10?6 to 5.0×10?5 mol/L and a detection limit of 2.7×10?7 mol/L. The determination of Zn~(~(2+)) in both tap and river water samples shows satisfactory results.
     3. In chapter 4, we describe the fabrication and analytical characteristics of fluorescence-based zinc ion-sensing glass slides. To construct the sensor, a benzoxazole derivative with a terminal double bond was synthesized and copolymerized with 2-hydroxyethyl methacrylate (HEMA) on the activated surface of glass slides by UV irradiation. In the absence of Zn~(2+) at pH 7.24, the resulting optical sensor emitted fluorescence at 450 nm via excited-state intramolecular proton transfer (ESIPT). Upon binding with Zn~(2+), the ESIPT process was inhibited resulting in blue-shift of fluorescence emission. Thus, the proposed sensor can behave as a ratiometric fluorescent sensor for the selective detection of Zn~(2+). In addition, the sensor shows nice selectivity, good reproducibility and fast response time. The sensing membrane demonstrates a good stability with a lifetime of at least 3 months. The sensor exhibits a linear response toward Zn~(2+) in the concentration range 8.0×10-5-4.0×10-3 mol/L and the detection limit is 4.0×10-5 mol/L. The proposed chemosensor has been successfully implemented for the identification of Zn~(2+) in both tap and river water samples.
     4. In chapter 5, we describe the fabrication and analytical characteristics of fluorescence-based copper ion-sensing glass slides. To prepare the sensor, a naphthalimide derivative with a terminal double bond was synthesized as a fluorescent carrier. To prevent the leakage of the dye, the carrier is immobilized on a quartz glass plate surface treated with a silanizing agent by UV irradiation. The proposed sensor with visible excitation can be utilized for a copper assay based on fluorescence quenching. The sensor exhibits satisfactory selectivity, reproducibility and response time. The sensing membrane possesses a relatively long lifetime of at least 2 months. Copper ion can be determined in the range between 4.0×10-7- 6.0×10-4 mol/L with a detection limit of 2.0×10-7 mol/L at pH 7.24. The present approach has been demonstrated with the identification of Cu~(2+) in river water sample.
     5. In chapter 6, a new fluorescent probe for Hg~(2+) based on a rhodamine-thiophene conjugate was synthesized and its fluorescence could be enhanced by the addition of Hg~(2+). The probe shows a high selectivity and sensitivity to Hg~(2+) by forming a 2:1 complex between probe and Hg~(2+) in 50% CH3CN/H2O buffered at pH 6.00. Besides, probe displays a reversible dual chromo- and fluorogenic response toward Hg~(2+) likely due to the chelation-induced ring-openging of rhodamine spirolactam. Hg~(2+) can be determined in the range 5.0×10-8 to 1.0×10-5 mol/L with a detection limit of 2.0×10-8 mol/L. Determination of Hg~(2+) in both tap and river water samples was successfully carried out with the proposed probe.
     6. In chapter 7, a fluorescent probe for Hg~(2+) based on a rhodamine-coumarin conjugate was designed and synthesized. Probe exhibits high sensitivity and selectivity for sensing Hg~(2+), and increase in fluorescence emission intensity is observed upon binding Hg~(2+) in 50% water/ethanol buffered at pH 7.24. The fluorescence response to Hg~(2+) is attributed to the 1:1 complex formation between probe and Hg~(2+), which has been utilized as the basis for the selective detection of Hg~(2+). Besides, probe was also found to show a reversible dual chromo- and fluorogenic response toward Hg~(2+) likely due to the chelation-induced ring-openging of rhodamine spirolactam. The analytical performance characteristics of the proposed Hg~(2+)-sensitive probe were investigated. A wide linear dynamic range of Hg~(2+) from 8.0×10-8 to 2.0×10-5 mol/L was reached with a detection limit of 4.0×10-8 mol/L. The determination of Hg~(2+) in both tap and river water samples was successful.
引文
[1] Li Z F, Xiang Y, Tong A J. Ratiometric chemosensor for fluorescent determination of Zn2+ in aqueous ethanol. Analytica Chimica Acta, 2008, 619(1): 75-80
    [2] Tang X L, Peng X H, Dou W, et al. Design of a semirigid molecule as a selective fluorescent chemosensor for recognition of Cd(II). Organic Letters, 2008, 10(17): 3653-3656
    [3] He H, Mortellaro M A, Leiner M J P, et al. A fluorescent sensor with high selectivity and sensitivity for potassium in water. Journal of the American Chemical Society, 2003, 125(6): 1468-1469
    [4] He C L, Ren F L, Zhang X B, et al. A fluorescent chemical sensor for Hg(II) based on a corrole derivative in a PVC matrix. Talanta, 2006, 70(2): 364-369
    [5]王柯敏.光化学传感器理论与方法.第一版.长沙:湖南教育出版社, 1995, 2
    [6]王柯敏,肖丹.没有生命的感官:化学传感器揭秘.第一版.长沙:湖南教育出版社, 1999, 33
    [7]徐兆超.基于ICT萘酰亚胺阳离子比率荧光探针的研究: [大连理工大学博士学位论文].大连:大连理工大学, 2006, 1
    [8] Park C S, Lee J Y, Kang E J, et al. A highly selective fluorescent chemosensor for silver(I) in water/ethanol mixture. Tetrahedron Letters, 2009, 50(6): 671-675
    [9] Kaur N, Singh N, Cairns D, et al. A multifunctional tripodal fluorescent probe:“off-on”detection of sodium as well as two-input and molecular logic behavior. Organic Letters, 2009, 11(11): 2229-2232
    [10] Devaraj S, Saravanakumar D, Kandaswamy M. Dual responsive chemosensors for anion and cation: synthesis and studies of selective chemosensor for F? and Cu(II) ions. Sensors and Actuators B: Chemical, 2009, 136(1): 13-19
    [11] Kumar M, Kumar R, Bhalla V. F? -induced‘turn-on’fluorescent chemosensor based on 1, 3-alt thiacalix[4]arene. Tetrahedron, 2009, 65(22): 4340-4344
    [12] Suresh M, Mishra S, Mishra S K, et al. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism. Organic Letter, 2009, 11(13): 2740-2743
    [13] Gulino A, Giuffrida S, Mineo P, et al. Photoluminescence of a covalent assembled porphyrin-based monolayer: optical behavior in the presence of O2.Journal of Physical Chemistry B, 2006, 110(33): 16781-16786
    [14] Wang L, Meyerhoff M. Polymethacrylate polymers with appended aluminum(III)-tetraphenylporphyrins: synthesis, characterization and evaluation as macromolecular ionophores for electrochemical and optical fluoride sensors. Analytica Chimica Acta, 2008, 611(1): 97-102
    [15]寇冬梅,张进忠,杨兵,等.检测重金属离子的酶膜生物传感器的构建.环境科学与技术,2008, 31(9): 24-28
    [16] Valeur B, Leray I. Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews, 2000, 205(1): 3-40
    [17]徐艳平,顾铮先,陈家璧.光化学传感器及其最新进展.光学仪器, 2004, 26(4): 57-61
    [18] Zheng Y, Gattás-Asfura K M, Li C, et al. Design of a membrane fluorescent sensor based on photo-cross-linked PEG hydrogel. Journal of Physical Chemistry B, 2003, 107(2): 483-488
    [19] Wong B A, Friedle S, Lippard S J. Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors. Journal of the American Chemical Society, 2009, 131(20): 7142–7152
    [20] Xue L, Liu C, Jiang H. Highly sensitive and selective fluorescent sensor for distinguishing cadmium from zinc ions in aqueous media. Organic Letters, 2009, 11(7): 1655-1658
    [21] Wang X, Zheng W, Lin H, et al. A new selective phenanthroline-based fluorescent chemosensor for Co2+. Tetrahedron Letters, 2009, 50(14): 1536-1538
    [22] Bissell R A, Silva R A P, Gunaratne H O N, et al. Molecular fluorescent signalling with‘fluor-spacer-receptor’systems: approaches to sensing and switching devices via supramolecular photophysics. Chemical Society Reviews, 1992, 21(3): 187-195
    [23] Martínez-Má?ez R, Sancenón F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chemical Reviews, 2003, 103(11): 4419-4476
    [24] Luo H Y, Zhang X B, He C L, et al. Synthesis of dipicolylamino substituted quinazoline as chemosensor for cobalt (II) recognition based on excited-state intramolecular proton transfer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 70(2): 337-342
    [25] Chang K C, Luo L Y, Diau E W G, et al. Highly selective fluorescent sensing of Cu2+ ion by an arylisoxazole modified calix[4]arene. Tetrahedron Letters, 2008, 49(34): 5013-5016
    [26] Jiang Z, Tang L, Shao F, et al. Synthesis and characterization of 9-(cycloheptatrienylidene) fluorene derivatives: new fluorescent chemosensors for detection of Fe3+ and Cu2+. Sensors and Actuators B: Chemical, 2008, 134(2): 414-418
    [27] Gong W T, Kazuhisa H. A novel amidepyridinium-based tripodal fluorescent chemosensor for phosphate ion via binding-induced excimer formation. Tetrahedron Letters, 2008, 49(39): 5655-5657
    [28] Shao J, Wang Y H, Lin H, et al. A novel indole phenylhydrazone receptor: synthesis and recognition for acetate anion. Sensors and Actuators B: Chemical, 2008, 134(2): 849-853
    [29] Ghosh K, Sarkar A R. Anthracene-based macrocyclic fluorescent chemosensor for selective sensing of dicarboxylate. Tetrahedron Letters, 2009, 50(1): 85-88
    [30] Zhu M, Yuan M, Liu X, et al. Visible near-infrared chemosensor for mercury ion. Organic Letters, 2008, 10(7): 1481-1484
    [31] Singh N, Jang D O. Benzimidazole-based tripodal receptor: highly selective fluorescent chemosensor for iodide in aqueous solution. Organic Letters, 2007, 9(10): 1991-1994
    [32] Fabbrizzi L, Foti F, Taglietti A. Metal-containing trifurcate receptor that recognizes and senses citrate in water. Organic Letters, 2005, 7(13): 2603-2606
    [33] He G, Zhao Y, He C, et al.“Turn-on”fluorescent sensor for Hg2+ via displacement approach. Inorganic Chemistry, 2008, 47(12): 5169- 5176
    [34] Lee M H, Lee S, Kim S H, et al. Nanomolar Hg(II) detection using nile blue chemodosimeter in biological media. Organic Letters, 2009, 11(10): 2101-2104
    [35] Lim N, Pavlova V, Brückner C. Squaramide hydroxamate-based chemidosimeter responding to iron (III) with a fluorescence intensity increase. Inorganic Chemistry, 2009, 48(3): 1173-1182
    [36] Zhang X, Hayes D, Smith S J, et al. New strategy for quantifying biological zinc by a modified zinpyr fluorescence sensor. Journal of the American Chemical Society, 2008, 130(47): 15788-15789
    [37] Iyoshi S, Taki M, Yamamoto Y. Rosamine-based fluorescent chemosensor for selective detection of silver(I) in an aqueous solution. Inorganic Chemistry, 2008, 47(10): 3946-3948
    [38] Cheng T, Xu Y, Zhang S, et al. A highly sensitive and selective off-on fluorescent sensor for cadmium in aqueous solution and living cell. Journal of the American Chemical Society, 2008, 130(48): 16160-16161
    [39] Xue L, Liu C, Jiang H. A ratiometric fluorescent sensor with a large Stokes shift for imaging zinc ions in living cells. Chemical Communications, 2009, (9): 1061-1063
    [40] Taki M, Desaki M, Ojida A, et al. Fluorescence imaging of intracellular cadmium using a dual-excitation ratiometric chemosensor. Journal of the American Chemical Society, 2008, 130(38): 12564-12565
    [41] Qian F, Zhang H, Zhang Y, et al. Visible light excitable Zn2+ fluorescent sensor derived from an intramolecular charge transfer fluorophore and its in vitro and in vivo application. Journal of the American Chemical Society, 2008, 131(4): 1460-1468
    [42] Hung H C, Cheng C W, Ho I T, et al. Dual-mode recognition of transition metal ions by bis-triazoles chained pyrenes. Tetrahedron Letters, 2009, 50(3): 302-305
    [43] Wu J S, Zhou J H, Wang P F, et al. New fluorescent chemosensor based on exciplex signaling mechanism. Organic Letters, 2005, 7(11): 2133-2136
    [44] Valeur B. Molecular fluorescence principles and applications. Berlin :Wiley-VCH Verlag GmbH,2001, 113-114
    [45] Lee M H, Kim H J, Yoon S, et al. Metal ion induced FRET off-on in tren/dansyl-appended rhodamine. Organic Letters, 2008, 10(2): 213-216
    [46] Jung J H, Lee M H, Kim H J, et al. Metal ion induced FRET on–off in naphthyl-pyrenyl pendent tetrahomodioxacalix[4]arene. Tetrahedron Letters, 2009, 50(17): 2013-2016
    [47]王柯敏.光化学传感器理论与方法.第一版.长沙:湖南教育出版社, 1995, 15-16
    [48]王柯敏.光化学传感器理论与方法.第一版.长沙:湖南教育出版社, 1995, 276-291
    [49] Zhu J, Mulln J, Seitz W. Optical sensor for sodium based on ion-pair extraction and fluorescence. Analytica Chimica Acta, 1986, 184: 251-258
    [50] Wolfbeis O, Weis L. Fiber-optic fluorosensor for oxygen and carbon dioxide. Analytical Chemistry, 1988, 60(19): 2028-2030
    [51] Shamsipur M, Alizadeh K, Hosseini M, et al. A selective optode membrane for silver ion based on fluorescence quenching of the dansylamidopropyl pendant arm derivative of 1-aza-4,7,10-trithiacyclododecane ([12]aneNS3). Sensors and Actuators B: Chemical, 2006, 113(2): 892-899
    [52] Derinkuyu S, Ertekin K, Oter O, et al. Emission based fiber optic pH sensing with Schiff bases bearing dimethylamino groups. Dyes and Pigments, 2008,76(1): 133-141
    [53] Guo L, Hong S, Lin X, et al. An organically modified sol-gel membrane for detection of lead ion by using 2-hydroxy-1-naphthaldehydene-8-aminoquinoline as fluorescence probe. Sensors and Actuators B: Chemical, 2008, 130(2): 789-794
    [54] Shamsipur M, Sadeghi M, Alizadeh K, et al. An efficient and selective flourescent optode membrane based on 7-[(5-chloro-8-hydroxy-7-quinolinyl) methyl]-5,6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopentadecine-3,11(4H,12H)-dione as a novel fluoroionophore for determination of cobalt(II) ions. Analytica Chimica Acta, 2008, 630(1): 57-66
    [55] Bright F V, Poirier G E, Hieftje G M. A new ion sensor based on fiber optics. Talanta, 1988, 35(2): 113-118
    [56] Zhujun Z, Seitz W R. A fluorescent sensor for aluminum (III), magnesium(II), zinc(II) and cadmium(II) based on electrostatically immobilized quinolin-8-ol sulfonate. Analytica Chimica Acta, 1985, 171: 251-258
    [57] Chamjangali M A, Soltanpanah S, Goudarzi N. Development and characterization of a copper optical sensor based on immobilization of synthesized 1-phenyl-1,2-propanedione-2-oxime thiosemicarbazone on a triacetylcellulose membrane. Sensors and Actuators B: Chemical, 2009, 138(1): 251-256
    [58] Bradley M, Alexander L, Duncan K, et al. pH sensing in living cells using fluorescent microspheres. Bioorganic and Medicinal Chemistry Letters, 2008, 18(1): 313-317
    [59] Hashemi P, Zarjani R A. A wide range pH optical sensor with mixture of neutral red and thionin immobilized on an agarose film coated glass slide. Sensors and Actuators B: Chemical, 2008, 135(1): 112-115
    [60] Wang J Q, Huang L, Xue M, et al. Architecture of a hybrid mesoporous chemosensor for Fe3+ by covalent coupling bis-schiff base PMBA onto the CPTES-functionalized SBA-15. Journal of Physical Chemistry C, 2008, 112(13): 5014-5022
    [61] Uttamlal M, Sloan W D, Millar D. Covalent immobilization of fluorescent indicators in photo- and electropolymers for the preparation of fibreoptic chemical sensors. Polymer International, 2002, 51(11): 1198-1206
    [62] Citterio D, Takeda J, Kosugi M, et al. pH-independent fluorescent chemosensor for highly selective lithium ion sensing. Analytical Chemistry, 2007, 79(3):1237-1242
    [63] Tan S Z, Niu C G, Jiang J H, et al. Optochemical sensor for an ornidazole assay using 1-amino-4-allyloxyanthraquinone as a fluorescent indicator. Analytical Sciences, 2005, 21(8): 967-971
    [64] Hu Y J, Tan S Z, Shen G L, et al. A selective optical sensor for picric acid assay based on photopolymerization of 3-(N-methacryloyl) amino-9-ethylcarbazole. Analytica Chimica Acta, 2006, 570(2): 170-175
    [65] Niu C G, Qin P Z, Zeng G M, et al. Fluorescence sensor for water in organic solvents prepared from covalent immobilization of 4-morpholinyl-1, 8-naphthalimide. Analytical and Bioanalytical Chemistry, 2007, 387(3): 1067-1074
    [66]游效曾,孟庆金,韩万书.配位化学进展.第一版.北京:高等教育出版社, 2000, 74-75
    [67] Zhang X B, Guo C C, Li Z Z, et al. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer. Analytical Chemistry, 2002, 74(4): 821-825
    [68] Luo H Y, Jiang J H, Zhang X B, et al. Synthesis of porphyrin-appended terpyridine as a chemosensor for cadmium based on fluorescent enhancement. Talanta, 2007, 72(2): 575-581
    [69] Li C Y, Zhang X B, Dong Y Y, et al. A porphyrin derivative containing 2-(oxymethyl)pyridine units showing unexpected ratiometric fluorescent recognition of Zn2+ with high selectivity. Analytica Chimica Acta, 2008, 616(2): 214-221
    [70] Han Z X, Luo H Y, Zhang X B, et al. A ratiometric chemosensor for fluorescent determination of Hg2+ based on a new porphyrin-quinoline dyad. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(5): 1084-1088
    [71] Zhang X A, Lovejoy K S, Jasanoff A, et al. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (26): 10780-10785
    [72] Prodi L, Montalti M, Zaccheroni N, et al. Characterization of 5-chloro-8- methoxyquinoline appended diaza-18-crown-6 as a chemosensor for cadmium. Tetrahedron Letters, 2001, 42(16): 2941-2944
    [73] Zhang H, Han L F, Zachariasse K A, et al. 8-Hydroxyquinoline benzoates as highly sensitive fluorescent chemosensors for transition metal ions. Organic Letters, 2005, 7(19): 4217-4220
    [74] Xue L, Wang H H, Wang X J, et al. Modulating affinities of di-2-picolylamine (DPA)-substituted quinoline sensors for zinc ions by varying pendant ligands. Inorganic Chemistry, 2008, 47(10): 4310-4318
    [75] Ho M L, Chen K Y, Wu L C, et al. Diaza-18-crown-6 appended dual 7-hydroxyquinolines; mercury ion recognition in aqueous solution. Chemical Communications, 2008, (21): 2438-2440
    [76] Ballesteros E, Moreno D, Gómez T, et al. A new selective chromogenic and turn-on fluorogenic probe for copper (II) in water-acetonitrile 1:1 solution. Organic Letters, 2009, 11(6): 1269-1272
    [77] Tanaka K, Kumagai T, Aoki H, et al. Application of 2-(3,5,6-trifluoro- 2-hydroxy-4-methoxyphenyl) benzoxazole and benzothiazole to fluorescent probes sensing pH and metal cations. Journal of Organic Chemistry, 2001, 66(22): 7328-7333
    [78] Taki M, Wolford J L, Halloran T. Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy. Journal of the American Chemical Society, 2004, 126(3): 712-713
    [79] Henary M, Wu Y, Fahrni C. Zinc (II)-selective ratiometric fluorescent sensors based on inhibition of excited-state intramolecular proton transfer. Chemistry-A European Journal, 2004, 10(12): 3015-3025
    [80] Liu Z, Zhang C, Li Y, et al. A Zn2+ fluorescent sensor derived from 2-(pyridin-2-yl) benzoimidazole with ratiometric sensing potential. Organic Letters, 2009, 11(4): 795-798
    [81]曹成波,朱艳丽,于学丽,等.萘酰亚胺类功能材料应用研究进展.精细与专用化学品, 2007, 15(3-4): 6-10
    [82]徐文连,蒋伟.用于有机电致发光材料的萘酰亚胺类化合物的研究进展.化工时刊, 2008, 22(9): 45-49
    [83] Guo X, Qian X, Jia L. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. Journal of the American Chemical Society, 2004, 126(8): 2272-2273
    [84] Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion. Chemical Communications, 2005, (5): 3156-3159
    [85] Fan J, Wu Y, Peng X. A naphthalimide fluorescent sensor for Zn2+ based on photo-induced electron transfer. Chemistry Letters, 2004, 33(10): 1392-1393
    [86] Xu Z C, Xiao Y, Qian X H, et al. Ratiometric and selective fluorescent sensor forCu(II) based on internal charge transfer (ICT). Organic Letters, 2005, 7(5): 889-892
    [87] Xu S, Li W, Chen K C. Naphthalimide as highly selective fluorescent sensor for Ag+ ions. Chinese Journal of Chemistry, 2007, 25(6): 778-783
    [88] Lu C, Xu Z C, Cui J N, et al. Ratiometric and highly selective fluorescent sensor for cadmium under physiological pH range: a new strategy to discriminate cadmium from zinc. Journal of the Organic Chemistry, 2007, 72(9): 3554-3557
    [89] Duan L P, Xu Y F, Qian X H. Highly sensitive and selective Pd2+ sensor of naphthalimide derivative based on complexation with alkynes and thio-heterocyclew. Chemical Communications, 2008, (47): 6339–6341
    [90] Sun Y M, Zhong C, Gong R, et al. A highly selective fluorescent probe for pyrophosphate in aqueous solution. Organic Biomolecular Chemistry, 2008, 6(17): 3044–3047
    [91]刘芳,兰支利,邓芳,等.香豆素及其衍生物研究进展.精细化工中间体, 2006, 36(4): 7-11
    [92] Wang J B, Qian X H, Cui J N. Detecting Hg2+ ions with an ICT fluorescent senor molecule: remarkable emission spectra shift and unique selectivity. The Journal of Organic Chemistry, 2006, 71(11): 4308-4311
    [93] Komatsu K, Urano Y, Kojima H, et al. Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc. Journal of the American Chemical Society, 2007, 129(44): 13447-13454
    [94] Wang M X, Huang S H, Meng X M, et al. Coumarin-coupled receptor as a membrane-permeable, Cu2+-selective fluorescent chemosensor for imaging copper(II) in HEPG-2 cell. Chemistry Letters, 2008, 37(4): 462-463
    [95] Lin W Y, Yuan L, Feng J B. A dual-channel fluorescence-enhanced sensor for aluminum ions based on photoinduced electron transfer and excimer formation. European Journal of Organic Chemistry, 2008, (22): 3821-3825
    [96] Ray D, Bharadwaj P K. A coumarin-derived fluorescence probe selective for magnesium. Inorganic Chemistry, 2008, 47(7): 2252-2254
    [97] Roussakis E, Pergantis S, Katerinopoulos H. Coumarin-based ratiometric fluorescent indicators with high specificity for lead ions. Chemical Communications, 2008, (46): 6221-6223
    [98] Lee K S, Kim H J, Kim G H, et al. Fluorescent chemodosimeter for selective detection of cyanide in water. Organic Letter, 2008, 10 (1): 49-51
    [99]庄会荣,冯尚彩,平梅.罗丹明类染料在分析化学中的应用进展.理化检验化学分册, 2001, 37(3): 143-145
    [100] Dujols V, Ford F, Czamik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. Journal of the American Chemical Society, 1997, 119(31): 7386-7387
    [101] Ko S K, Yang Y K, Tae J, et al. In vivo monitoring of mercury ions using a rhodamine-based molecular probe. Journal of the American Chemical Society, 2006, 128(43): 14150-14155
    [102] Huang J, Xu Y, Qian X. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptor. Journal of Organic Chemistry, 2009, 74(5): 2167-2170
    [103] Chen X, Jou M J, Lee H, et al. New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu2+. Sensors and Actuators B: Chemical, 2009, 137(2): 597-602
    [104] Zhou Z, Yu M, Yang H, et al. FRET-based sensor for imaging chromium(III) in living cells. Chemical Communications, 2008, (29): 3387-3389
    [105] Chatterjee A, Santra M, Won N, et al. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. Journal of the American Chemical Society, 2009, 131(6): 2040-2041
    [106] Zheng H, Shang G Q, Yang S Y, et al. Fluorogenic and chromogenic rhodamine spirolactam based probe for nitric oxide by spiro ring opening reaction. Organic Letters, 2008, 10(12): 2357-2360
    [107] Berg J M, Shi Y. The galvanization of biology: a growing appreciation for the roles of Zinc. Science, 1996, 271(5252): 1081-1085
    [108] Cuajungco M P, Lees G J. Zinc metabolism in the brain: relevance to human neurodegenerative disorders. Neurobiology of Disease, 1997, 4(3-4): 137-169
    [109] Voegelin A, Pfister S, Scheinost A C, et al. Changes in zinc speciation in field soil after contamination with zinc oxide. Environmental Science and Technology, 2005, 39(17): 6616-6623
    [110] Mertens J, Degryse F, Springael D, et al. Zinc toxicity to nitrification in soil and soilless culture can be predicted with the same biotic ligand model. Environmental Science and Technology, 2007, 41(8): 2992-2997
    [111] Banks C V, Bisque R E. Spectrophotometric determination of zinc and other metals with alpha-, beta-, gamma-, delta-tetraphenylporphine. Analytical Chemistry, 1957, 29(4): 522-526
    [112] Fakhari A R, Shamsipur M, Ghanbari K. Zn(II)-selective membrane electrodebased on tetra(2-aminophenyl)porphyrin. Analytica Chimica Acta, 2002, 460(2): 177-183
    [113] Li Q, Zhao X H, Lv Q Z, et al. The determination of zinc in water by flame atomic absorption spectrometry after its separation and preconcentration by malachite green loaded microcrystalline triphenylmethane. Separation Purification Technology, 2007, 55(1): 76-81
    [114] Budde T, Minta A, White J A, et al. Imaging free zinc in synaptic terminals in live hippocampal slices. Neuroscience, 1997, 79(2): 347-358
    [115] Fahrni C J, O’Halloran T V. Aqueous coordination chemistry of quinoline-based fluorescence porbes for the biological chemistry of zinc. Journal of the American Chemical Society, 1999, 121(49): 11448-11458
    [116] Nolan E M, Jaworski J, Okamoto K, et al. QZ1 and QZ2: rapid, reversible quinoline-derivatized fuoresceins for sensing biological Zn(II). Journal of the American Chemical Society, 2005, 127(48): 16812-16823
    [117] Wang H, Gan Q, Wang X, et al. A water-soluble, small molecular fluorescent sensor with femtomolar sensitivity for zinc ion. Organic Letters, 2007, 9(24): 4995-4998
    [118] Walkup G K, Burdette S C, Lippard S J, et al. A new cell-permeable fluorescent probe for Zn2+. Journal of the American Chemical Society, 2000, 122(23): 5644-5645
    [119] Burdette S C, Walkup G K, Spingler B, et al. Fluorescent sensors for Zn2+ based on a fluorescein platform: synthesis, properties and intracellular distribution. Journal of the American Chemical Society, 2001, 123(32): 7831-7841
    [120] Hirano T, Kikuchi K, Urano Y, et al. Improvement and biological applications of fluorescent probes for zinc, ZnAFs. Journal of the American Chemical Society, 2002, 124(23): 6555-6562
    [121] Burdette S C, Frederickson C J, Bu W, et al. ZP4, an improved neuronal Zn2+ sensor of the zinpyr family. Journal of the American Chemical Society, 2003, 125(7): 1778-1787
    [122] Chang C J, Nolan E M, Jaworski J, et al. Bright fluorescent chemosensor platforms for imaging endogenous pools of neuronal zinc. Chemistry & Biology, 2004, 11(2): 203-210
    [123] Goldsmith C R, Lippard S J. 6-Methylpyridyl for pyridyl substitution tunes the properties of fluorescent zinc sensors of the zinpyr family. Inorganic Chemistry, 2006, 45(2): 555-561
    [124] Koike T, Watanabe T, Aoki S, et al. A novel biomimetic zinc(II)-fluorophore, dansylamidoethyl-pendant macrocyclic tetraamine 1,4,7,10-tetraazacyclo dodecane (cyclen). Journal of the American Chemical Society, 1996, 118(50): 12696-12703
    [125] Hirano T, Kikuchi K, Urano Y, et al. Novel zinc fluorescent probes excitable with visible light for biological applications. Angewandte Chemie International Edition, 2000, 39(6): 1052-1054
    [126] Aoki S, Kaido S, Fujioka H, et al. A new zinc(II) fluorophore 2-(9-anthrylmethylamino)ethyl-appended 1,4,7,10-Tetraazacyclododecane. Inorganic Chemistry, 2003, 42(4): 1023-1030
    [127] Lim N C, Yao L, Freake H C, et al. Synthesis of a fluorescent chemosensor suitable for the imaging of zinc(II) in live cells. Bioorganic & Medicinal Chemistry Letters, 2003, 13(14):2251-2254
    [128] Bencini A, Berni E, Bianchi A, et al. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state. Dalton Transactions, 2004, (14): 2180-2187
    [129] Yunus S, Charles S, Dubois F, et al. Simultaneous determination of cadmium (II) and zinc (II) by molecular fluorescence spectroscopy and multiple linear regression using an anthrylpentaazamacrocycle chemosensor. Journal of Fluorescence, 2008, 18(2): 499-506
    [130] Majzoub A E, Cadiou C, Déchamps-Olivier I, et al. (Benzimidazolylmethyl) cyclen: a potential sensitive fluorescent PET chemosensor for zinc. European Journal of Inorganic Chemistry, 2007, (32): 5087-5097
    [131] Goodall W, Williams J A G. A new, highly fluorescent terpyridine which responds to zinc ions with a large red-shift in emission. Chemical Communications, 2001, (23): 2514-2515
    [132] Goze C, Ulrich G, Charbonnière L, et al. Cation sensors based on terpyridine-functionalized boradiazaindacene. Chemistry-A European Journal, 2003, 9(16): 3748-3755
    [133] Reany O, Gunnlaugsson T, Parker D. Selective signalling of zinc ions by modulation of terbium luminescence. Chemical Communications, 2000, (6): 473-474
    [134] Reany O, Gunnlaugsson T, Parker D. A model system using modulation of lanthanide luminescence to signal Zn2+ in competitive aqueous media. Journal of the Chemical Society, Perkin Transactions, 2000, 2(9): 1819-1831
    [135] Parkesh R, Lee T C, Gunnlaugsson T. Highly selective 4-amino-1,8- naphthalimide based fluorescent photoinduced electron transfer (PET) chemosensors for Zn(II) under physiological pH conditions. Organic and Biomolecular Chemistry, 2007, 5(2): 310-317
    [136] Hung C H, Chang G F, Kumar A, et al. m-Benziporphodimethene: a new porphyrin analogue fluorescence zinc(II) sensor. Chemical Communications, 2008, (8): 978-980
    [137] Nolan E M, Lippard S J. The Zinspy family of fluorescent zinc sensors: syntheses and spectroscopic investigations. Inorganic Chemistry, 2004, 43(26): 8310-8317
    [138] Shults M D, Pearce D A, Imperiali B. Modular and tunable chemosensor scaffold for divalent zinc. Journal of the American Chemical Society, 2003, 125(35):10591-1059
    [139] Hirano T, Kikuchi K, Urano Y, et al. Highly zinc-selective fluorescent sensor molecules suitable for biological applications. Journal of the American Chemical Society, 2000, 122(49): 12399-12400
    [140] Gong H Y, Zheng Q Y, Zhang X H, et al. Methylazacalix[4]pyridine: en route to Zn2+-specific fluorescence sensors. Organic Letters, 2006, 8(21): 4895-4898
    [141] Ngwendson J N, Banerjee A. A Zn(II) ion selective fluorescence sensor that is not affected by Cd(II). Tetrahedron Letters, 2007, 48(41): 7316-7319
    [142] Xu X, Zhang H, Zhang C, et al. Separation and determination of copper, zinc, palladium, iron, and manganese with meso-tetrakis(3-bromo-4-sulfophenyl) porphine and reversed-phase ion-pair liquid chromatography. Analytical Chemistry, 1991, 63(21): 2529-2532
    [143] Tabata M, Kumamoto M, Nishimoto J. Ion-pair extraction of metalloporphyrins into acetonitrile for determination of copper(II). Analytical Chemistry, 1996, 68(5): 758-762
    [144] Hu Q F, Yang G Y, Yin J Y, et al. Determination of trace lead, cadmium and mercury by on-line column enrichment followed by RP-HPLC as metal-tetra-(4-bromophenyl)-porphyrin chelates. Talanta, 2002, 57(4): 751-756
    [145] Grant C, Hambright P. Kinetics of electrophilic substitution reactions involving metal ions in metalloporphyrins. Journal of the American Chemical Society, 1969, 91(15): 4195-4198
    [146] Tabata M, Tanaka M. Importance of hydrophobic interaction in metalloporphyrin formation. Inorganic Chemistry, 1988, 27(1): 203-205
    [147] Zhang Y, Xiang W, Yang R, et al. Highly selective sensing of lead ion based onα-,β-,γ-, andδ-tetrakis(3,5-dibromo-2-hydroxylphenyl)porphyrin/β-CD inclusion complex. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 173(3): 264-270
    [148] Bellacchio E, Gurrieri S, Lauceri R, et al. Nanomolar determination of copper(II) and zinc(II) using supramolecular complexes of meso-tetrakis(4-N-methylpyridyl)porphine on polyglutamate. Chemical Communications, 1998, (13): 1333-1334
    [149] Yang R H, Li K A, Wang K M, et al. Porphyrin assembly onβ-cyclodextrin for selective sensing and detection of a zinc ion based on the dual emission fluorescence ratio. Analytical Chemistry, 2003, 75(3): 612-621
    [150] Lavallee D K, Gebala A E. Facile dissociation of a copper porphyrin. Chlorocopper (II) N-methyltetraphenylporphine. Inorganic Chemistry, 1974, 13(8): 2004-2008
    [151] Bain-Ackerman M J, Lavallee D K. Kinetics of metal-ion complexation with N-methyltetraphenylporphyrin. Evidence concerning a general mechanism of porphyrin metalation. Inorganic Chemistry, 1979, 18(12): 3358-3364
    [152] Lavallee D K. Visible absorption spectra of N-methyltetraphenylporphyrin Complexes. Bioinorganic Chemistry, 1976, 6(3): 219-227
    [153] Lavallee D K, Mcdonough T J, Cioffi L. Fluorometric properties of N-methyltetraphenylporphine and several derivatives: evaluation as standards for determination of chlorophyll concentrations. Applied Spectroscopy, 1982, 36(4): 431-435
    [154] Funahashi S, Ito Y, Kakito H, et al. Metal ion incorporation into N-methyl-5,10,15,20-tetrakis (4-sulfonatophenyl) porphine and its differential rates as applied to the kinetic determination of copper(II) and zinc(II) in serum. Mikrochimica Acta, 1986, 88(1-2): 33-47
    [155] Adler A D, Longo F R, Finarelli J D. A simplified synthesis for meso-tetraphenylporphin. Journal of Organic Chemistry, 1967, 32(2): 476-476
    [156] Seybold P G, Gouterman M. Porphyrins XIII1: fluorescence spectra and quantum yields. Journal of Molecular Spectroscopy, 1969, 31(1-13):1-13
    [157] Taki M, Watanabe Y, Yamamoto Y. Development of ratiometric fluorescent probe for zinc ion based on indole fluorophore. Tetrahedron Letters, 2009, 50(12): 1345-1347
    [158] Crynkiewicz G, Poenie M, Tsien R Y. A new generation of Ca2+ indicators withgreatly improved fluorescence properties. Journal of Biological Chemistry, 1985, 260(6): 3440-3450
    [159] Park M S, Swamy K M K, Lee Y J, et al. A new acridine derivative as a fluorescent chemosensor for zinc ions in a 100% aqueous solution: a comparison of binding property with anthracene derivative. Tetrahedron Letters, 2006, 47(46): 8129-8132
    [160] Lim N C, Brückner C. DPA-substituted coumarins as chemosensors for zinc(II): modulation of the chemosensory characteristics by variation of the position of the chelate on the coumarin. Chemical Communications, 2004, (9): 1094-1095
    [161] Lim N C, Schuster J V, Porto M C, et al. Coumarin-based chemosensors for zinc(II): toward the determination of the design algorithm for CHEF-type and ratiometric probes. Inorganic Chememistry, 2005, 44(6): 2018-2030
    [162] Zhang L, Dong S, Zhu L. Fluorescent dyes of the esculetin and alizarin families respond to zinc ions ratiometrically. Chemical Communications, 2007, (19): 1891-1893
    [163] Maruyama S, Kikuchi K, Hirano T, et al. A novel, cell-permeable, fluorescent probe for ratiometric imaging of zinc ion. Journal of the American Chemical Society, 2002, 124(36): 10650-10651
    [164] Gee K R, Zhou Z L, Ton-That D, et al. Measuring zinc in living cells: a new generation of sensitive and selective fluorescent probes. Cell Calcium, 2002, 31(5): 245-251
    [165] Turfan B, Akkaya E U. Modulation of boradiazaindacene emission by cation-mediated oxidative PET. Organic Letters, 2002, 17(4): 2857-2859
    [166] Atilgan S, Ozdemir T, Akkaya E U. A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore. Organic Letters, 2008, 10(18): 4065-4067
    [167] Xu Z C, Qian X H, Cui J N, et al. Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission. Tetrahedron, 2006, 62(43): 10117-10122
    [168] Roussakis E, Voutsadaki S, Pinakoulaki E, et al. ICPBCZin: a red emitting ratiometric fluorescent indicator with nanomolar affinity for Zn2+ ions. Cell Calcium, 2008, 44(3): 270-275
    [169] Kiyose K, Kojima H, Urano Y, et al. Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. Journal of the American Chemical Society, 2006, 128(20): 6548-6549
    [170] Dilek G, Akkaya E U. Novel squaraine signalling Zn (II) ions: three-state fluorescence response to a single input. Tetrahedron Letters, 2000, 41(19): 3721-3724
    [171] Burdette S C, Lippard S J. The rhodafluor family: an initial study of potential ratiometric fluorescent sensors for Zn2+. Inorganic Chememistry, 2002, 41(25): 6816-6823
    [172] Woodroofe C C, Lippard S J. A novel two-fluorophore approach to ratiometric sensing of Zn2+. Journal of the American Chemical Society, 2003, 125(38): 11458-11459
    [173] Woodroofe C C, Won A C, Lippard S J. Esterase-activated two-fluorophore system for ratiometric sensing of biological zinc (II). Inorganic Chememistry, 2005, 44(9): 3112-3120
    [174] Mei Y J, Bentley P A. A ratiometric fluorescent sensor for Zn2+ based on internal charge transfer (ICT). Bioorganic and Medicinal Chemistry Letters, 2006, 16(12): 3131-3134
    [175] Chen H L, Wu Y B, Cheng Y F, et al. A ratiometric fluorescent sensor for zinc (II) with high selectivity. Inorganic Chemistry Communications, 2007, 10(12): 1413-1415
    [176] Soroka K, Vithanage R S, Phillips D A, et al. Fluorescence properties of metal complexes of 8-hydroxyquinoline-5-sulfonic acid and chromatographic applications. Analytical Chemistry, 1987, 59(4): 629-636
    [177] Frederickson C J, Kasarskis E J, Ringo D, et al. A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. Journal of Neuroscience Methods, 1987, 20(2): 91-103
    [178] Zalewski P D, Forbes I J, Betts W H. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido- 6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochemical Journal, 1993, 296(2): 403-408
    [179] Mahadevan I B, Kimber M C, Lincoln S F, et al. The synthesis of zinquin ester and zinquin acid, zinc (II)-specific fluorescing agents for use in the study of biological zinc (II). Australian Journal of Chemistry, 1996, 49(5): 561-568
    [180] Chen Y, Han K Y, Liu Y, et al. Effective switch-on fluorescence sensing of zinc(II) ion by 8-aminoquinolino-β-cyclodextrin/adamantaneacetic acid system in water. Bioorganic and Medicinal Chemistry, 2007, 15(13): 4537-4542
    [181] Zhang Y, Guo X, Si W, et al. Ratiometric and water-soluble fluorescent zincsensor of carboxamidoquinoline with an alkoxyethylamino chain as receptor. Organic Letters, 2008, 10(3): 473-476
    [182] Fischer M, Georges J. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chemical Physics Letters, 1996, 260(1-2): 115-118
    [183] Jiang P, Guo Z. Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coordination Chemistry Reviews, 2004, 248(1-2): 205-229
    [184] Liu Y M, Pereiro-Garcia R, Valencia-Gonzalez M J, et al. Evaluation of some immobilized room-temperature phosphorescent metal chelates as sensing material for oxygen. Analytical Chemistry, 1994, 66(6): 836-840
    [185] Liu J, Zhang Z. A reusable optical sensing layer for picric acid based on the luminescence quenching of the Eu-thenoyltrifluoroacetone complex. Analytical Chimica Acta, 1996, 318(2): 175-179
    [186] Mohr G J, Tirelli N, Spichiger-Keller U E, et al. Plasticize-free optode membranes for dissolved amines based on copolymers from alkyl methacrylates and the fluoro reactand ETH (T) 4014. Analytical Chemistry, 1999, 71(8): 1534-1539
    [187] Zimmerman R, Basab-Desmonts L, Van Der Baan F, et al. A combinatorial approach to surface-confined cation sensors in water. Jounal of Materials Chemistry, 2005, 15(27-28): 2772-2777
    [188] Bronson R T, Michaelis D J, Lamb R D, et al. Efficient immobilization of a cadmium chemosensor in a thin film: generation of a cadmium sensor prototype. Organic Letters, 2005, 7(6): 1105-1108
    [189] Crivat G, Kikuchi K, Nagano T, et al. Fluorescence-based zinc ion sensor for zinc ion release from pancreatic cells. Analytical Chemistry, 2006, 78(16): 5799-5804
    [190] Shortreed M, Kopelnan R, Kuhn M, et al. Fluorescent fiber-optic calcium sensor for physiological measurements. Analytical Chemistry, 1996, 68(8): 1414-1418
    [191] Hisamoto H, Tohma H, Yamada T, et al. Molecular design, characterization, and application of multi-information dyes for multi-dimensional optical chemical sensing. Molecular design concepts of the dyes and their fundamental spectral characteristics. Analytical Chimica Acta, 1998, 373(2-3): 271-289
    [192] Yang X, Niu C G, Shang Z J, et al. Optical-fiber sensor for determining water content in organic solvents. Sensors and Actuators B: Chemical, 2001, 75(1-2):43-47
    [193] Niu C G, Yang X, Lin W Q, et al. N-allyl-4(N-2′-hydroxyethyl)amino-1,8- naphtalimide as a fluorophore for optical chemosensing nitrofurantion. Analyst, 2002, 127(4): 512-517
    [194] Niu C G, Li Z Z, Zhang X B, et al. Covalently immobilized aminonaphthalimide as fluorescent carrier for preparation of optical sesnsor. Analytical and Bioanalytical Chemistry, 2002, 372(4): 519-524
    [195] Jiao C X, Niu C G, Chen L X, et al. A coumarin derivative covalently immobilized on sensing membrane as a fluorescent carrier for nitrofurazone. Analytical and Bioanalytical Chemistry, 2003, 376(3): 392-398
    [196] Jiao C X, Niu C G, Huan S Y, et al. A reversible chemosensor for nitrite based on the fluorescence quenching of a carbazole derivative. Talanta, 2004, 64(3): 637-643
    [197] Lavtchieva L, Enchev V, Smedarchina Z. Golden rule study of excited-state proton transfer in 2-(2′-hydroxyphenyl) benzoxazole and 2-(2′-hydroxy-4′-methyphenyl) benzoxazole. Journal of Physical Chemistry, 1993, 97(2): 306-310
    [198] Mosquera M, Penedo J C, Rios R M C, et al. Photoinduced inter- and intramolecular proton transfer in aqueous and ethanolic solutions of 2-(2′-hydroxyphenyl)benzimidazole: evidence for tautomeric and conformational equilibria in the ground state. Journal of Physical Chemistry, 1996, 100(13): 5398-54073
    [199] Henary M M, Fahmi C J. Excited state intramolecular proton transfer and metal ion complexation of 2-(2′-hydroxyphenyl)benzazoles in aqueous solution. Journal of Physical Chemistry, 2002, 106(21): 5210-5220
    [200] Qin W, Obare S O, Murphy C J, et al. A fiber-optic fluorescence sensor for lithium ion in acetonitrile. Analytical Chemistry, 2002, 74(18): 4757-4762
    [201] Zhang X B, Peng J, He C L, et al. A highly selective fluorescent sensor for Cu2+ based on 2-(2′-hydroxyphenyl) benzoxazloe in a poly(vinyl chloride) matrix. Analytical Chimica Acta, 2006, 567(2): 189-195
    [202] Li Z Z, Niu C G, Zeng G M, et al. A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1,8-napthalimide and benzothioxanthene. Sensors and Actuators B: Chemical, 2006, 114(1): 308-315
    [203] Zhang S B, Wu Z S, Guo M M, et al. A novel immunoassay strategy based on combination of chitosan and a gold nanoparticle label. Talanta, 2007, 71(4):1530-1535
    [204] Singh N, Mulrooney R C, Kaur N, et al. A nanoparticle based chromogenic chemosensor for the simultaneous detection of multiple analytes. Chemical Communications, 2008, (40): 4900-4902
    [205] Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans. American Journal of Clinical Nutrition, 1998, 67(5): 952S-959S
    [206] Mei L, Xiang Y, Li N, et al. A new fluorescent probe of rhodamine B derivative for the detection of copper ion. Talanta, 2007, 72(5): 1717–1722
    [207] Mayr T, Klimant I, Wolfbeis O, et al. Dual lifetime referenced optical sensor membrane for the determination of copper(II) ions. Analytica Chimica Acta, 2002, 462(1): 1–10
    [208] Kabil M. Flame atomic absorption spectrometric investigation and determination of cobalt and copper using ethanolamine and triethanolamine as chemical modifiers. Journal of Analytical Atomic Spectrometry, 1996, 11(5): 379-387
    [209] Chandrarao G P, Seshaiah K, Rao Y K, et al. Solid phase extraction of Cd, Cu, and Ni from leafy vegetables and plant leaves using amberlite XAD-2 functionalized with 2-hydroxy-acetophenone-thiosemicarbazone (HAPTSC) and determination by inductively coupled plasma atomic emission spectroscopy. Journal of Agricultural and Food Chemistry, 2006, 54(8): 2868-2872
    [210] Becker J S, Zoriy M V, Pickhardt C, et al. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Analytical Chemistry, 2005, 77(10): 3208-3216
    [211] Saravanakumar D, Sengottuvelan N, Kandaswamy M. Ferrocene substituted N, N′-bis (3-aminopropyl)oxamide: a new electrochemical sensor for copper(II) and fluoride ions in the biological pH range. Inorganic Chemistry Communications, 2005, 8(4): 386-389
    [212] Shervedan R K, Mozaffari S A. Copper(II) nanosensor based on a gold cysteamine self-assembled monolayer functionalized with salicylaldehyde. Analytical Chemistry, 2006, 78(14): 4957-4963
    [213] Lee S J, Lee S S, Jeong Y, et al. Azobenzene coupled chromogenic receptors for the selective detection of copper(II) and its application as a chemosensor kit. Tetrahedron Letters, 2007, 48(3): 393-396
    [214] Xiang Y, Li Z F, Chen X T. Highly sensitive and selective optical chemosensor for determination of Cu2+ in aqueous solution. Talanta, 2008, 74(5): 1148-1153
    [215] Sheng R L, Wang P F, Gao Y H, et al. Colorimetric test kit for Cu2+ detection. Organic Letters, 2008, 10(21): 5015-5018
    [216] Varnes A, Dodson R, Wehry E L, et al. Interactions of transition-metal ions with photoexcited states of flavins. Fluorescence quenching studies. Journal of the American Chemical Society, 1972, 94(3): 946-950
    [217] Jun E J, Kim J A, Swamy K M K, et al. A fluorescein derivative for nanomolar aqueous copper and monitoring copper ion uptake by transferrin and amyloid precursor protein. Tetrahedron Letters, 2006, 47(7): 1051-1054
    [218] Weng Y Q, Yue F, Zhong Y R, et al. A copper(II) ion-selective on-off-type fluoroionophore based on zinc porphyrin-dipyridylamino. Inorganic Chemistry, 2007, 46(19): 7749-7755
    [219] Suresh M, Ghosh A, Das A. A simple chemosensor for Hg2+ and Cu2+ that works as a molecular keypad lock. Chemical Communications, 2009, (33): 3906-3908
    [220] Huang J H, Xu Y F, Qian X H. A red-shift colorimetric and fluorescent sensor for Cu2+ in aqueous solution: unsymmetrical 4,5-diaminonaphthalimide with N-H deprotonation induced by metal ions. Organic and Biomolecular Chemistry, 2009, 7(7): 1299-1303
    [221] Liu J M, Zheng Q Y, Yang J L, et al. A new fluorescent chemosensor for Fe3+ and Cu2+ based on calix[4]arene. Tetrahedron letters, 2002, 43(50): 9209-9212
    [222] Zhou L L, Sun Hao, Zhang X H, et al. An effective fluorescent chemosensor for the detection of copper(II). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 61(1-2): 61-65
    [223] Wu J S, Wang P F, Zhang X H, et al. Novel fluorescent sensor for detection of Cu(II) in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 65(3-4): 749-752
    [224] Shao N, Zhang Y, Cheung S M,et al. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Analytical Chemistry, 2005, 77(22): 7294-7303
    [225] Igarashi S, Kuwae K, Yotsuyanagi T. Optical pH sensor of electrostatically immobilized porphyrin on the surface of sulfonated-polystyrene. Analytical Sciences, 1994, 10(5):821-823
    [226] Liu B, Sun X Y, He F. Preparation and characterization of a Cu2+ chemosensor based on fluorescent self-assembled sandwich bilayers. Thin Solid Films, 2008, 516(8): 2213-2217
    [227] Zheng Y, Orbulescu J, Ji X, et al. Development of fluorescent film sensors forthe detection of divalent copper. Journal American Chemical Society, 2003, 125(9): 2680-2686
    [228] Kermis H, Kostov Y, Rao G. Rapid method for the preparation of a robust optical pH sensor. Analyst, 2003, 128(9): 1181-1186
    [229] Zhang X B, Cheng G, Zhang W J, et al. A fluorescent chemical sensor for Fe3+ based on blocking of intramolecular proton transfer of a quinazolinone derivative. Talanta, 2007, 71(1):171-177
    [230] Tan S Z, Hu Y J, Gong F C, et al. A novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole by using silver nanoparticles as bridges and carriers. Analytica Chimica Acta, 2009, 636(2): 205-209
    [231] Ma Q J, Zhang X B, Zhao X H, et al. A ratiometric fluorescent sensor for zinc ions based on covalently immobilized derivative of benzoxazole. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 73 (4): 687-693
    [232] Lu F T, Gao L N, Ding L P, et al. Spacer layer screening effect: a novel fluorescent film sensor for organic copper(II) salts. Langmuir, 2006, 22(2): 841-845
    [233] Ding L P, Cui X A, Han Y, et al. Sensing performance enhancement via chelating effect: a novel fluorescent film chemosensor for copper ions. Journal of Photochemistry and Photobiology A, 2007, 186(2-3): 143-150
    [234] Hisamoto H, Manabe Y, Yanai H, et al. Molecular design, characterization, and application of multiinformation dyes for multidimensional optical chemical sensings. Analytical Chemistry, 1998, 70(7): 1255- 1261
    [235] Niu C G, Guan A L, Zeng G M, et al. A ratiometric fluorescence halide sensor based on covalently immobilization of quinine and benzothioxanthene. Analytica Chimica Acta, 2005, 547(2): 221-228
    [236] Niu C G, Gui X Q, Zeng G M, et al. A ratiometric fluorescence sensor with broad dynamic range based on two pH-sensitive fluorophores. Analyst, 2005, 130(11): 1551-1556
    [237] Niu C G, Gui X Q, Zeng G M, et al. Fluorescence ratiometric pH sensor prepared from covalently immobilized porphyrin and benzothioxanthene. Analytical and Bioanalytical Chemistry, 2005, 383(2): 349-357
    [238] Niu C G, Guan A L, Zeng G M, et al. Fluorescence water sensor based on covalent immobilization of chalcone derivative. Analytica Chimica Acta, 2006, 577(2): 264-270
    [239] Li L B, Ji S J, Lu W H. A novel highly selective fluorescent chemosensor forZn2+ by terpyridyl based on naphthalimide fluorophore. Chinese Journal of Chemistry, 2008, 26(3): 417-420
    [240] Gunnlaugsson T, Lee T, Parkesh R. A highly selective and sensitive fluorescent PET (photoinduced electron transfer) chemosensor for Zn(II). Organic Biomolecular Chemistry, 2003, 1(19): 3265-3267
    [241] Mu H L, Gong R, Ma Q, et al. A novel colorimetric and fluorescent chemosensor: synthesis and selective detection for Cu2+ and Hg2+. Tetrahedron Letters, 2007, 48(31): 5525-5529
    [242] Ji L H, Zhang Y, Guo X. A novel chromatism switcher with double receptors selectively for Ag+ in neutral aqueous solution: 4,5-diaminoalkeneamino -N-alkyl-1,8-naphthalimides. Tetrahedron Letters, 2004, 45(20): 3969-3973
    [243] Jiang W, Fu Q Q, Fan H Y, et al. An NBD fluorophore-based sensitive and selective fluorescent probe for zinc ion. Chemical Communications, 2008, (2): 259-261
    [244] Grabchev I, Qian X H, Xiao Y, et al. Novel heterogeneous PET fluorescent sensors selective for transition metal ions or protons: polymers regularly labelled with naphthalimide. New Journal of Chemistry, 2002, 26(7): 920-925
    [245] Grabchev I, Sali S, Betcheva R, et al. New green fluorescent polymer sensors for metal cations and protons. European Polymer Journal, 2007, 43(10): 4297-4305
    [246] Yang X, Niu C G, Shen G L, et al. Picric acid sensitive optode based on a fluorescence carrier covalently bound to membrane. Analyst, 2001, 126(3): 349-352
    [247] Tan S Z, Hua Y J, Chen J W, et al. An optical sensor based on covalent immobilization of 1-aminopyrene using Au nanoparticles as bridges and carriers. Sensors and Actuators B: Chemical, 2007, 124(1): 68-73
    [248] Grabchev I, Chovelon J M. New blue fluorescent sensors for metal cations and protons based on 1,8-naphthalimide. Dyes and Pigments, 2008, 77(1): 1-6
    [249] Petanen T, Romantschuk M. Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts. Analytica Chimica Acta, 2002, 456(1): 55– 61
    [250] Tseng C M, De D A, Martin F M, et al. Rapid determination of inorganic mercury and methylmercury in biological reference materials by hydride generation, cryofocusing, atomic absorption spectrometry after open focused microwave-assisted alkaline digestion. Journal of Analytical Atomic Spectrometry, 1997, 12(7): 743-750
    [251] Li Y, Chen C, Li B, et al. Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry, 2006, 21(1): 94-96
    [252] Vallant B, Kadnar R, Goessler W. Development of a new HPLC method for the determination of inorganic and methylmercury in biological samples with ICP-MS detection. Journal of Analytical Atomic Spectrometry, 2007, 22(3): 322-325
    [253] Chen Y W, Tong J, D’Ulivo A, et al. Determination of mercury by continuous flow cold vapor atomic fluorescence spectrometry using micromolar concentration of sodium tetrahyroborate as reductant solution. Analyst, 2002, 127(11): 1541-1546
    [254] Anthemidis A N, Zachariadis G A, Michos C E, et al. Time-based on-line preconcentration cold vapour generation procedure for ultra-trace mercury determination with inductively coupled plasma atomic emission spectrometry. Analytical and Bioanalytical Chemistry, 2004, 379(5-6): 764-769
    [255] Perez-Marin L, Otazo-Sanchez E, Macedo-Miranda G, et al. Mercury(II) ion-selective electrode. Study of 1,3-diphenylthiourea as ionophore. Analyst, 2000, 125(10): 1787-1790
    [256] Yantasee W, Lin Y, Zemanian T S, et al. Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst, 2003,128(50): 467-472
    [257] Caballero A, Lloveras V, Curiel D, et al. Electroactive thiazole derivatives capped with ferrocenyl units showing charge-transfer transition and selective ion-sensing properties: a combined experimental and theoretical study. Inorganic Chemistry, 2007, 46(3): 825-838
    [258] Tan J, Yan X P. 2,1,3-Benzoxadiazole-based selective chromogenic chemosensor for rapid naked-eye detection of Hg2+ and Cu2+. Talanta, 2008, 76(1): 9-14
    [259] McClure D S. Spin-orbit interaction in aromatic molecules. The Journal of Chemical Physics, 1952, 20(4): 682-686
    [260] Metivier R, Leray I, Valeur B. Lead and mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores. Chemistry–A European Journal, 2004, 10(18): 4480-4490
    [261] Moon S Y, Na J Y, Sang M P, et al. Diametrically disubstituted cyclam derivative having Hg2+-selective fluoroionophoric behaviors. Journal of Organic Chemistry, 2005, 70(6): 2394-2397
    [262] Zhu X J, Fu S T, Wong W K, et al. A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin. Angewandte Chemie International Edition, 2006, 118(19): 3222-3226
    [263] Kim S H, Song K C, Ahn S, et al. Hg2+-selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether. Tetrahedron Letters, 2006, 47(4): 497-500
    [264] Yu Y, Lin L R, Yang K B, et al. p-Dimethylaminobenzaide thiosemicarbazone: a simple novel selective and fluorescent sensor for mercury(II) in aqueous solution. Talanta, 2006, 69(1): 103-106
    [265] Pandey S, Azam A, Pandey S, et al. Novel dansyl-appended calyx[4]arene frameworks: fluorescence properties and mercury sensing. Organic and Biomolecular Chemistry, 2009, 7(2): 269-279
    [266] Nolan E M, Lippard S J. A“turn-on”fluorescent sensor for the selective detection of mercuric ion in aqueous media. Journal of the American Chemical Society, 2003, 125(47): 14270-14271
    [267] Nolan E M, Lippard S J. Turn-on and ratiometric mercury sensing in water with a red-emitting probe. Journal of the American Chemical Society, 2007, 129(18): 5910-5918
    [268] Avirah R R, Jyothish K, Ramaiah D. Dual-mode semisquaraine-based sensor for selective detection of Hg2+ in a micellar medium. Organic Letters, 2007, 9(1): 121-124
    [269] He G, Zhao Y, He C, et al.“Turn-on”fluorescent sensor for Hg2+ via displacement approach. Inorganic Chemistry, 2008, 47(12): 5169-5176
    [270] Lakowicz, J. R. Principles of fluorescence spectroscopy, 3rd ed; Springer: New York, 2006; pp 67–69.
    [271] Swamy K M K, Ko S K, Kwon S K, et al. Boronic acid-linked fluorescent and colorimetric probes for copper ions. Chemical Communications, 2008, (45): 5915-5917
    [272] Yu M, Shi M, Chen Z, et al. Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging. Chemistry - A European Journal, 2008, 14(23): 6892-6900
    [273] Chen X, Jia J, Ma H, et al. Characterization of rhodamine B hydropxylamide as a highly selective and sensitive fluorescence probe for copper(II). Analytical Chimica Acta, 2009, 632(1): 9-14
    [274] Kwon J Y, Jang Y J, Lee Y J, et al. A highly selective fluorescent chemosensorfor Pb2+. Journal of the American Chemical Society, 2005, 127(28): 10107-10111
    [275] Huang K, Yang H, Zhou Z, et al. Multisignal chemosensor for Cr3+ and its application in bioimaging. Organic Letters, 2008, 10(12): 2557-2560
    [276] Mao J, Wang L, Dou W, et al. Tuning the selectivity of two chemosensors to Fe(III) and Cr(III). Organic Letters, 2007, 9(22): 4567-4570
    [277] Bae S, Tae J. Rhodamine-hydroxamate-based fluorescent chemosensor for Fe(III). Tetrahedron Letters, 2007, 48(31): 5389-5392
    [278] Yang Y K, Yook K J, Tae J, et al. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. Journal of the American Chemical Society, 2005, 127(48): 16760-16761
    [279] Zhang X, Shiraishi Y, Hirai T. Fe(III)- and Hg (II)-selective dual channel fluorescence of a rhodamine-azacrown ether conjugate. Tetrahedron Letters, 2008, 49(26): 4178-4181
    [280] Zheng H, Qian Z H, Xu L, et al. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. Organic Letters, 2006, 8(5): 859-861
    [281] Wu J S, Hwang I C, Kim K S, et al. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: fluorescent off-on. Organic Letters, 2007, 9(5): 907-910
    [282] Suresh M, Shrivastav A, Mishra S, et al. A rhodamine-based chemosensor that works in the biological system. Organic Letters, 2008, 10(14): 3013-3016
    [283] Yuan M, Zhou W, Liu X, et al. A multianalyte chemosensor on a single molecule: promising structure for an integrated logic gate. Journal of Organic Chemistry, 2008, 73(13): 5008-5014
    [284] Wu D, Huang W, Lin D C, et al. Highly sensitive multiresponsive chemosensor for selective detection of Hg2+ in natural water and different monitoring environments. Inorganic Chemistry, 2008, 47(16): 7190-7201
    [285] Shiraishi Y, Sumiya S, Kohno Y, et al. A rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). Journal of Organic Chemistry, 2008, 73(21): 8571-8574
    [286] Shi W, Ma H. Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media. Chemical Communications, 2008, (16): 1856-1858
    [287] Huang W, Zhou P, Yan W, et al, A bright water-compatible sugar-rhodamine fluorescence sensor for selective detection of Hg2+ in natural water and livingcells. Journal of Environmental Monitoring, 2009, 11(2): 330-335
    [288] Liu W, Xu L, Zhang H, et al. Dithiolane linked thiorhodamine dimer for Hg2+ recognition in living cells. Organic and Biomolecular Chemistry, 2009, 7(4): 660-664
    [289] Lin W, Yuan L, Cao X, et al. A coumarin-based chromogenic sensor for transition-metal ions showing ion-dependent bathochromic. European Journal of Organic Chemistry, 2008, (29): 4981-4987
    [290] Sheng R, Wang P, Liu W, et al. A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative. Sensors and Actuators B: Chemical, 2008, 128(2): 507-511
    [291] Jung H S, Kwon P S, Lee J W, et al. Coumarin-derived Cu2+-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. Journal of the American Chemical Society, 2009, 131(5): 2008-2012
    [292] Wu J S, Liu W M, Zhuang X Q, et al. Fluorescence turn on of coumarin derivatives by metal cations: a new signaling mechanism based on C=N isomerization. Organic Letters, 2007, 9(1): 33-36
    [293] Lee S Y, Kim H J, Wu J S, et al. Metal ion-induced FRET modulation in a bifluorophore system. Tetrahedron Letters, 2008, 49(42): 6141-6144
    [294] Xiang Y, Tong A, Jin P, et al. New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity. Organic Letters, 2006, 8(13): 2863-2866

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700