用户名: 密码: 验证码:
纤维表面聚硅氧烷膜的组装与功能化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚硅氧烷界面性能优异,易成膜,附着于纤维基质表面,有修饰、修复、美化纤维观感及触感、改善其功能的作用。近年来,聚有机硅氧烷整理剂领域的研究热点主要集中在新型结构有机硅新品的开发、氟硅共聚物的合成及其潜在应用、用反电荷聚硅氧烷构筑具有特殊油滑手感效应的整理剂超分子等方面。基于此,本论文进行了下列研究工作:
     1以N-β-氨乙基-γ-氨丙基聚二甲基硅氧烷(ASO-1)为低表面能成膜物质制备超疏水织物。
     (1)以甲苯为溶剂,以微观粗糙的棉纤维作载膜基质,用静态浸渍法成膜,将N-β-氨乙基-γ-氨丙基聚二甲基硅氧烷附着固载在微米尺寸粗糙的织物表面,制得了一种超疏水性棉织物(ASO-1/Fab),其静态接触角可达到150.50。用场发射扫描电镜(FE-SEM)、全反射傅里叶红外光谱(ATR)和X-射线光电子能谱(XPS)研究了ASO-1/Fab的形貌和表面相组成,探索了影响ASO-1/Fab疏水性能的主要因素。结果表明,ASO-1用量、布样浸渍时间以及交联剂可影响ASO-1/Fab的疏水效果。用γ-氨丙基三甲氧基硅烷对ASO-1交联,能使ASO-1/Fab的接触角上升至154.20。
     (2)以荷叶表面微纳米结构为模型,用直径(Φ)为30~280.7nm的硅溶胶对棉纤维进行修饰以增加其表面的粗糙度,再以0.25wt%的ASO-1溶液对纤维进行疏水处理,能使处理后织物表面的接触角达到160.5°以上。其中以Φ为280.7nm的硅溶胶与ASO-1协同处理的织物,接触角最大,0可达到165.2°。
     (3)用γ-(2,3-环氧丙氧)丙基硅烷改性的Si02与ASO-1反应、或将γ-氨丙基硅改性Si02与环氧基硅油进行反应合成了两种纳米杂化聚硅氧烷ASO-SiO2和PEMS-SiO2,在IR、XPS对其进行结构分析和表征的基础上,重点对两种杂化聚硅氧烷在纤维表面的成膜性及疏水性进行了研究。结果发现,以0.25wt%的ASO-SiO2和PEMS-SiO2处理的织物,接触角可分别达到155.0°和155.3°。
     2利用1,3,5-三甲基-1,3,5-三(3,3,3-三氟丙基)环三硅氧烷(D3F)、八甲基环四硅氧烷(D4)与N-β-氨乙基-γ-氨丙基甲基二甲氧基硅烷等单体的本体聚合反应,合成了新型N-β-氨乙基-γ-氨丙基取代的聚甲基(3,3,3-三氟丙基)-co-二甲基硅氧烷共聚物AFMS和AFSO,用IR、1H NMR对AFMS和AFSO的结构进行了表征,并对其进行了应用。结果表明:经0.03wt%AFSO或AFMS甲苯稀溶液处理的棉布样,其接触角可分别达到151.2°和152.0°。用Φ为313.9nm的Si02溶胶先修饰纤维、再AFMS处理,则能使处理后织物表面的接触角达到161.3°。而用Φ为79.7nm和313.9nm的复合硅溶胶修饰纤维、再用AFMS处理,则接触角可达到161.8°。
     3利用三氟丙基含氢聚硅氧烷PFHMS与1,1,2-3H-乙烯基全氟癸烯(PFOE)、烯丙基缩水甘油醚(AGE)等单体的硅氢化反应合成了2种反应性环氧基/氟烃基共改性聚硅氧烷(PPT、PPD)和2种聚醚/环氧/氟烃基共改性聚硅氧烷(PFSEAS、PFEAS),用IR、1H NMR表征了产物的结构,然后用AFM等仪器研究了产物的成膜形态以及疏水性能。结果表明:受氟烃基疏水作用及空间效应的影响,长链氟烃基以直立或平伏的方式排列于聚硅氧烷所形成的硅膜表面,从而使聚硅氧烷表面呈现出参差不齐的粗糙形貌。而在氟烃基聚硅氧烷的侧链进一步引入亲水性聚醚基团,可导致硅膜表面有较大聚醚峰包出现、使硅膜表面更加粗糙,但聚醚基团的存在会导致聚硅氧烷膜疏水性能降低。因此,经PPT、PPD整理的棉织物,其静态接触角可分别达到150.40和151.9°。而PFSEAS、PFEAS处理的棉织物,其静态接触角却只有129.2和134.3°。
     4利用顺丁烯二酸酐与-γ-氨丙基聚硅氧烷的开环反应合成γ-(N-羧丙烯酰)氨丙基甲基硅氧烷-co-二甲基硅氧烷共聚物(简称羧基硅CAS-2),用AFM等仪器对CAS-2的结构、成膜性以及膜形貌进行了研究。
     在此基础上,以乙酸乙酯作为溶剂,将氨基硅ASO-1和羧基硅CAS-2在溶液中静电自组装,再将其负载在纤维和单晶硅表面,获得了一种自组装ASO/CAS超分子膜。用AFM、FE-SEM等研究了ASO/CAS的膜结构、形貌和性能。结果表明,在乙酸乙酯溶液中,将ASO-1和CAS-2等量共混获得的ASO/CAS,微观形貌呈规则有序的窗棂状,膜厚度为2-3层。将ASO/CAS用于纤维织物整理,能明显改善纤维的柔软性能,并使处理后的纤维织物产生独特的油润感。其中最佳柔软性和油润感可在ASO-1与CAS-2质量比为1:1时获得。
Polysiloxanes are low energy materials with good film-forming capacity. When coated and anchored on hydrophilic fiber/fabric surfaces, polysiloxanes not only modify the surface properties of the treated substrates greatly, but also could provide the treated fiber/fabrics with softness, smoothness, hydrophobicity as well as diversified tactile. These excellent properties make the polysiloxanes have been widely used as softeners, lubricants or waterproofing agents in textile industry.
     Functional polysiloxanes have presented in textiles for years, but how to design and synthesis new structure polysiloxanes or the polysiloxanes with outstanding performance such as super-hydrophobicity have still attracted the world attention recently. In addition, architecture of super-molecular polysiloxanes which will give special oily handles from counter-charged polysiloxanes such as amino- and carboxyl-containing polysiloxanes, as well as the preparation of super-hydrophobic textile with fluorinated siloxanes and their derivatives have also been active field in the polymeric material. To correspond with these, we have done the following work in the research:
     1. To prepare superhydrophobic cotton textile from N-β-aminoethyl-y-aminopropyl substituted polydimethylsiloxane (ASO-1)
     (1) Using N-β-aminoethyl-y-aminopropyl substituted poly dimethyl siloxane (ASO-1) as hydrophobic material and as solvent, a soft but hydrophobic cotton fabrics (ASO-1/Fab) with a water contact angle (CA) of 150.5°was prepared by dipping the fabric, with a rough surface on nano- meter scale, in ASO-1-toluene solution for several seconds, then dried and cured at 170℃. Surface composition and morphology of ASO-1/Fab were characterized and investigated by field emission scanning electron microscope (FESEM), attenuated total reflectance (ATR) infrared spectrum, X-ray photoelectron spectroscopy (XPS), and so on. And the influencing factors on ASO-1/fab superhydrophobic property were also investigated. It was discovered that the dosage of ASO-1, and the immersing time of fabric in ASO-1-toluene solution as well as the amount of cross-linking agent could influence the super-hydrophobicity of ASO-1/Fab. As a result, an optimum CA of ASO-1/Fab was obtained by co-operation of ASO-1 with y-aminopropyltrimethoxysilane.
     (2) Water contact angles of treated cotton fabrics could be improved by using ASO-1 and the roughed cotton substrates by SiO2 sols. The experiment results showed the CA, which were more than 160.5°, had been successfully obtained from the cotton fabrics treated by 0.25wt% ASO-1 solution and SiO2 sols with diameters of 30-280.7nm. When the diameter of SiO2 sol increased 280.7nm, the CA of the treated fabrics could reach to 165.2°.
     (3) In order to further improve the hydrophobicity of ASO-1 and enhance the fixation of nano-SiO2 on fabrics, two nano-SiO2 hybrid polysiloxanes, ASO-SiO2 (which was prepared from ASO-1 and y-(2,3-epoxypropoxy)propylsilane modified nano-SiO2) and PEMS-SiO2 (which was prepared from ASO-1 and y-aminopropyltrimethoxysilane modified nano-SiO2) were prepared and used to treat cotton fabrics in the experiment. Composition and hydrophobic properties of the two nano-hybrid polysiloxanes were investigated by IR, XPS and other instruments. Experiment results indicated that such hybrid polysiloxanes could impart the treated cotton fabrics with an improved hydrophobicity. The CAs of the treated fabrics were 155.0°for 0.25wt% ASO-SiO2 and 155.3°for 0.25wt% PEMS-SiO2, respectively.
     2 Novel N-β-aminoethyl-y-aminopropyl-substituted poly [methyl (3,3,3-trifluoropropyl)]-co-dimethylsiloxane copolymers AFMS and AFSO were prepared by bulk polymerization of 1,3,5-trimethyl-1,3,5-tri(3,3,3-trifluoropropyl) cyclotrisiloxane (D3F) with N-β-aminoethyl-y-aminopropylmethyldimethoxysilane and other monomers. Structure of AFMS and AFSO was characterized by IR and 1H-NMR and performance properties were studied. The results indicated contact angles of the fabrics treated with 0.25wt% AFSO and AFMS in toluene solution could reach to 151.2°and 152.0°, respectively. And moreover, CAs could enhanced to 161.3°nd 161.8°if the cotton fabric was pretreated with SiO2 sol (with a diameter of 313.9nm) or with a mixed silica sol (with diameters of 79.7nm and 313.9nm) before 0.25wt% AFMS solution treatment.
     3 Two kinds of reactive epoxy/fluorinated long alkyl modified polysiloxanes (PPT and PPD) and another two reactive polysiloxanes (PFSEAS and PFEAS) with epoxy/polyether/ fluorinated long alkyl groups were prepared by hydrosilylation of poly(hydrogen methylsiloxane-co-trifluoropropyl methylsiloxane) (PFHMS) with 1,1,2-trihydrogen vinyl perfluorodecene (PFOE) and allyl glycidyl ether (AGE) and other monomers. Structure and film morphology as well as hydrophobicity of the synthesized polysiloxanes on cotton fabrics were characterized and investigated by IR,1H-NMR, AFM and so on. Influenced by hydro-/lipo-phobic property as well as the spatial effect of the fluorinated long alkyl groups, and long fluorohydrocarbon groups were distributed on the film surface uprightly or slantingly, resulting in a jagged rough morphology on the treated substrate surface. When polyether groups were introduced in the side chain of fluorinated polysiloxanes, larger aggregates derived from polyether groups were observed on the polysiloxane film, leading to a rougher surface. However, polyether groups could decrease hydrophobicity of the polysiloxane film. As a result, CAs of the fabrics treated with PPT and PPD were 150.4°and 151.9°, while CAs of the fabrics treated with PFSEAS and PFEAS were only 129.2°and 134.3°, respectively.
     4 y-(N-carboxylacrylate) aminopropylmethylsiloxane-co-dimethyl-siloxane copolymer(carboxylpolysiloxane for short, CAS) was prepared by ring-opening action of cis-butenedioic anhydride and y-aminopropyl polysiloxane. AFM and other instruments were used to characterize and investigate its structure, film-forming ability and morphology.
     On this basis, with ethyl acetate used as solvent, ASO and CAS were assembled through antistatic interaction, then anchored on the fiber and silica substrates and ASO/CAS supermolecular film was obtained, film structure, morphology and performance of which were investigated by AFM, FE-SEM and other instruments. The results indicated that ASO/CAS, formed by blending equivalent amount of ASO and CAS in ethyl acetate solution, showed a highly ordered, window grating-like structure in micro-morphology, with a assembly-layer number of 2~3. When used for cotton fabric finishing, ASO/CAS could improve softness of the fabric obviously, with a unique oily handle exhibited. The optimum softness and unique oily handle can be obtained only when the mass ratio of ASO to CAS is 1:1.
引文
[1]Junghye Kim, Gilson Cho. Thermal storage/release, durability, and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules[J]. Textile ResearchJounral,2002,72(2):1093-1098.
    [2]安秋凤,杜经武等.氨烃基聚硅氧烷的应用性能研究[J].印染,2005,(2):4-7.
    [3]安秋凤,李临生,陈孔常.聚硅氧烷的成膜性及其在纤维表面的排列方式[J].纺织学报,2003,24(2):36-39.
    [4]安秋凤,李临生,陈孔常.官能基聚硅氧烷的膜形态与定向排列方式[J].纺织学报,2003,24(3):40-42.
    [5]安秋凤.氨(烃)基聚硅氧烷柔软剂的制备、改性、应用及柔软机理研究[D].华东理工大学博士学位论文:37-39
    [6]安秋凤,张西亚,黄良仙等.N,N-二甲基-γ-氨丙基-γ-氨丙基甲基聚二甲基硅氧烷ASO-121的合成、表征与膜形态[J].功能高分子学报,2005,18(4):571-576.
    [7]安秋凤,张西亚,黄良仙等.N,N-二甲基氨丙基氨丙基聚硅氧烷的应用性能[J].有机硅材料,2005,19(6):16-19.
    [8]李爱杰.有机硅织物柔软整理剂的特点及发展方向[J].化学工程师,2002(3):17-19.
    [9]李明涛,安秋凤,胡良伟.N-环己基-γ-氨丙基聚二甲基硅氧烷的合成、表征与应用性能[J].精细化工,2006,23(4):400-403.
    [10]Mingtao Li, Qiufeng An, Lianxian Huang. Film morphology and orientation of N-cyclohexyl-γ-aminopropyl polydimethylsiloxane[J]. Surface and Interface Analysis, 2008,40:914-918.
    [11]安秋凤,李明涛,王前进.N-β-氨乙基-γ-氨丙基聚二甲基聚二苯基硅氧烷的膜形貌及其XPS分析[J].高分子材料科学与工程,2008,25(2):115-118.
    [12]Kang J J, Li W Y, Lin Y, et al. Synthesis and ionic conductivity of a polysiloxane containing quaternary ammonium groups[J]. Polymer Advance Technology, 2004,15(1-2):61-64.
    [13]周建华,于涛.聚硅氧烷季铵盐抗菌柔软剂的合成[J].有机硅材料,2006,(5):238-342.
    [14]黄文润等.硅油及其二次加工品[M].北京:化学工业出版社,2004,1.
    [15]谢洪德,朱新生,闻荻江.水溶性有机硅柔软剂合成[J].胶体与聚合物,2001,19(4):26-29.
    [16]程建华,汪晓军,伍钦等.聚醚改性有机硅季铵盐的合成及性能[J].有机硅材料,2002,16(2):10-13.
    [17]Czech Anna. Silicone aminopolyal kyleneoxide block copolymers Silicone[P]. US.5981681.
    [18]Kim DW, Lim CH, Choi JK, Noh ST. Thermal properties of polydisperse oloigo-(propylene oxide-block-ethylene oxide) allyl (methyl) ether surfactants containing polysiloxane backbone[P]. Journal of industrial and engineering chemistry,2004,10 (4):569-576.
    [19]钱国华,傅人俊.一种亲水性氨基硅油的合成方法[P].中国专利:1631892,2005-06-29.
    [20]安秋凤,黄良仙,李临生等.氨基改性聚醚硅油的合成、结构表征及应用[J].化学研 究与应用,2005(5):626-630.
    [21]安秋凤,李歌,白洪亮.聚氨酯改性聚醚嵌段聚硅氧烷的合成、表征及应用[J].精细化工,2009,26(3):299-303.
    [22]李歌,安秋凤.聚氨酯改性聚醚硅油TESO的表征、应用及复配性能[J].化工新型材料,2009,37(6):93-96.
    [23]安秋凤,李献起,李歌等.聚醚嵌段氨基硅油的结构与应用性能研究[J].有机硅材料,2009,23(6):379-382.
    [24]许晓华,矫庆泽,张强等.氨基聚醚改性有机硅助剂的合成及性能[J].有机硅氟咨询,2007(7):23-26.
    [25]俞丽珍.聚醚、氨基改性有机硅乳液的研制[J].化工新型材料,2005,33(11):53-55.
    [26]范艳苹,贺江平,陆少锋.亲水性有机硅柔软剂的研制与开发[J].印染助剂,2005,22(7):26-28.
    [27]Tolentino, Luisito A. Method for preparing acrylic functional halosilanes and halosiloxanes[P]. U. S. Pat.4,558,111,1985.
    [28]Traver. Method for preparing carboxy functional silicones[P]. U. S. Pat.4,990,643,1991
    [29]张墩明,颜维龙.羧基改性硅油的制备[J].有机硅材料及应用,1999,6:7-10.
    [30]洪满水,邱南飞,胡金山.含羧基的水溶性聚硅氧烷的合成和性质[J].厦门大学学报(自然科学版),1990,29(3):300-304.
    [31]宋铋钊,张廷有,张慧君.甲基丙烯酸甲酯-含氢聚硅氧烷接枝物的合成与表征[J].化学研究与应用,2003,15(6):879-880.
    [32]宋铋钊,张廷有,戴金兰.高碳醇丙烯酸酯接枝改性硅油乳化性能的研究[J].中国皮革,2004,33(3):12-13,25.
    [33]宋铋钊,张廷有,戴金兰.改性硅油PHMS-g-AA-SA乳化性能的研究[J].中国皮革,2004,33(7):13-15.
    [34]Manshi Ohyanagi, Koji Ikeda, Yoshiro Sekine. Formation of poly-(2-carboxyethylsiloxane)-poly-(dimethylsiloxane) complexes with hydrogene bonds in the absence of solvent[J]. Makromol Chem Rapid Commn,1983,4:795-799.
    [35]安秋凤,杨刚.羧基化聚醚有机硅表面活性剂CPES的性能研究[J].化工新型材料,2007,35(3):45-47.
    [36]安秋凤,高胜利,杨刚等.羧基化聚醚有机硅及其构筑的超分子膜[J].材料导报,2008,22(5):130-133.
    [37]安秋凤,杨刚,李明涛等.羧基化聚醚有机硅表面活性剂CPES的合成、表征及性能[J].精细化工,2007,24(7):640-643.
    [38]Qiufeng An, GangYang, QianjinWang et.al. Synthesis and morphology of carboxylated polyether-block-polydimethylsiloxane and the supermolecule self-assembled from it[J]. Journal of Applied Polymer Science,2008,110:2595-2600.
    [39]O'Lenick, Jr., Anthony J., Parkinson, et al. Silicone alkoxylated esters carboxylates[P]. U. S.Pat.5,296,625,1994.
    [40]Liu H J, Lin L H, Chen K M. Synthesis and surface activity of polyethylene glycolmaleic anhydride polydimethyl siloxane polyester surfactants[J]. Colloids and Surfaces, A:Physicochem. Eng. Aspects,2003,215 (1):213-219.
    [41]LIU H J, LIU H E. Synthesis and surface activity of polyethylene glycolmaleic anhydride polydimethylsiloxane polyester surfactants[J]. Colloids Surf, A:Physicochem Eng Aspects,2003,215:213-219.
    [42]何新杰,蒋士英.丝素整理剂在真丝绸防皱整理中的应用[J].丝绸,1999,(11):28-29.
    [43]Tae Jin Kang, Min Sun Kim. Effect of silicone treatments on dimensional properties of wool fabric[J]. Textile Res.,2001,71(4):295-300.
    [44]安秋凤,李临生等.低泛黄、滑爽型氨基硅乳柔软剂及其制备方法和应用[P].中国:CN1312410,2001-9-12.
    [45]郭庆中,黄恒超,伍青.烷基对有机硅防水剂的影响[J].化工新型材料,2006,34(8):53-56.
    [46]张建雨,王文强,唐芳珍等.硅氢反应合成有机硅蜡[J].华东理工大学学报(自然科学版),2008,34(4):487-490.
    [47]班文彬,刘伟区,申德妍.硅氢加成法制备含长链烷基两亲性聚合物[J].化工进展,2006,25(2):176-180.
    [48]Qiufeng An, Guangwen Cheng, Linsheng Li. Synthesis, characterization and film morphology of dodecylpolysiloxane[J]. Journal of Applied Polymer Science, 2006,101(6):448-456.
    [49]安秋凤,程广文.长碳链烷基聚硅氧烷的成膜性与膜形貌[J].纺织学报,2006,27(5):136-15.
    [50]安秋凤,程广文,李临生等.聚(二甲基硅氧烷-co-甲氧基十二烷基硅氧烷)在棉纤维及其模型表面的膜形貌及定向排列方式[J].高分子学报,2007,6(19-20):524-530.
    [51]黄良仙,安秋凤,李歌等.双官能基改性硅油的制备和表征[J].化工新型材料,2009,37(2):67-69.
    [52]王辉,安秋凤,程广文等.氨基/十二烷基聚硅氧烷(DASO)的合成与应用[J].陕西科 技大学学报(自然科学版),2007,25(4):16-19.
    [53]Hideo Sawada. Fluorinated peroxides[P]. Chemical Review,1996,96(5):1779-1808
    [54]Norio Yoshino, Akihiro Sasaki, Tsuyoshi Seto. Synthesis of a silane coupling agent containing a 4-(perfluoroalkyl)phenyl group and its application to the surface modification of glass[P]. Journal of Fluorine Chemistry,1995,71(1):21-29.
    [55]曾毓华.氟碳表面活性剂[M].北京:化学工业出版社,2001:372.
    [56]罗巨涛,姜维利.纺织品有机硅基有机氟整理[M].北京:中国纺织出版社,2001:192.
    [57]Jan H. Riedel, H. Hocker. Preparation and characterization of polymer with pending UV-absorber groups[J]. Journal of Applied Polymer Science,1994,51:573-579.
    [58]Anthony J.O'Lenick, Jr., Dacula, Ga. Silicone salicylate esters in personal care[P]. US:5948391, Sep.7,1999.
    [59]Koji Sakuta, Satoshi Kuwata. Organosilicon compound[P]. US:5270426, Dec.14,1993.
    [60]Jean-Marc Ascione, Hoboken, N.J. Cosmetic filter compositions containing dibenzoyleth--ane, Alkyl β,β'-diphenylacrylate and benzotriazole silicone, and uses there of. [P]. US:5955061, Sep.21,1999.
    [61]Anthony J.O'Lenick, Jr., Dacula, Ga. Silicone salicylate esters[P]. US:6004542,Dec. 21,1999.
    [62]Anthony J. O'Lenick, Jr., Dacula, Ga. Silicone salicylate ester in personal care[P].US: 5948391,Sep.71999
    [63]余爱萍,陈忠伟,陈雪花等.棉织物用纳米抗紫外整理剂的研制[J].北京纺织,2001,22(5):41-44.
    [64]Sakaguchi, Yoshio, Ogasawara, Kozo. Improving heat and light resistance of wool fibers[P].JP:02242970,Sep.27,1990.
    [65]杨栋梁.纳米技术在染整生产中的应用的探讨(一)[J].印染,2002,1:37-40.
    [66]杨栋梁.纳米技术在染整生产中的应用的探讨(二)[J].印染,2002,2:40-44.
    [67]Gauthier S., Aime J. P., Bouhacina T., et al. Study of grafted silane molecules on silica surface with an atomic force microscope[J]. Langmuir,1996,12:5126-5137.
    [68]Mcgovern M. E., Kallury K. M. R., Thompson M. Role of solvent on the silanization of glass with octadecyltrichlorosilane[J]. Langmuir,1994,10:3607-3614.
    [69]Naiyi Cui, Chaozong Liu, Norman M. D. Brown, Brian J.Meenan. An exploratory study of the effects of the dielectric-barrier-discharge surface pre-treatment on the self-assembly processes of a(3-Aminopropyl)trimethoxysilane on glass substrates[J]. Applied Surface Science,2007,253:6932-6938.
    [70]Touraj Manifar, Asad Rezaee, Mehdi Sheikhzadeh, et al. Formation of uniform self-assembly monolayers by choosing the right solvent:OTS on silicon wafer, a case study[J]. Applied Surface Science,2008,254:4611-4619.
    [71]Emily, Asenath, Smith, Wei Chen. How to prevent the lose of surface functionality derived from aminosilanes[J]. Langmuir:2008,24(21):12405-12409.
    [72]Tohru Nakagawa, Mamoru Soga. Contact angle and atomic force microscopy study of reactions of n-alkyltrichlorosilanes with muscovite micas exposed to water vapor plasmas with various power densities[J]. Japannese Journal of Applied Physics, 1997,36:6915-6921.
    [73]Yongan Yang, Alexander M. Bittner, Steve Baldelli, et al. Study of self-assembled triethoxysilane thin films made by casting neat reagents in ambient atmosphere[J]. Thin Solid Films,2008,516:3948-3956.
    [74]Michel Granier, Gerard F. Lanneau, Johanne Moineau, et al, Michel Ramonda. Improved strain relief of self-assembled monolayers from organohydridochlorosilanes grafted on to oxidized(1,0,0) silicon wafers[J]. Langmuir,2003,19(7):2691-2695.
    [75]N. Katsonis, A. Marchenko, D.Fichou, et al. Investigation on the nature of the chemical link between acetylenic organosilane self-assembled monolayers and Au(111) by means of synchrotron radiation photoelectron spectroscopy and scanning tunneling microscopy[J]. Surface Science,2008,602:9-16.
    [76]XU Guo Hua, Higashitani Ko. Formation of OTS self-assembled monolayer on glass surface investigated by AFM[J]. Chemical Journal of Chinese Universities,2000,21 8:1257-1260.
    [77]Tao Bai, Xianhua Cheng. Preparation and characterization of 3-mercaptopropyl trimethoxysilane self-assembled monolayers[J]. Journal of Unlvenrlty of Science and Technology Beijing,2008,15(2):192-196.
    [78]John A., Howarter, Jeffrey P. Youngblood. Optimization of silica silanization by 3-aminopropyltriethoxysilane[J]. Langmuir,2006,22(26):11142-11147.
    [79]Pascal Martin, Sophie Marsaudon, Laurent Thomas, et al. Liquid mechanical behavior of mixed monolayers of amino and alkyl silanes by atomic force microscopy[J]. Langmuir, 2005,21:6934-6943.
    [80]Sneha A. Kulkarni, Kunjukrishna P. Vijayamohanan. Interfacial behavior of alkyltrichlorosilane monolayer sonsilicon:Control of flat-band potential and surface state distribution using chain length variation[J]. Surface Science,2007,601:2983-2993.
    [81]D.S.Sutar, N.Padma, D.K.Aswal, et al. Growth of highly oriented crystalline polyaniline films by self-organization[J]. Journal of Colloid and Interface Science, 2007,313:353-358.
    [82]D.S.Sutar, N.Padma, D.K.Aswal, et al. Preparation of nanobrous polyaniline films and their application as ammonia gas sensor[J]. Sensors and Actuators B,2007,128:286-292.
    [83]D.S.Sutar, S.Lenfant, D.Vuillaume, et al. Electronic structure of highly crystalline polyaniline by study of tunneling conduction in n+-Si/self-assembled monolayer/polyaniline heterostructures[J]. Organic Electronics,2008,9(5):602-608.
    [84]Jinping Dong, Anfeng Wang, K.Y.Simon Ng, et al. Self-assembly of octadecyltrichlorosilane monolayers on silicon-based Substrates by chemical vapor deposition[J]. Thin Solid Films,2006,515:2116-2122.
    [85]MabelA. Cejas, Francisco M. Raymo. Fluorescent diazapyrenium films and their response to dopamine[J]. Langmuir,2005,21:5795-5802.
    [86]Yingying Sun, Haiying Wang, Changqing Sun. Amperometric glucose biosensor based on layer-by-layer covalent attachment of AMWNTs and IO4--oxidized GOx[J]. Biosensors and Bioelectronics,2008,24(1):22-28.
    [87]HollyJ.Martin, Kirk H. Schulz, Joel D. Bumgardner, et al. XPS study on the use of 3-aminopropyltriethoxysilane to bond chitosan to a titanium surface[J]. Langmuir, 2007,23:6645-6651.
    [88]Vaidya R., Simonson R. J., Cesarano. Formation and stability of self-assembled monolayers on thin films of lead zirconate titanate (PZT)[J]. Langmuir,1996, 12(11):2830-2836.
    [89]Patrick A. Johnson, Rastislav Levicky. X-ray photoelectron spectroscopy and differential capacitance study of thiol-functional polysiloxane films on gold supports[J]. Langmuir, 2004,20(22):9621-9627.
    [90]Patrick A. Johnson, Rastislav Levicky. Polymercaptosiloxane anchor films for robust immobilization of biomolecules to gold supports[J]. Langmuir, 2003,19(24):10288-10294.
    [91]Nan Xia, Yunhua Hu, David W. Grainger, et al. Functionalized poly(ethyleneglycol)-grafted polysiloxane monolayers for control of protein binding[J]. Langmuir,2002,18(8):3255-3262.
    [92]Wei Feng, Shiping Zhu, Kazuhiko Ishihara, et al. Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-Initiated atom transfer radical polymerization[J]. Langmuir, 2005,21(13):5980-5987.
    [93]Shiyong Song, Jinfang Zhou, Mengnan Qu, et al. Preparation and tribological behaviors of an amide-containing stratified self-assembled monolayers on silicon surface[J]. Langmuir,2008,24(1):105-109.
    [94]王金清,杨生荣,王博等.单晶硅表面有机硅烷/Ag2O纳米微粒复合自组装膜的制备和表征[J].物理化学学报,2003,16(1):41-44.
    [95]张会臣,李崇,李亚斌等.氨基硅烷自组装分子膜的制备与摩擦特性[J].大连海事大学学报,2003,29(5):60-63.
    [96]Tsukruk V. V., L.uzinov I, Julthongpiput D. Sticky molecular surfaces:epoxysilane self-assembled monolayers[J]. Langmuir,1999,15(9):3029-3032.
    [97]Baolian Zhang, Xiaoqing Zhu, Jinyong Lu, et al. Polysiloxane-supported NAD(P)H model 1-Benzyl-1,4-dihydronicotinamide:synthesis and application in the reduction of activated olefins[J]. J.Org.Chem.,2003,68:3295-3298.
    [98]Laiwan Chong, Yuhlang Lee, Tenchin Wen. Surface modification of indium tin oxide anodes by self-assembly monolayers:effects on interfacial morphology and charge Injection in organiclight-emitting diodes[J]. Thin Solid Films,2007,515:2833-2841.
    [99]Youli Qi, MiaoChen, Shan Liang, et al. Micro-patterns of Au@SiO2 core-shell nanoparticles formed by electrostatic interactions[J]. Applied Surface Science: 2008,254:1684-C1690.
    [106]D.Appelhans, D.Ferse, H.-J.P.Adler, et al. Self-assembled monolayers prepared from v-thiophene-functionalized n-alkyltrichlorosilane on silicon substrates[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,161:203-212.
    [101]Massimo Bertolucci, Giancarlo Galli, Emo Chiellini. Wetting behavior of films of new fluorinated styrene-siloxane block copolymers[J]. Macromolecules,2004,37:3666-3672.
    [102]Hongta Yang, Yulin Deng. Preparation and physical properties of superhydrophobic papers[J]. Journal of Colloid and Interface Science,2008,325:588-593.
    [103]Lianbin Zhang, Huan Chen, Junqi Sun, et al. Layer-by-layer deposition of poly(diallyldimethylammoniumchloride) and sodium silicate multilayers on silica-sphere-coated substrate-facile method to preparea superhydrophobic surface[J]. Chem.Mater,2007,19:948-953
    [104]Liangliang Cao, Tyler P.Price, Michael Weiss, et al. Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films[J]. Langmuir, 2008,24(5):1640-1643.
    [105]Hui-Jung Tsai, Yuh-Lang Lee. Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces[J]. Langmuir,2007,23(25):12687-12692.
    [106]Javier Bravo, Lei Zhai, Zhizhong Wu, et al. Transparent superhydrophobic films based on silica nanoparticles[J]. Langmuir,2007,23(13):7293-7298.
    [107]S. Boduroglu, M. Cetinkaya, W. J. Dressick, et al. Controlling the wettability and adhesion of nanostructured poly-(p-xylylene) films[J]. Langmuir 2007, 23(23):11391-11395.
    [108]Lichao Gao, Thomas J. McCarthy. (CH3)3SiCl/SiCl4 azeotrope grows superhydrophobic nanofilaments[J]. Langmuir,2008,24(2):362-364.
    [109]郭志光,周峰,刘维民.凝胶溶胶法制备仿生超疏水薄膜[J].化学学报,2006,64(8):761-766
    [110]Chien-Te Hsieh, Fang-Lin Wu, Shu-Ying Yang. Superhydrophobicity from composite nano/microstructures:carbon fabrics coated with silica nanoparticles[J]. Surface&Coatings Technology,2008,202:6103-6108.
    [111]Zhengxiao Li, Yanjun, Jinjin Dai. Surerhydrophobic surface prepared from water glass non-fluorinated alkylsilane cotton substrates[J]. Applied Surface Science, 2008,254:2131-2135.
    [112]Shenghai Li, Suobo Zhang, Xianhong Wang. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process[J]. Langmuir, 2008,24(10),5585-5590.
    [113]H. F. Hoefnagels, D. Wu, G. de With, et al. Biomimetic superhydrobic and high oleophobic cotton textiles[J]. Langmuir,2007,23(26),13158-13163.
    [114]Lichao Gao, Thomas J. McCarthy. "Artificial lotus leaf" prepared using 1945 patent and a commerical textile[J]. Langmuir,2006,22(14):5998-6000.
    [115]Walid A. Daoud, John H. Xin, Yi He Zhang, et al. Pulsed laser deposition of superhydrophobic thin teflon films on the fibers[J]. The Solid Films,2006,515:835-837.
    [116]Gil Goncalves, Paula A.A.P. Marques, Tito Trindade, et al. Superhydrophobic cellulose nanocomposites[J]. Journal of Colloid and Interface Science,2008,324:42-46.
    [117]Minghua Yu, Guotuan Gu, Wei-Dong Meng, et al. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticle sand perfluorooctylated quaternary ammonium silane coupling agent[J]. Applied Surface Science, 2007,253:3669-3673.
    [118]Andreas F. ThuEnemann, Rimantas H. Kublickas. Low surface energy polysiloxane complexes[J]. Mater. Chem.,2001,11:381-384.
    [119]XU LI, SUAT HONG GOH, YEE HING LAI. Effect of electron donor-acceptor interaction on the thermal stability of supramolecular side chain liquid crystalline polymers based on poly(3-carboxypropylmethylsiloxane)[J]. Liquid Crystals,2002, 29:675-685.
    [120]XU LI, SUAT HONG GOH, YEE HING LAI. Supramolecular side chain liquid crystalline polysiloxane assembled via hydrogen bonding between carboxylic acid-containing polysiloxane and azobenzene derivatives[J]. Liquid Crystals, 2001,28:1527-1538.
    [121]NICOLE E. BOTTERHUIS, D. J. M. VAN BEEK, et al. Self-Assembly and morphology of polydimethylsiloxane supramolecular thermoplastic elastomers[J]. Journal of Polymer Science:Part A:Polymer Chemistry,2008,46:3877-3883.
    [122]Hu Yangjian, Huang Ronghua, Zhang Xianliang. Forming of a new liquid crystalline through hydrogen bonding[J]. Wuhan University Journal of Natural Sciences, 1998,3:209-213.
    [123]Carmen Racles, Maria Cazacu. Siloxane-containing liquid-crystalline supramolecular polymers:preparation and study of thermotropic behavior[J]. Journal of Applied Polymer Science,2008,109:4000-4009.
    [124]Mashi Ohyanagi, Koji Ikeda, Yoshiro Sekine. Formation of poly(2-carboxyethylmethylsiloxane)-poly(dimethylsiloxane) complexes with hydrogen bonds in the absence of solvent[J]. Chem. Rapid Commun.,1983,4:795-799.
    [125]Xu Li, S.H. Goh, Y.H. Lai, et al. Miscibility of carboxyl-containing polysiloxane/poly(1-vinylimidazole) [J]. Polymer,2001,42:5463-5469.
    [126]Xu Li, S.H. Goh, Y.H. Lai, et al. Miscibility of carboxyl-containing polysiloxane/poly(vinylpyridine) blends[J]. Polymer,2000,41:6563-6571.
    [127]Jianying Ouyang, Yi Pan, Shuiqin Zhou, et al. Supramolecular assembled C60-containing carboxylated poly(dimethylsiloxane) composites[J]. Polymer, 2006,47:6140-6148.
    [128]Yoshiro Kaneko, Nobuo Iyi, Taki Matsumoto, et al. Synthesis of ion-exchangeable layered polysiloxane by sol-gel reaction of aminoalkyltrialkoxysilane:a new preparation method for layered polysiloxane materials[J]. J. Mater. Chem.,2003,13:2058-2060.
    [129]Yoshiro Kaneko, Nobuo Iyi, Keiji Kurashima, et al. Hexagonal-structureed polysiloxane material prepared by sol-gel reaction of aminoalkyltrialkoxysilane without using surfactants. Chem. Mater.2004,16:3417-3423.
    [130]Johan Alauzun, Ahmad Mehdi, Catherine Reye, et al. CO2 as a supramolecular assembly agent:a route for lamellar materials with a high content of amine groups[J]. J.AM.CHEM.SOC.,2005,127:11204-11205.
    [131]Brian Y.Chow, David W.Mosley, Joseph M.Jacobson. Perfecting imperfect "monolayers":removal of siloxane multilayers by CO2 snow treatment[J]. Langmuir, 2005,21(11):4782-4785.
    [132]Eun-Bum Cho, Dukjoon Kim, Mietek Jaroniec. Periodic mesoporous organosilicas with multiple bridging groups and spherical morphology[J]. Langmuir, 2007,23(23):11844-11849.
    [133]Rui Resendes, Jason A. Massey, Karen Temple, et al. Supramolecular organometallic polymer chemistry:multiple morphologies and superstructures from the solution self-assembly of polyferrocene-block-polysiloxane-block-polyferrocene triblock copolymers[J]. Chem. Eur. J.,2001,11:2414-2424.
    [134]An-WuXu, Jimmy C.Yu, Hua-XinZhang, et al. Continuous formation of supported unusual mesostructured silica films by sol-gel dip coating[J]. Langmuir, 2002,18(24):9570-9573.
    [1]Xinjian Feng, Lei Jiang. Design and creation of superwetting/antiwetting surfaces[J]. Adv. Mater.,2006,18:3063-3078.
    [2]Junfeng Zhang, Daniel Y. Kwok. Contact line and contact angle dynamics in superhydrophobic channels[J]. Langmuir,2006,22(11):4998-5004.
    [3]Barthlott W., Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202:1-8.
    [4]Taolei Sun, Lin Feng, Xuefeng Gao, et al. Bioinspired surfaces with special wettability[J]. Ace. Chem. Res.2005,38(8):644-652.
    [5]Lin Feng, Shuhong Li, Yingshun Li. Super-hydrophobic surface:from natural to artificial[J]. Adv. Mater.,2002,14:1857-1860.
    [6]Zhengxiong Li, Yangjun Xing, Jinjin Dai. Superhydrophobic surfaces perpared from water glass and non-fluorinated alkysilane on the cotton substrates[J]. Applied Surface Science,2008,254:2131-2135.
    [7]Shenghai Li, Suobo Zhang, Xianhong Wang. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process[J]. Langmuir, 2008,24(10):5585-5590.
    [8]Walid A. Daoud, John H. Xin, Yi He Zhang, et al. Pulsed laser deposition of superhydrophobic thin teflon films on cellulosic fibers[J]. Thin Solid Films, 2006,515:835-837.
    [9]Minghua Yu, Guotuan Gu, Wei-Dong Meng, et al. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane couping agent[J]. Applied Surface Science,2007,253:3669-3673.
    [10]Lichao Gao, Thomas J. McCarthy. "Artificial lotus leaf" prepared using 1945 patent and a commerical textile[J]. Langmuir,2006,22(14):5998-6000.
    [11]Stephen Michielsen, Hoon J. Lee. Design a superhydrophobic surface using woven structures[J]. Langmuir,2007,23(11):6004-6010.
    [12]H. F. Hoefnagels, D. Wu, G de With, W. Ming. Biomimetic superhydrobic and high oleophobic cotton textiles[J]. Langmuir,2007,23(26),13158-13163.
    [13]Qiufeng An, Qianjin Wang, Linsheng Li. Study of amino functional polysiloxane Film on regenerated cellulose substrates by atomic force microscopy and x-ray photoelectron microscopy[J]. Textile Research Journal,2009,79(1):89-93.
    [14]Qiufeng An, Linsheng Li, Liangxian Huang, et al. Film morphology and characterization of functional polysiloxane softeners[J]. AATCC Review,2006,6(2):39-43.
    [15]H. F. Hoefnagels, D. Wu, G. de With, et al. Biomimetic superhydrobic and high oleophobic cotton textiles[J]. Langmuir,2007,23(26),13158-13163.
    [16]Zhengxiao Li, Yanjun, Jinjin Dai. Surerhydrophobic surface prepared from water glass non-fluorinated alkylsilane cotton substrates[J]. Applied Surface Science, 2008,254:2131-2135.
    [17]李凤艳,钟智丽,刑彦军等.硅水溶胶体系的制备及其性能表征[J].天津工业大学学报,2009,28(2):45-56.
    [18]杨靖,张健民,张洁等.酸催化二氧化硅溶胶的制备及稳定性研究[J].西安工程科技学院学报,2007,21(10):56-61.
    [19]孙道兴.硅溶胶制备纳米二氧化硅的工艺研究[J].青岛科技大学学报,2008,29(4):12-19.
    [20]王孝龙,纪全,夏延致等.溶胶-凝胶法制备纳米SiO2及其表面接枝改性研究[J].纳米科技,2007,4(2):34-37.
    [21]侯万国,孙德军,张春光.应用胶体化学[M].北京:科学技术出版社,1998:123-125.
    [22]Yasumasa Takao, Makio Naito, Hidehiro Kamiya. Contribution of particle structure to the viscosity of SiO2 particle-filled epoxy resin composite systems[J]. Advanced Powder Technology,2001,12(1):17-31.
    [23]江雷,冯琳.仿声智能纳米界面材料[M].北京:化学工业出版社,2007:91.
    [24]Michael C. Burrell, Matthew D. Butts, Daniel Derr, et al. Angle-depend XPS study of fuctional group orientatinal for aminosilicone polymers absorbed onto cellulose onto cellulose surfaces. Applied Surface Science,2004,227:1-6.
    [25]Xiaoyan Song, Jin Zhai, Yilin Wang, et al. Fabrication of superhydrophobic surfaces by self-sssembly and their tater-Adhesion properties[J]. J. Phys. Chem. B,2005,109(9): 4048-4052.
    [26]王金清,杨生荣,王博等.单晶硅表面有机硅烷/Ag2O纳米微粒复合自组装膜的制备和表征[J].物理化学学报,2003,16(1):41-44.
    [1]理查德G.琼斯,安藤亘,朱利安·乔努斯基.含硅聚合物-合成与应用[M].北京:化学工业出版社,2008:169.
    [2]李站雄,唐松青,陈国强.含氟硅油合成研究及其应用[J].高分子通报,2004,(6):79-82.
    [3]易玲敏,詹晓力,陈丰秋等.阴离子聚合法合成PMMA-b-PMTFPS嵌段共聚物[J].高等化学学报,2007(12):2393-2397.
    [4]王秉昌.氟硅橡胶的合成与进展[J].有机氟工业,1992(1):21-25.
    [5]易玲敏,詹晓力,陈丰秋等.窄分子量分布的聚[甲基(3,3,3-三氟丙基)硅氧烷]的合成与表征[J].高等化学工程学报,2008,22(2):299-304.
    [6]Linbin Zhang, Huan Chen, Junqi etal. Layer by layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate—facile method to prepare a superhydrophobic surface[J]. Chem. Mater.,2007,19(4):948-953.
    [7]Hui-Jung Tsai, Yuh-Lang Lee, Facile method fabricate raspberry-like particulate films for superhydrophobic surfaces[J]. Langmuir,2007,23(25):12687-12692.
    [1]王秉昌.氟硅橡胶的合成与进展[J].有机氟工业,1992(1):21-25.
    [2]理查德G.琼斯,安藤亘,朱利安·乔努斯基.含硅聚合物-合成与应用[M].北京:化学工业出版社,2008:168.
    [3]刘新烁,张招贵,黄婷等.含氟硅烷及其聚合物的合成与应用[J].有机硅材料,2003,17(6):26-29.
    [4]K. Obayashi H, Nishiumi W. Preparation and characterization of poly(methyl-3,3,3,-trifluoropropylsioxane-co-dimethylsiloxane)[J]. Makromol Chem.,1993,194: 1403-1410.
    [5]REDDY V. S, LUNCEFORD. B. D, CASSIDY P. E, et al.Synthesisi and charaterization of new silicon-containing fluoroacylate monomers and polymers:3[J]. Polymer, 1997,38(3):703-706.
    [6]Yan Hu, Kurogi Kazutomo, Tsujii Kaoru. High oil-repellent poly(alkypyrrole) films coated with fluorinated alkylsilane by a facile way[J]. Clolloids and surfaces A: Physicochemical and Engineering Aspects,2007,292(1):27-31.
    [7]Kulinich S.A., Farzaneh M. Hydrophobic properties of surfaces coated with fluoroalkylsiloxane and alkylsiloxane monolayers[J]. Surface science,2004,573(3): 379-390.
    [8]Yoshino Norio, Sato Tomohiko, Miyao Kensuke,et al. Synthesis of novel highly heat-resistant fluorinated silane coupling agents[J]. Journal of fluorine chemistry, 2006,127(8):1058-1065.
    [9]Zheng-hong Luo, Teng-yun He. Synthesis and characterization of poly(dimethylsiloxane)-block-poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate) diblock copolymers with low surface energy prepared by atom transfer radical polymerization[J]. Reactive and Functional Polymers,2008,68(5):931-942.
    [10]Furukawa Y, Kotera M. Synthesis of fluorosilicone having highly fluorinated alkyl side chains based on the hydrosilylation of fluorinated olefins with polyhydromethylsiloxane[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2002,40(18):3120-3128.
    [11]Qiufeng An, Linsheng Li, Liangxian Huang, et al. Film morphology and characterization of functional polysiloxane softeners[J]. AATCC Review,2006,6(2):39-43.
    [12]QiufengAn, Gang Yang, QianjinWang et.al. Synthesis and Morphology of carboxylated polyether-block-polydimethylsiloxane and the supermolecule self-assembled from it[J]. Journal of Applied Polymer Science,2008,110:2595-2600.
    [13]AN Q F, WANG Q J, WANG Y, et al. Synthesis, film morphology, and performance of functional polysiloxane bearing polyether and benzophenone derivative side groups [J]. Fibers and Polymers,2009,10(2):40-45.
    [14]易玲敏,詹晓力,陈丰秋.窄分子量分布的聚[甲基(3,3,3-三氟丙基)硅氧烷]的合成与表征[J].高校化学工程学报,2008,22(2):299-304.
    [15]朱传凤,王琛.扫描探针显微术应用进展[M].北京:化学工业出版社,2007:5.
    [16]彭唱盛,宋少先,谷庆宝.扫描探针显微技术理论与应用[M].北京:化学工业出版社,2007:73-76.
    [1]沈家骢.超分子层状结构——组装与功能[M].北京:科学出版社,2004:420-424.
    [2]An Qiufeng, Yang Gang, Wang Qianjin, et al. Systhesis and morphology of carboxylated polyether-block-polydimethylsiloxane and the supermolecule self-assembled from it[J]. Journal of Applied Polymer Science,2008,110(5):2595-2600.
    [3]Suat Hong Goh, Yee Hing Lai. Effect of electron donor-acceptor interaction on the thermal stability of supramolecular side chain liquid crystalline polymers based on poly(3-carboxypropylmethylsiloxane)[J]. Liquid Crystals,2002,29(5):675-685.
    [4]Yoshiro Kaneko, Nobuo Iyi, Keiji Kurashima, et al. Hexagonal-structured polysiloxane material prepared by Sol-Gel reaction of aminoalkyltrialkoxysilane without using surfactants[J]. Chemistry of Material,2004,16(18):3417-3423.
    [5]Capan R. Pyroelectric and dielectric characterisation of alternate layer Langmuir-Blodgett films incorporating ions[J]. Materials Letters,2007,61:1231-1234.
    [6]Liangliang Cao, Tyler P.Price, Michael Weiss, et al. Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films[J]. Langmuir,2008, 24(5):1640-1643.
    [7]Jun Li, Xu Li, Xiping Ni, et al. Self-assembled supermolecular hydrogel formed by biodegradable PEO-PHB-PEO triblock copolymers and α-cyclodextrin for controlled drug delivery[J]. Biomaterials,2006,27(22):4132-4140.
    [8]Nan Xia, Yunhua Hu, David W. Grainger, et al. Functionalized poly(ethylene glycol)-grafted polysiloxane monolayers for control of protein binding[J]. Langmuir, 2002,18(8):3255-3262.
    [9]Shiyong Song, Sili Ren, Jinqing Wang, et al. Preparation and tribological study of a peptide-containing alkylsiloxane monolayer on silicon[J]. Langmuir, 2006,22(14):6010-6015.
    [10]Atsushi Shimojima, Kazuyuki Kuroda. Designed synthesis of nanostructured siloxane-organic hybrids from amphiphilic silicon-based precursors[J]. The Chemical Record,2006,6(2):53-63.
    [11]Atsushi Shimojima, Zheng Liu, Tetsu Ohsuna, et al. Self-assembly of designed oligomeric siloxanes with alkyl chains into silica-based hybrid mesostructures[J]. Journal of American Chemical Society,2005,127(40):14108-14116.
    [12]Hongyou Fan, Zhu Chen, C. Jeffrey Brinker, et al. Synthesis of organo-silane functionalized nanocrystal micelles and their self-assembly[J]. Journal of American Chemical Society,2005,127(40):13746-13747.
    [13]Jianli Hua, Zhen Li, Jingui Qin,et al. Synthesis and characterization, second-order nonlinear optical and photorefractive properties of new multifunctional polysiloxane with broad optical transparent pentafluorophenyl azo chromophore[J]. Reactive and Functional Polymers,2007,67(1):25-32.
    [14]Stoenescu, Roxana; Meier, Wolfgang. Asymmetric membranes from amphiphilic ABC triblock copolymers[J]. Molecular Crystals and Liquid Crystals,2004,417:185-191.
    [15]安秋凤,杜经武,黄良仙等.氨烃基聚硅氧烷的应用性能研究[J].印染,2005,2:4-7
    [16]An Qiufeng, Li Linsheng, Huang Liangxian, et al. Film morphology and characterization of functional polysiloxane softeners[J]. AATCC Review,2006,6(2):39-43
    [17]Czech A M, Sabia A J. Reducing yellowing properties in amino modified silicone fabric softeners[J]. Am Dyest Rep,1993,82(9):58-61
    [18]Andreas F. ThuEnemann, Dirk Ruppelt, et al. Long-range ordered columns of a hexabenzo[bc,ef,hi,kl,no,qr]coronene-polysiloxane complex:toward molecular nanowires[J]. J. Mater. Chem.,2000,10:1352-1329.
    [19]Johan Alauzun, Ahmad Mehdi, Catherine Reye, et al. CO2 as a supramolecular assembly agent:a route for lamellar materials with a high content of amine groups[J]. J. AM.CHEM.SOC.,2005,127:11204-11205.
    [20]Brian Y.Chow, David W.Mosley, Joseph M.Jacobson. Perfecting imperfect "Monolayers": removal of siloxane multilayers by CO2 snow treatment[J]. Langmuir, 2005,21(11):4782-4785.
    [21]Song X Y, Zhai J, Wang Y L, et al. Self-assembly of amino-functionalized monolayer on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughing[J]. Colloid and Interf Sci,2006,298(1):267-273.
    [22]喻冬秀,文秀芳,皮丕辉等.聚苯胺包覆短碳纤维的制备及电磁性能研究[J].高校化学工程学报,2009,23(1):148-153.
    [23]Nakano M, Ishida T, Sano H et al. Tribological properties of self-assembled monolayers covalently bonded to Si[J]. Appl Surf Sci,2008,255(5):3040-3045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700